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A
bout ten years ago I wrote an article,
“Why is Mathematical Biology so Hard?”
for these Notices intending to explain
why the applications of mathematics to
biology would be very different than the

traditional applications to physics and engineering
[42]. A lot has happened since then. Mathematical
biology has grown from a small field, containing
relatively few mathematicians, to a major branch of
applied mathematics. The reasons for this growth,
which are implicit in the discussion below, are not
the point of this article, nor do I want to encourage
mathematicians to switch to mathematical biology.
Rather, I want to make the case that mathematical
biology benefits all mathematicians; it is good for
the health of mathematics as a whole.

Most of Science is Biology

That statement seems absurd, almost laughable to
many mathematicians who are used to thinking
that “science” means physics and chemistry, while
biology is just classification, necessary perhaps for
training doctors, but not really deep, intellectual,
or mathematical. We are in the midst of a biological
revolution whose roots lie in the 19th and first half
of the twentieth century. In the past twenty-five
years the pace of this revolution has accelerated
and it has created an enormous biological research
community. The American Society for Nephrology
has a membership that is comparable in size to
the American Mathematical Society, and that’s just
the kidney. The annual meeting of the Society for
Neuroscience attracts around 30,000 attendees,
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which is again the approximate number of members
of the AMS, and is huge when compared to the
size of the Joint Mathematics Meetings (around
7,000). This growth has affected the balance
of university research. For example, between
September 2012 and May 2013, Duke University
awarded 365 PhDs. Of these, 165 (45 percent)
were in disciplines of the biological sciences
like biochemistry, pharmacology, neurobiology,
environmental studies, and so forth. By contrast,
seventeen PhDs were awarded in chemistry, six
in mathematics, nine in physics, and nine in
statistics (for a total of 11 percent) and quite a
few of those involved applications to biological
problems. Similar numbers also hold at the Ohio
State University. In the comparable period, OSU
awarded 806 PhDs. Of these, 307 (38.3 percent)
were in disciplines of the biological sciences.
By contrast, twenty-one PhDs were awarded in
chemistry, twenty-one in mathematics, twenty-four
in physics, and sixteen in statistics (for a total of
10.2 percent). Today, most of science is biology.

Three factors have spurred the enormous growth
of biological research. First, the technological revo-
lution has made it possible to measure biological
quantities that were previously out of reach. This
drove great leaps in biological understanding and
enabled the application of mathematical sciences
techniques and physical sciences techniques to bi-
ological systems. Second, government and biotech
companies are interested in increasing the un-
derstanding of biological systems that directly
relate to human health and the environment, and
therefore have provided new funding. The biotech
industry also provides an important new source
of employment for PhDs in the biological sciences.
Third, universities establish departments and re-
search programs in areas where they will attract
students. Almost everyone is interested in human
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physiology, human health, and the ecology of our
planet. To understand the scientific interests of an
average educated person, one need only look at
the percentage of articles in the Science section of
The New York Times that are devoted to psychol-
ogy, biology, ecology, and medicine, compared to
mathematics, physics or chemistry.

By many measures, the mathematical sciences
community has responded robustly and produc-
tively to the biological revolution. For example,
in 2007–2008 there were ninety-eight PhDs (9.6
percent of mathematics PhDs) in the subfield of
mathematical biology and by 2011–2012 this had
risen to 164 PhDs (13.3 percent). Biostatistics
has always been a large part of statistics, but
even there the PhD numbers have risen from
140 (41.2 percent) in 2007–2008 to 235 (46.3
percent) in 2011–2012. Not only has the commu-
nity of mathematicians who would self-identify as
“mathematical biologists” grown, but many other
mathematicians spend part of their research time
working on biological problems or working on
questions in pure mathematics inspired by biology.

New Questions for Core Mathematics

Modern mathematicians sometimes dismiss
physics as “applied mathematics” and thereby
ignore the fundamental role that physics played in
the development of conceptual ideas in core math-
ematics. The problem of the planets created the
discipline of dynamical systems. The heat, wave,
and Maxwell’s equations drove the development
of partial differential equations. In the modern era,
crystallography was partially responsible for the
development of group theory, quantum mechanics
was an important stimulus for functional analysis,
relativity theory for problems in geometry, and
quantum field theory for string theory.

The intellectual traffic on the mathematics-
biology interface, from mathematics to biology
and from biology to mathematics, goes in both
directions. We mathematical biologists saw clearly
that the enormous development of core mathe-
matics and applied techniques in the twentieth
century would find fruitful and important applica-
tions to biological systems. The development of
these applications began slowly partially because
of resistance by biologists and partially because
the collection of revealing data, especially on the
microscopic level, was difficult. However, in the
past fifteen years, resistance has decreased and
the development of new measurement tools (often
by physicists) has driven an explosion of appli-
cations of diverse branches of mathematics and
statistics to biological problems. Not only have the
traditional tools of ordinary and partial differential
equations been used, but graph theory and random
graphs have been applied to epidemiology and
gene networks [12]. Topology has been used to
understand heart fibrillation [28] and algebraic

topology to understand neuroscience [8], [5] and
image classification [6]. Fractal geometry is used to
analyze dendritic arborization [36], and geometric
concepts are fundamental for understanding pro-
tein folding [29] and the shape of docked proteins.
Homological methods are used to characterize
the behavior of large data sets and dynamical
systems [25]. Combinatorics is used to understand
RNA secondary structure [20]. Probability theory
[3], [33], stochastic processes [13], and branching
processes [14] are becoming central to biological
applications and algebraic tools have been used in
neuroscience [9] and network analysis [38], [21].

But is there any new mathematics? The answer
is “yes, lots.” In the twentieth century there were
three main influences of biology on mathematics.
The theory of evolution and genetics stimulated
the fields of statistics, probability, and stochastic
processes [41], [40], [26]. The Hodgkin-Huxley
equations [22] and Turing’s paper on morphogen-
esis [37] inspired research in reaction-diffusion
equations, pattern formation, and traveling waves
[17], [16]. Sequencing and reconstruction of the
human genome created new questions in proba-
bility, statistics and combinatorics [27], [39]. All
three of these major influences continue today
[11], [34], [32]. In this century, the development
of new core mathematics stimulated or inspired
by biology has been increasing rapidly as more
core mathematicians have gotten acquainted with
and involved in biological problems. Biology has
created fundamentally new questions in statistics
[24] and stimulated the field of algebraic statistics
[10]. The issue of how to compare teeth in paleon-
tology led to new questions in conformal geometry
[30]. The transport of materials in axons led to new
phenomena and theorems in partial differential
equations [18]. The theory of biochemical reactions
stimulated new theorems in dynamical systems [2],
[15] and in queueing theory [31]. The problem of
how to compare different proposed phylogenetic
trees led to the development of geometric central
limit theorems on nonsmooth spaces [23], [43].
Since biological dynamics is very complicated and
often parameters are known only approximately or
not at all, one needs new coarse-grained methods
for the classification of dynamical systems [35],
[4]. The issue of how to detect the shape features
of proteins stimulated new methods for the shape
analysis of surfaces [1]. The effort to understand
central pattern generators in the nervous system
led to new work exploiting groups of diffeomor-
phisms to characterize symmetries in the solutions
of dynamical systems [19]. The problem of provid-
ing low dimensional approximations for very large
data sets has led to new questions in harmonic
analysis [7].

These brief lists are certainly not comprehensive
and are biased by my own knowledge. But they show
clearly the breadth of mathematical techniques
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being applied to biological problems and that
biology is stimulating new mathematics in many
disciplines of core mathematics. Two such areas
are described in the companion articles by my
colleagues Mauro Maggioni and Ezra Miller. It is
certain that biology will have as profound an effect
on the future of mathematics as physics did in the
past.

New Mathematics Majors

Most undergraduate math majors really like mathe-
matical biology. The reason is that they are excited
to see the techniques that they are learning in their
mathematics courses, whether calculus, graph the-
ory, ODEs or probability, applied to questions that
they are interested in. There’s nothing wrong with
the traditional applications to physics and engi-
neering, but most of the applications that you can
get at with undergraduate mathematics are nine-
teenth (or eighteenth) century applications, and
the students can see that. But in biology they can
see mathematics being used to gain understanding
in situations where the full scientific picture is
not understood by anyone. So, even though they
are armed only with some undergraduate courses,
they feel they are at the cutting edge, and, in some
sense they are. Biological systems are so varied
and diverse and mathematical biology is so recent
that it is relatively easy to find interesting, excit-
ing “research” projects in which undergraduate
mathematics can make a real contribution. And
one doesn’t need to be a mathematical biologist to
create and mentor such projects. If you choose any
biology topic (like “prostate cancer,” “evolution of
the flu,” “fetal development”) and add the words
“mathematical model,” a Google search will produce
many papers that are accessible to undergraduates.
Reading a paper or two, learning the background
biology, and working through the mathematics will
usually be the core of a good project. One does have
to accept that one is not “expert” at the biology
in the way that we mathematicians are used to
feeling expert compared to our students (in fact the
student may know more biology than the faculty
member). It helps to realize that even biologists
are expert at only 10 percent of biology. There’s
simply too much biology, it’s too difficult, and
often the underlying mechanisms are unknown.

The excitement of undergraduates for mathemat-
ical biology is a real opportunity for mathematics
departments to attract new majors, minors, and
joint majors. However, to attract new majors one
must design courses that are interesting to fresh-
men and sophomores even though they have not
yet completed the traditional prerequisites for
the math major, first year calculus, multivariable
calculus, and linear algebra. For twenty-five years
I’ve taught a freshman seminar entitled, “Applica-
tions of mathematics to physiology and medicine,”
that has an interesting clientele. The students are

usually quite strong in mathematics and science;
often they’ve arrived at Duke with a five on the BC
calculus test. However, they planned to take no
mathematics at all their freshman year because
they’ve been told that they already have all the
mathematics they need to be biology majors and/or
pre-med. In addition to lectures and problems they
also do a project and they are amazed to discover
that mathematics is useful and can be applied to
biological or medical topics that they are interested
in. Some of these students become math minors
or majors.

Offering freshman and sophomore topics
courses is a departure from the traditional
mathematics curriculum that had only one way
into the major and emphasized the development
of technique. The students who’ve always known
they wanted to be mathematicians (like most of
the readers of this article) will take the traditional
path. It’s the others we need to attract: the future
doctors, lawyers, economists, who could be math
majors (or minors or double majors) instead of
biology or economics majors. We know that the
mathematical techniques and logical reasoning
that we teach will make them better professionals.
We just need to interest them by offering attractive
courses that change the attitude instilled by
the culture and their high school courses that
mathematics consists of boring methods that
aren’t really useful. Of course, mathematical
biology is only one of the possible topics for such
courses.

Many four-year colleges have discovered that
mathematical biology is a good way to attract math
majors and this is one of the reasons that the job
market for mathematical biologists is excellent.
Equally important is the fact that medical research
groups have learned the advantage of having
mathematicians on staff. In addition, government
labs and the large and growing bio-tech industry
hire many PhD mathematicians with training in
mathematical biology.

A New Public Face for Mathematics

We mathematicians often lament that we are
underappreciated. We know that mathematics is
beautiful, that it is fundamental, and that it is
important for applications. How come all those
other people, the general public, the House Science
Committee, don’t seem to know that? The fact
is that we will have a hard time convincing
the general public that mathematics is beautiful
and fundamental. We have a much better shot at
convincing them that mathematics is important and
useful. And, here, mathematical biology is making
and will continue to make real contributions.

Mathematics, and sometimes new and difficult
mathematics, is important for applications. The
general public can’t understand the mathematics,
but they certainly can understand the applications.
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The traditional important applications of mathe-
matics have been to physics, from the motions
of the planets to quantum mechanics, nuclear
fission and the bomb, and fluid flow over airplane
wings. Unfortunately, most people just aren’t very
interested in physics (Voltaire had it right), so
they acknowledge the importance but aren’t that
moved. How about the applications of number
theory to cryptography? Again, everyone sees that
it is important to have secure communications,
but they’re not very interested in how it gets done.
Leave it to the geeks! But biology is a different
story. Everyone is interested in his or her own body
and how it works. Everyone wants to be free of
disease and live a long time. Everyone (well almost
everyone) knows that we’d better be good stewards
of our ecosystems or we and our children are
doomed. So, when you tell them how mathematics
is contributing, they are really interested. And
this has the potential, in the long run, to greatly
improve the public perception of mathematics.
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