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A convex code is a binary code generated by the pattern of intersections of a 
collection of open convex sets in some Euclidean space. Convex codes are relevant 
to neuroscience as they arise from the activity of neurons that have convex receptive 
fields. In this paper, we develop algebraic methods to determine if a code is convex. 
Specifically, we use the neural ideal of a code, which is a generalization of the 
Stanley–Reisner ideal. Using the neural ideal together with its standard generating 
set, the canonical form, we provide algebraic signatures of certain families of codes 
that are non-convex. We connect these signatures to the precise conditions on the 
arrangement of sets that prevent the codes from being convex. Finally, we also 
provide algebraic signatures for some families of codes that are convex, including 
the class of intersection-complete codes. These results allow us to detect convexity 
and non-convexity in a variety of situations, and point to some interesting open 
questions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A convex code is a binary code generated by the pattern of intersections of a collection of open convex 
sets in some Euclidean space (see Section 1.1 for a precise definition and example). Convex codes have 
been experimentally observed in sensory cortices [8] and hippocampus [11], where they arise from convex 
receptive fields; this connection has previously been described in detail in [2,3,5]. Given their relevance to 
neuroscience, it is valuable to further understand the intrinsic structure of convex codes. In particular, how 
can we detect if a neural code is convex?
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We have previously found combinatorial constraints that must be satisfied by any code that is convex 
[3]. In this work, we further address the question of convexity via an algebraic object known as the neural 
ideal JC , first introduced in [5], which is a generalization of the well-studied Stanley–Reisner ideal. We first 
present conditions, which we refer to as algebraic signatures, on JC and its standard generating set the 
canonical form CF(JC) that detect that a code is not convex. We also connect these signatures to precise 
conditions on the arrangement of sets that prevent a code from being convex. Finally, we also provide 
algebraic signatures of certain combinatorial families of convex codes, including intersection-complete codes, 
first introduced in [1].

In Section 1.1, we provide some background on the algebra of neural codes, convexity of codes, receptive 
field relationships, and local obstructions to convexity. Next, Section 1.2 highlights the main results of the 
paper. Specifically, Theorem 1.7 provides algebraic signatures of two classes of local obstructions; codes 
satisfying these signatures are thus guaranteed to be non-convex. Theorem 1.9 gives an algebraic signature 
for the class of intersection-complete codes, which have been proven to be convex. Section 1.3 illustrates 
these main results through a series of example codes satisfying these algebraic signatures.

The remainder of the paper is organized as follows: Section 2.1 formalizes the notion of local obstruction, 
and Section 2.2 provides further results on detecting local obstructions algebraically, including the proof of 
Theorem 1.7. Section 3 focuses on algebraic signatures guaranteeing convexity, and includes the proof of 
Theorem 1.9. Finally, Section 4 collects all the algebraic signatures presented in this paper and provides 
additional examples of codes satisfying these signatures.

1.1. Background

In this paper, we develop algebraic tools for analyzing neural codes, which are collections of binary 
patterns. A binary pattern on n neurons is a string of 0s and 1s of length n, with a 1 for each active neuron and 

a 0 denoting silence. We can also view a binary pattern as the subset of active neurons σ ⊆ [n] def= {1, . . . , n}, 
so that i ∈ σ precisely when there is a 1 in the ith entry of the binary pattern; thus, we will consider 0/1 
strings of length n and subsets of [n] interchangeably. For example, 1011 and 0100 are also denoted {1, 3, 4}
and {2}, respectively.

A neural code on n neurons, C ⊆ 2[n], is a collection of binary patterns. Such a code is also referred to 
as a combinatorial code in the neuroscience literature [4]. The elements of a code are called codewords. For 
convenience, we will always assume a neural code C includes the all-zeros codeword, 00 · · · 0 ∈ C; the presence 
or absence of the all-zeros codeword has no effect on the code’s convexity (see Definition 1.5, below), which 
is the main focus of this paper.

1.1.1. Algebra of neural codes
In order to represent a neural code algebraically, it is useful to consider binary patterns of length n as 

elements of Fn
2 , where F2 is the finite field of two elements: 0 and 1. Polynomials f ∈ F2[x1, . . . , xn] can be 

evaluated on a binary pattern of length n by evaluating each indeterminate xi at the 0/1 value of the ith

neuron. For example, if f = x1x3(1 − x2) ∈ F2[x1, . . . , x4], then f(1011) = 1 and f(1100) = 0.
It is natural to then consider the ideal

IC
def= {f ∈ F2[x1, . . . , xn] | f(c) = 0, ∀ c ∈ C}

of polynomials that vanish on a neural code C. However, this ideal contains extraneous Boolean relations
B = 〈xi(1 −xi)〉 that do not capture any information specific to the code. Thus we turn instead to the neural 
ideal JC , first introduced in [5], which captures all the information in IC that is specific to the code, thus 
omitting the Boolean relations. More precisely, the neural ideal can be defined in terms of characteristic 
functions of non-codewords:
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JC
def= 〈χv | v ∈ Fn

2 \ C〉

where χv is the characteristic function

χv
def=

∏

{i|vi=1}
xi

∏

{j|vj=0}
(1 − xj). (1)

Note that the variety of both IC and JC is precisely the code C [5].
The characteristic functions used to define the neural ideal are examples of pseudo-monomials, polyno-

mials f ∈ F2[x1, . . . , xn] that can be written in the form

f = xσ

∏

j∈τ

(1 − xj),

where xσ
def=

∏
i∈σ xi and σ, τ ⊂ [n] with σ ∩ τ = ∅. Pseudo-monomials in JC come in two types1:

• Type 1: xσ, for σ 
= ∅, and
• Type 2: xσ

∏
i∈τ (1 − xi), for σ, τ 
= ∅, with σ ∩ τ = ∅.

For any ideal J ⊆ F2[x1, . . . , xn], a pseudo-monomial f ∈ J is called minimal if there does not exist 
another pseudo-monomial g ∈ J with deg(g) < deg(f) such that f = hg for some h ∈ F2[x1, . . . , xn]. If 
J is an ideal generated by a set of pseudo-monomials, the canonical form of J is the set of all minimal 
pseudo-monomials of J :

CF(J) def= {f ∈ J | f is a minimal pseudo-monomial}.

For any neural code C, the neural ideal JC is generated by pseudo-monomials, and thus has a canonical 
form CF(JC).2 We denote the Type 1 and Type 2 pseudo-monomials of CF(JC) by CF1(JC) and CF2(JC), 
respectively, so that:

CF(JC) = CF1(JC) ∪ CF2(JC).

Example 1.1. Consider the code C = {0000, 0100, 0010, 0001, 1100, 1010, 0110, 1011}. The neural ideal 
JC is given by

JC = 〈x1(1 − x2)(1 − x3)(1 − x4), x1x4(1 − x2)(1 − x3), x2x4(1 − x1)(1 − x3),

x3x4(1 − x1)(1 − x2), x2x3x4(1 − x1), x1x2x4(1 − x3), x1x2x3(1 − x4), x1x2x3x4〉,

which has canonical form CF(JC) = CF1(JC) ∪ CF2(JC), where

CF1(JC) = {x1x2x3, x2x4} and CF2(JC) = {x1(1 − x2)(1 − x3), x1x4(1 − x3), x3x4(1 − x1)}.

Note that CF(JC) is a generating set for JC, as every pseudo-monomial of JC is a multiple of an element 
in CF(JC). Furthermore, CF1(JC) generates the ideal of monomials in JC, which coincides with the well 
known Stanley–Reisner ideal of an associated simplicial complex Δ(C). Specifically, we associate a simplicial 
complex Δ(C) to a code C as follows:

Δ(C) def= {σ ⊆ [n] | σ ⊆ c for some c ∈ C}

1 There is a third type (see [5]), but this is eliminated by our convention that 00 · · · 0 ∈ C.
2 Furthermore, every ideal generated by pseudo-monomials is actually the neural ideal of some neural code [9].
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is the smallest abstract simplicial complex on [n] that contains all elements of C [5]. In particular, if C is 
itself a simplicial complex, then JC is precisely the Stanley–Reisner ideal of C = Δ(C). Note that the facets
of Δ(C), which are maximal elements of the simplicial complex under inclusion, correspond to the maximal 
codewords of C.

The canonical form of a code C can be computed algorithmically; for example, [5, Section 4.5] provides 
an algorithm using primary decompositions of pseudo-monomial ideals. A more efficient algorithm has since 
been proposed in [12], with software publicly available [14]. Supplemental Text S1 gives full details for 
computing the canonical form of an example code by hand; for information on using software to compute 
CF(JC), see [12].

1.1.2. The code of a cover
Let X be a topological space. A collection of non-empty open sets U = {U1, . . . , Un}, where each Ui ⊂ X, 

is called an open cover. Given an open cover U , the code of the cover is the neural code

C(U) def= {σ ⊆ [n] | Uσ \
⋃

j∈[n]\σ
Uj 
= ∅},

where Uσ
def=

⋂
i∈σ Ui. We say that a code C is realized by U if C = C(U). Observe that X is subdivided 

into regions defined by intersections of the open sets in U . Each codeword in C(U) then corresponds to 
a non-empty intersection that is not covered by other sets in U (see Example 1.2). By convention, the 
empty intersection U∅ =

⋂
i∈∅ Ui equals X, so that ∅ ∈ C(U) if and only if 

⋃
i∈[n] Ui � X. We will assume ⋃

i∈[n] Ui � X, so that 00 · · · 0 ∈ C (i.e., ∅ ∈ C), in agreement with our convention.
It is important to note that C(U) is not the same as the nerve N (U) of the cover, which consists of all 

non-empty intersections, regardless of whether the intersection region is covered by other sets:

N (U) def= {σ ⊆ [n] | Uσ 
= ∅}.

In fact, N (U) = Δ(C(U)), the simplicial complex of the code [5]. The nerve of any cover U such that 
C = C(U) can thus be recovered directly from the code as Δ(C), without reference to a specific cover. The 
code C(U), however, contains additional information about U that is not captured by the nerve alone (see 
[5, Section 2.3.2]).

Example 1.2. Consider the configuration of sets U = {U1, . . . , U4} shown in Fig. 1. The code of the cover 
is C = C(U) = {0000, 1000, 0100, 0010, 1100, 1001, 0110, 0101, 1101}. Note that from C alone, we can 
detect that any realization must have U4 ⊆ U1 ∪U2, since every codeword with a 1 in the 4th position has a 
1 in the 1st or 2nd position as well. However, this containment information is not available from the nerve 
N (U).

Fig. 1. Code of the cover U = {U1, . . . , U4}.
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Table 1
Types of pseudo-monomials in JC and the corresponding con-
ditions on receptive fields. Note that the presence of a Type 2 
pseudo-monomial xσ

∏
i∈τ (1 − xi) ∈ JC is not sufficient to guar-

antee that (σ, τ) is actually an RF relationship. Such a pseudo-
monomial ensures the covering relationship Uσ ⊆

⋃
i∈τ Ui, but 

to guarantee that (σ, τ) ∈ RF(C) for τ �= ∅ we must also have 
xσxi /∈ JC for all i ∈ τ .

Relation type Pseudo-monomial RF condition
Type 1 xσ ∈ JC ⇔ Uσ = ∅
Type 2 xσ

∏
i∈τ (1 − xi) ∈ JC ⇔ Uσ ⊆

⋃
i∈τ Ui

RF relationships and the neural ideal. Any realization of a code C by an open cover will satisfy relationships 
among the Ui that are intrinsic to the code itself. Because of the neuroscience motivation, where the Ui

model receptive fields, we call these receptive field relationships [5].

Definition 1.3. For σ, τ ⊆ [n] with σ 
= ∅ and σ∩τ = ∅, we say that (σ, τ) is a receptive field (RF) relationship
of a code C if

Uσ ⊆
⋃

i∈τ

Ui and Uσ ∩ Ui 
= ∅ for all i ∈ τ,

for any U = {U1, . . . , Un} where C = C(U). RF(C) denotes the collection of RF relationships of C.

It is important to note that the receptive field relationships RF(C) are strictly a function of the code itself 
and do not depend on any particular realization of C as C(U). Specifically, RF relationships correspond to 
pseudo-monomials in JC as shown in Table 1, and thus are detectable algebraically without reference to a 
specific cover U [5].

The RF relationships of the form (σ, ∅) capture when Uσ = ∅, and thus σ /∈ N (U), yielding a complete 
description of N (U) = Δ(C). In contrast, the RF relationships (σ, τ) for τ 
= ∅ capture when an intersection 
is covered so that σ /∈ C despite σ ∈ Δ(C), thus measuring how C deviates from its simplicial complex.

A RF relationship (σ, τ) is called minimal if no neuron can be removed from σ or τ without destroying 
the containment Uσ ⊆

⋃
i∈τ Ui. The following useful fact is a direct consequence of [5, Theorem 4.3], which 

allows us to interpret the elements of CF(JC) as minimal RF relationships.

Lemma 1.4. The pseudo-monomial xσ

∏
i∈τ (1 −xi) ∈ CF(JC) if and only if (σ, τ) is a minimal RF relationship 

of C.

Thus, the canonical form gives a compact description of JC that captures all the minimal intersection 
and containment relations that must exist among sets that give rise to the code.

1.1.3. Convex codes
When the open cover U is contained in Rd for some d, the sets Ui may (for some codes) be chosen to all 

be convex. If this is possible, we say that the code is convex:

Definition 1.5. Let C be a neural code on n neurons. If there exists an open cover U = {U1, . . . , Un} such 
that C = C(U) and every Ui is a convex subset of Rd for a fixed d, then we say that C is convex.

Note that the code in Example 1.2 is convex since it can be realized via the convex sets shown in Fig. 1. 
In contrast, the code from Example 1.1 is not convex, as the following example shows.
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Example 1.6. Recall the code C = {0000, 0100, 0010, 0001, 1100, 1010, 0110, 1011} from Example 1.1. 
Neuron 1 always co-fires with neuron 2 or neuron 3 since a 1 only occurs in the first entry when it is 
accompanied by a 1 in the second or third entry. This forces the RF relationship U1 ⊆ U2 ∪ U3 to hold 
in any realization of the code. But neurons 1, 2, and 3 never co-fire, so U1 ∩ U2 ∩ U3 = ∅. Thus U1 is the 
disjoint union of non-empty open sets U1 ∩U2 and U1 ∩U3, and so U1 is disconnected. Since any convex set 
is connected, we conclude that U1 cannot be convex, and thus C is not convex.

This topological mismatch between the underlying set U1 and its cover by U1 ∩ U2 and U1 ∩ U3 is an 
example of a local obstruction [3,6]; we define local obstructions precisely in Section 2.1. Notice that this 
local obstruction is immediately identifiable from the canonical form CF(JC) seen in Example 1.1: the 
RF relationship U1 ⊆ U2 ∪ U3 is detectable from x1(1 − x2)(1 − x3) ∈ CF2(JC) and the RF relationship 
U1 ∩ U2 ∩ U3 = ∅ is captured by x1x2x3 ∈ CF1(JC).

1.2. Summary of main results

Detecting non-convex codes Example 1.6 shows that some local obstructions to convexity can be detected 
algebraically from the neural ideal of a code. In particular, any code satisfying the algebraic signature
xσ(1 − xi)(1 − xj) ∈ CF2(JC) and xσxixj ∈ CF1(JC) is guaranteed to be non-convex. This is because Uσ is 
forced to be disconnected since it is the disjoint union of the nonempty sets Uσ ∩ Ui and Uσ ∩ Uj .

Theorem 1.7 gives two additional algebraic signatures of local obstructions that force a code to be 
non-convex. The first signature captures more generally when the nerve of a cover of Uσ is disconnected, 
thus forcing Uσ to be disconnected and non-convex. To identify this disconnection, we associate a graph 
GC(σ, τ) to disjoint sets σ, τ ⊆ [n] as follows: GC(σ, τ) is the simple3 graph with vertex set τ and edges 
given by

(ij) ∈ τ × τ is an edge in GC(σ, τ) ⇔ xσxixj /∈ JC .

The second signature of Theorem 1.7 captures cases when the nerve is a hollow simplex, thus forcing Uσ to 
contain a hole. In other words, these signatures capture when the nerve of the cover of Uσ has a nontrivial 0th 
homology group and nontrivial top homology group, respectively. It remains an open question to identify 
algebraic signatures that can detect when a relevant nerve has an intermediate homology group that is 
nontrivial.

Theorem 1.7. Let C be a code with neural ideal JC and canonical form CF(JC) = CF1(JC) ∪ CF2(JC). The 
algebraic signatures from Table 2 imply that C is not convex.

Table 2
Algebraic signatures of non-convex codes.

Algebraic signature of JC Property of C
(i) ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) s.t. GC(σ, τ) is disconnected ⇒ non-convex

(ii) ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) s.t. xσxτ ∈ CF1(JC) ⇒ non-convex

It is important to note that although signature (i) in Table 2 requires the construction of the graph 
GC(σ, τ) based on the absence of pseudo-monomials from all of JC, this condition can actually be checked 
in a straightforward manner from CF1(JC) alone (see Lemma 2.5 in Section 1.7). The signatures of local 
obstructions in Theorem 1.7 can thus be directly detected from the canonical form of the code. The proof 
of Theorem 1.7 is given in Section 2.2.

3 A simple graph has no self loops and no multiple edges.
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Our previous work has given an alternative method for identifying the full set of local obstructions; 
however, the recasting of those local obstructions in terms of RF relationships is less well understood. 
A characterization of the full set of local obstructions of a code is given in Theorem 1.3 of [3]. In general, 
however, the absence of local obstructions does not guarantee that C is convex [10]. Thus, it is essential to 
have other methods of identifying convexity.

Detecting convex codes Currently the only known method for proving a code is convex is to produce a 
convex realization or establish that it belongs to a combinatorial family of codes for which a construction 
of a convex realization is known. In the following, we give algebraic signatures for identifying when a code 
belongs to any of four combinatorial families of codes for which convex constructions are known.

The simplest algebraic signatures of families of convex codes are CF1(JC) = ∅ or CF2(JC) = ∅. Since 
CF1(JC) captures minimal subsets missing from Δ(C), the signature CF1(JC) = ∅ implies Δ(C) is the full 
simplex, and so C must contain the all-ones word. Convex realizations of such codes were given in [3]. 
When C contains the all-ones word (CF1(JC) = ∅), Δ(C) has a single facet, and this fact is exploited in 
the construction of convex realizations of these codes. More generally, if Δ(C) has disjoint facets this same 
construction can be employed in parallel for each facet, ensuring these codes are also convex [3]. These 
codes can also be detected algebraically, but the signature is more complicated, so we save the statement 
and proof of the signature for Section 3.

On the other hand, CF2(JC) = ∅ implies that C is a simplicial complex, which is guaranteed to have a 
convex realization [3,13]. These codes can be generalized to a broader family of codes known as intersection-
complete codes, which are also known to be convex [1].

Definition 1.8. A code C is intersection-complete (∩-complete) if every intersection of codewords is also a 
codeword in C; i.e. σ, ω ∈ C implies that σ ∩ ω ∈ C.

The algebraic signature for ∩-complete codes is given in the following theorem, whose proof appears in 
Section 3.

Theorem 1.9. A code C is ∩-complete if and only if every pseudo-monomial xσ

∏
i∈τ (1 − xi) ∈ CF(JC) has 

|τ | ≤ 1. If C is ∩-complete, then C is convex.

Note that if |τ | = 0 for all elements of CF(JC), then CF2(JC) = ∅, which is the signature for simplicial 
complex codes. Using Table 1, the algebraic signature in Theorem 1.9 can be reinterpreted in terms of 
receptive fields as follows: for any realization of an ∩-complete code C = C(U), every intersection Uσ for 
σ /∈ C is minimally covered by a single set Ui for some i /∈ σ.

The families of codes presented above, for which we have algebraic signatures, are special cases of max 
∩-complete codes: codes for which every intersection of a collection of facets of Δ(C) is also a codeword in 
C. In [1], convex realizations of max ∩-codes were constructed, guaranteeing their convexity.

Theorem 1.10. [1, Theorem 4.4] If a code C is max ∩-complete, then C is convex.

Finding an algebraic signature of max ∩-complete codes remains an open question. Given that these 
codes generalize ∩-complete codes, one might hope to generalize the algebraic signature of ∩-complete 
codes to obtain a signature for this broader class. One natural generalization is the class of codes for 
which every pseudo-monomial xσ

∏
i∈τ (1 − xi) ∈ CF(JC) has |τ | ≤ 2. Unfortunately, Example 1.11 (below) 

shows that codes with this property need not be max ∩-complete and vice versa. In particular, the code in 
Example 1.11(b) has the |τ | ≤ 2 property, but is not even convex.
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Example 1.11. (a) Consider the code

C1 = {0000, 0100, 0010, 0001, 1100, 1010, 1001, 0110, 0011, 1110, 1011}

with maximal codewords 1110 and 1011. This code is max ∩-complete because it would in fact be a simplicial 
complex except that it is missing 1000, which is not an intersection of maximal codewords. However, C1
does not satisfy |τ | ≤ 2, since CF2(JC1) = {x1(1 − x2)(1 − x3)(1 − x4)}.

(b) Consider the code

C2 = {00000, 00100, 00010, 10100, 10010, 01100, 00110, 00011, 11100, 10110, 10011, 01111}

with maximal codewords 11100, 10110, 10011, 01111 (i.e. facets {123, 134, 145, 2345}). C2 is not max 
∩-complete since it does not contain the triple intersection of facets 1 = 123 ∩ 134 ∩ 145. However, C2
satisfies |τ | ≤ 2 for all xσ

∏
i∈τ (1 − xi) ∈ CF2(JC2) since

CF2(C2) = {x2(1 − x3), x5(1 − x4), x2x4(1 − x5), x3x5(1 − x2), x1(1 − x3)(1 − x4)}.

Interestingly, this code is not convex, although it has no local obstructions [10].
Note that the code from Example 1.6 also satisfies |τ | ≤ 2 and is not convex, but it has a local obstruction. 

Thus, the signature |τ | ≤ 2 does not ensure convexity or provide guarantees about the presence/absence of 
local obstructions.

1.3. Examples illustrating main results

This section gives examples of codes satisfying each of the algebraic signatures presented in Theorems 1.7
and 1.9 together with an analysis of the implications of these signatures for RF relationships.

We begin with an example of a code on 5 neurons that satisfies the first signature in Theorem 1.7.

Example 1.12 (Theorem 1.7, signature (i)). Consider the code

C = {00000, 11100, 10011, 01111} ∪ {all binary patterns with exactly two 1s}.

This code has CF1(JC) = {x1x2x4, x1x2x5, x1x3x4, x1x3x5} and

CF2(JC) = {xi1(1 − xi2)(1 − xi3)(1 − xi4)(1 − xi5) | i1, . . . , i5 ∈ [5]}
∪ {xi1xi2xi3(1 − xi4) | i1, . . . , i4 ∈ [5] \ {1}},

where all the indices in the pseudo-monomials of CF2(JC) are distinct. Consider

x1(1 − x2)(1 − x3)(1 − x4)(1 − x5) ∈ CF2(JC),

where σ = {1} and τ = {2, 3, 4, 5}. We will construct the graph G = GC(σ, τ) whose vertices are precisely 
the elements of τ . By definition, whenever xσxixj /∈ JC for i, j ∈ τ , then (ij) is an edge in G. Using CF1(JC), 
we immediately see that (24), (25), (34), and (35) are not edges in G, and that (23) and (45) are edges in G
(see Lemma 2.5). Thus G consists only of two disjoint edges, and is disconnected. (Note that this implies 
that U1∩ (U2∪U3) and U1∩ (U4∪U5) are disjoint, and so U1 is disconnected, as it is covered by the disjoint 
union of nonempty open sets.) Therefore, signature (i) of Theorem 1.7 is satisfied and C is not convex.

The next example gives a code on 4 neurons satisfying the second signature of Theorem 1.7.
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Fig. 2. For the code in Example 1.13, the set U1 is the union of the shaded regions shown since it is covered by (U1 ∩ U2) ∪ (U1 ∩
U3) ∪ (U1 ∩ U4). U1 must contain a hole since the covering sets all pairwise intersect, but the full intersection is missing.

Example 1.13 (Theorem 1.7, signature (ii)). Consider C = {0000, 1110, 1101, 1011, 0111, 1100, 1010, 1001}. 
Then

CF1(JC) = {x1x2x3x4} and

CF2(JC) = {xi(1 − x1)(1 − xj) | i, j = 2, 3, 4; i 
= j} ∪ {x1(1 − x2)(1 − x3)(1 − x4)}.

Since x1(1 −x2)(1 −x3)(1 −x4) ∈ CF2(JC) and x1x2x3x4 ∈ CF1(JC), we see that signature (ii) of Theorem 1.7
applies. Thus C is not convex.

To see the obstruction to convexity here, note that since x1(1 − x2)(1 − x3)(1 − x4) ∈ CF2(JC) we have 
from Table 1 that U1 is minimally covered by U2 ∪ U3 ∪ U4. Also, since x1x2x3x4 ∈ CF1(JC), the full 
intersection U1 ∩ U2 ∩ U3 ∩ U4 is empty, but the minimality of elements in CF(JC) guarantees that every 
other intersection is non-empty. This forces U1 to contain a hole (see Fig. 2), and so U1 cannot be convex, 
and hence C cannot be convex.

Finally, the following example shows how to use the neural ideal to detect that a code is ∩-complete, and 
thus convex.

Example 1.14 (Theorem 1.9). Consider C = {00000, 11110, 10111, 01111, 10110, 01110, 00111, 00110}. This 
code has

CF1(JC) = {x1x2x5} and CF2(JC) = {xi(1 − xj) | i ∈ [5]; j = 3, 4; i 
= j}.

We immediately see that all elements of CF(JC) satisfy |τ | ≤ 1, and so the signature from Theorem 1.9
applies. Thus, C is ∩-complete.

2. Detecting local obstructions

The primary method for showing that a code is not convex is to show that it has a local obstruction. 
Section 2.1 defines local obstructions and connects them to links of certain restricted simplicial complexes. 
Section 2.2 shows how to detect certain classes of local obstructions via JC and CF(JC) and provides the 
proof of Theorem 1.7.

2.1. Local obstructions

Recall that the code in Example 1.6 failed to have a convex realization because the receptive field U1 was 
covered by a pair of disjoint nonempty open sets U1 ∩ U2 and U1 ∩ U3, and thus no realization of C could 
have U1 as a convex set. In this case, the restricted cover of U1 by U1 ∩ U2 and U1 ∩ U3 had a nerve that 
was disconnected and thus, if U1 were convex, there would be a topological mismatch between U1 and the 
nerve of its restricted cover. This topological mismatch is an example of a local obstruction. Specifically, the 
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Nerve Lemma [7, Corollary 4G.3] guarantees that if U is a convex open cover (and thus a “good cover”), 
then Uσ must have the same homotopy type as N ({Uσ ∩Ui}i∈τ ) whenever Uσ is non-empty and covered by 
a union of sets 

⋃
i∈τ Ui, i.e. whenever (σ, τ) ∈ RF(C). In particular, since Uσ is the intersection of convex 

sets, it must be convex and hence contractible,4 and thus N ({Uσ ∩Ui}i∈τ ) must also be contractible. Thus, 
if the nerve of such a restricted cover is not contractible, then a local obstruction is present. This restricted 
nerve has an alternative combinatorial formulation; specifically,

N ({Uσ ∩ Ui}i∈τ ) = Lkσ(Δ|σ∪τ ),

where Δ|σ∪τ is the restricted simplicial complex

Δ|σ∪τ
def= {ω ∈ Δ | ω ⊆ σ ∪ τ}

and the link Lkσ(Δ|σ∪τ ) is given by

Lkσ(Δ|σ∪τ ) = {ω ∈ Δ|σ∪τ | σ ∩ ω = ∅ and σ ∪ ω ∈ Δ|σ∪τ}.

This alternative characterization of the nerve yields the following formal definition of local obstruction. For 
more details about local obstructions, see [3, Section 3].

Definition 2.1. Let C be a code on n neurons with simplicial complex Δ. For σ, τ ⊆ [n] with τ 
= ∅, we say 
that (σ, τ) is a local obstruction of C if (σ, τ) ∈ RF(C) and the link Lkσ(Δ|σ∪τ ) is not contractible.

As an immediate consequence of the Nerve Lemma, as described above, we obtain Lemma 2.2.

Lemma 2.2. [3, Lemma 1.3] If C has a local obstruction, then C is not a convex code.

2.2. Algebraic detection of local obstructions

In general, the presence of a pseudo-monomial xσ

∏
i∈τ (1 − xi) ∈ JC is not sufficient to guarantee that 

(σ, τ) is a RF relationship (see Table 1), and thus a possible candidate for a local obstruction. This is 
because we cannot guarantee that Uσ ∩Ui 
= ∅ for all i ∈ τ . However, when xσ

∏
i∈τ (1 − xi) is minimal, i.e. 

when xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), these conditions are guaranteed and (σ, τ) ∈ RF(C). Thus, we focus on 

the canonical form to algebraically detect local obstructions.

Lemma 2.3. For a code C, if there exists (σ, τ) such that xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) and Lkσ(Δ|σ∪τ ) is not 

contractible, then C is not convex.

With this result, we can now prove Theorem 1.7. Specifically, we prove Theorem 2.4, a broader result that 
also characterizes relevant RF conditions corresponding to these signatures. For this theorem, we appeal to 
two graphs associated to disjoint subsets σ, τ ⊆ [n]. Recall that the graph GC(σ, τ) is the simple graph on 
vertex set τ with edge set {(ij) ∈ τ × τ | xσxixj /∈ JC}, as in Theorem 1.7. The second graph GU(σ, τ) is 
defined from an open cover U as follows: GU (σ, τ) is the simple graph on vertex set τ with edges given by

(ij) ∈ τ × τ is an edge in GU (σ, τ) ⇔ Uσ ∩ (Ui ∩ Uj) 
= ∅.

4 A set is contractible if it is homotopy-equivalent to a point, and every convex set is contractible [7].
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Theorem 2.4. If C has any of the algebraic signatures in rows A-1, A-2, A-3, or A-4 of Table 3, then C is not 
convex. More precisely, each algebraic signature corresponds to a RF condition (as illustrated in Fig. 3), 
which implies that C is not convex.

Table 3
Algebraic signatures and receptive field conditions for non-convex codes.

Algebraic signature Receptive field condition Property of C

A-1 ∃ xσ(1 − xi)(1 − xj) ∈ CF2(JC) ⇒ (σ, {i, j}) ∈ RF(C) and ⇒ non-convexs.t. xσxixj ∈ JC Uσ ∩ Ui ∩ Uj = ∅

A-2 ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) ⇒ (σ, τ) ∈ RF(C) and ⇒ non-convexs.t. GC(σ, τ) is disconnected GU (σ, τ) is disconnected

A-3 ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) ⇒ (σ, τ) ∈ RF(C) and ⇒ non-convexs.t. xσxτ ∈ CF1(JC) Uσ ∩ Uτ = ∅ but

Uσ ∩ Uτ ′ �= ∅ ∀ τ ′ � τ

A-4 ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), ⇒ (σ, τ) ∈ RF(C) and ⇒ non-convex∃ ∅ ⊆ σ̃ ⊆ σ s.t. xσ̃xτ ∈ CF1(JC) but Uσ ∩ Uτ ⊆ Uσ̃ ∩ Uτ = ∅

xσ′xτ ′ /∈ CF1(JC) ∀ σ′ ⊆ σ, τ ′ � τ but Uσ ∩ Uτ ′ �= ∅ ∀ τ ′ � τ

Fig. 3. Illustrations of the RF conditions implied by signatures A-1 through A-4 in Theorem 2.4 (see Table 3). In each picture, Uσ

is the union of the shaded regions; thus Uσ is not contractible and hence not convex.

Proof of Theorem 2.4. (A-1) By Lemma 1.4, xσ(1 − xi)(1 − xj) ∈ CF2(JC) implies (σ, {i, j}) ∈ RF(C), and 
thus Uσ ⊆ Ui ∪ Uj and both Uσ ∩ Ui and Uσ ∩ Uj are non-empty. Recall from Table 1 that xσxixj ∈ JC
implies Uσ ∩ Ui ∩ Uj = ∅. Thus, Uσ is the disjoint union of non-empty open sets Uσ ∩ Ui and Uσ ∩ Uj , and 
so Uσ is disconnected. Thus, Uσ =

⋂
k∈σ Uk is not convex, and so some Uk is not convex. Hence C is not 

convex.
(A-2) By Table 1 if C = C(U), then GC(σ, τ) = GU (σ, τ) since xσxixj /∈ JC precisely when Uσ∩Ui∩Uj 
= ∅. 

Furthermore, this graph is precisely the 1-skeleton5 of Lkσ(Δ|σ∪τ ). Since we assume this is disconnected, 
it follows that Lkσ(Δ|σ∪τ ) is not contractible, and hence C is non-convex by Lemma 2.3. Alternatively, 
GU (σ, τ) disconnected implies that Uσ is disconnected, and hence C cannot be convex.

(A-3) The signature for A-3 is a special case of that for A-4 with σ̃ = σ since xσxτ ∈ CF1(JC) guarantees 
xσ′xτ ′ /∈ CF1(JC) for all σ′ ⊆ σ, τ ′ � τ by minimality of the elements in the canonical form. Thus, we prove 
non-convexity of these codes via the following proof of A-4.

(A-4) Note that xσ̃xτ ∈ CF1(JC) implies that Uσ̃ ∩ Uτ = ∅ by Table 1 and thus Uσ ∩ Uτ = ∅ as well. 
Thus, σ ∪ τ /∈ Δ(C) and so τ /∈ Lkσ(Δ|σ∪τ ). For every τ̃ � τ , we have xσxτ̃ /∈ JC , since if it were in JC
then some factor of it must be in CF1(JC), but xσ′xτ ′ /∈ CF1(JC) for every σ′ ⊆ σ and τ ′ ⊆ τ̃ . Thus, for 
all τ̃ � τ , we have σ ∪ τ̃ ∈ Δ(C) and so τ̃ ∈ Lkσ(Δ|σ∪τ ); equivalently Uσ ∩ Uτ̃ 
= ∅ for all τ̃ � τ . This 
means Lkσ(Δ|σ∪τ ) is a simplex missing only the top dimensional face τ (i.e. a hollow simplex), and so is 
homotopy-equivalent to a sphere, and thus is not contractible. At the level of RF relationships, this implies 
that Uσ is not contractible since it must contain a hole. Thus, C is non-convex. �
5 The 1-skeleton of a simplicial complex is the subcomplex consisting of all faces of dimension at most 1, i.e. the vertices and 

edges of the simplicial complex; thus the 1-skeleton is the underlying graph of the simplicial complex (see e.g. [7]).
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As the proof of Theorem 2.4 illustrates, signature A-1 captures cases where Uσ is disconnected by a pair 
of sets. Signature A-2 generalizes A-1 and detects all cases where Uσ is minimally covered by a collection 
of sets Uσ ∩ Ui for i ∈ τ in a way that forces Uσ to be disconnected. Note that A-2 is signature (i) from 
Theorem 1.7 in the main results (Section 1.2).

Signature A-3 captures a particular case when Uσ is minimally covered by a collection of sets Uσ ∩ Ui

for i ∈ τ and Lkσ(Δ|σ∪τ ) = N ({Uσ ∩ Ui}i∈τ ) is a hollow simplex. Specifically, in the case of A-3, Uσ ∩ Uτ

is the minimal missing intersection in that for all σ̃ � σ, we have Uσ̃ ∩ Uτ 
= ∅; thus everywhere outside of 
Uσ, Uτ has a non-empty intersection with each subcollection of sets from σ. More generally, signature A-4 
captures all cases when Lkσ(Δ|σ∪τ ) is a hollow simplex. Specifically, the signature for A-4 does not require 
the minimality of the empty intersection Uσ ∩ Uτ , and so there may be a σ̃ � σ such that Uσ̃ ∩ Uτ = ∅, 
in particular we may have Uτ = ∅. All that is required is that every intersection of Uσ with each proper 
subcollection of sets in τ is non-empty, which is guaranteed by ensuring that Uσ′ ∩ Uτ ′ 
= ∅, for all σ′ ⊆ σ

and τ ′ � τ . Signature (ii) from Theorem 1.7 is A-3, a special case of A-4, and so the proof of Theorem 2.4
completes the proof of Theorem 1.7.

Note that although checking signatures A-1 and A-2 requires determining the absence of pseudo-
monomials from JC, these conditions can actually be checked from CF1(JC) alone as Lemma 2.5 shows. 
Thus, all the algebraic signatures in Theorem 1.7 can be checked directly via CF(JC).

Lemma 2.5. Suppose xσ

∏
k∈τ (1 − xk) ∈ CF2(JC). Then for any i, j ∈ τ with i 
= j,

xσxixj ∈ JC ⇔ xσ′xixj ∈ CF1(JC) for some ∅ ⊆ σ′ ⊆ σ.

Proof. The backward direction (⇐) is immediate since CF(JC) ⊆ JC . To see the forward direction (⇒), 
suppose xσxixj ∈ JC . Then it is a multiple of some monomial xω ∈ CF1(JC) with ω ⊆ σ ∪ {i, j}. There are 
four possibilities:

(1) ω ⊆ σ. Then xω divides xσ

∏
k∈τ (1 −xk), contradicting the minimality of xσ

∏
k∈τ (1 −xk) ∈ CF2(JC).

(2) ω = σ′∪{i} for some σ′ ⊆ σ. Then xσxi

∏
k∈τ\{i}(1 −xk) ∈ JC , since it is a multiple of xω, and hence

xσxi

∏

k∈τ\{i}
(1 − xk) + xσ

∏

k∈τ

(1 − xk) = xσ

∏

k∈τ\{i}
(1 − xk) ∈ JC ,

contradicting the minimality of xσ

∏
k∈τ (1 − xk) ∈ CF2(JC).

(3) ω = σ′ ∪ {j} for some σ′ ⊆ σ. This argument is identical to the previous, leading to a contradiction.
Thus, the only viable possibility is:
(4) ω = σ′ ∪ {i, j} for some σ′ ⊆ σ, and thus xω = xσ′xixj ∈ CF1(JC). �
As mentioned at the beginning of this section, the algebraic signatures in Theorem 1.7 only consider 

minimal RF relationships as detectable by the canonical form. The motivation for this is that other pseudo-
monomials xσ

∏
i∈τ (1 − xi) in the full ideal JC are not guaranteed to correspond to RF relationships as 

Uσ ∩ Ui is not necessarily non-empty for all i ∈ τ . This begs the question of whether it is sufficient to only 
consider these minimal pseudo-monomials and minimal RF relationships. Specifically, if for every pseu-
domonomial in CF2(JC), we find that the links Lkσ(Δ|σ∪τ ) are all contractible, does that guarantee that C
has no local obstructions?

Unfortunately, this is not the case. Example 2.6 shows that there exist codes that have no local ob-
structions arising from pairs (σ, τ) with xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), and yet the codes still have local 

obstructions.

Example 2.6. Consider the code C = {0000, 1110, 1101, 1011, 0111}, where Δ = Δ(C) is the hollow simplex 
on four vertices, missing only the top-dimensional face (see Fig. 4A). The canonical form is

CF(JC) = {x1x2x3x4} ∪ {xi(1 − xj)(1 − xk) | i, j, k ∈ [4] with i 
= j 
= k}.
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The minimal RF relationships (σ, τ) = ({i}, {j, k}) detected by the canonical form all have corresponding 
links Lki(Δ|{i,j,k}) that are equivalent to the simplex shown in Fig. 4B, and hence are contractible. However, 
C has multiple local obstructions, and thus is not convex. For example, observe that ({1, 2}, {3, 4}) ∈ RF(C)
since (U1 ∩ U2) ⊆ U3 ∪ U4 and (U1 ∩ U2) ∩ Ui 
= ∅ for i = 3, 4, and Lk12(Δ|[4]) is the non-contractible 
disconnected graph in Fig. 4C. Thus, ({1, 2}, {3, 4}) is a local obstruction, and so C cannot be convex. Note 
that since ({1, 2}, {3, 4}) is a non-minimal RF relationship, its corresponding pseudo-monomial x1x2(1 −
x3)(1 − x4) is only in JC and not in CF(JC).

Similarly, ({1}, {2, 3, 4}) gives another local obstruction that is not detectable from the canonical form. 
Specifically, ({1}, {2, 3, 4}) ∈ RF(C) since U1 ⊆ U2 ∪ U3 ∪ U4 with U1 ∩ Ui 
= ∅ for each i = 2, 3, 4, 
and Lk1(Δ|[4]) is the non-contractible hollow simplex shown in Fig. 4D. In fact, it turns out that every 
non-maximal σ ∈ Δ has a related RF relationship that is a local obstruction (see [3, Table 2 in Supplementary 
Text S1]).

Fig. 4. Simplicial complexes in Example 2.6. Note that the simplicial complex in (A) is missing the top-dimensional face {1, 2, 3, 4}
and thus is a hollow simplex.

3. Detecting convex codes

Recall that to prove a code is convex, it is not sufficient to show that it has no local obstructions [10]. 
Currently the only known method for proving convexity is to construct a convex realization or show that 
the code belongs to a combinatorial family of codes that have been proven to be convex. The broadest such 
family of codes is max ∩-complete codes, for which every intersection of facets of Δ(C) is a codeword in C. 
Currently, however, there is no efficient way to determine if a code is max ∩-complete. Thus, we instead 
provide algebraic signatures of four combinatorial families of codes that all happen to be max ∩-complete, 
and thus are guaranteed to be convex by Theorem 1.10. Moreover, these signatures can be checked efficiently. 
Table 4 summarizes these signatures together with the combinatorial property implied by each signature. 
Section 2 provided sketches of proofs for signatures B-1 and B-2. In this section, we prove B-3 and B-4.

Table 4
Algebraic signatures of convex codes.

Algebraic signature of JC Property of C
B-1 CF1(JC) = ∅ ⇒ convex (11 · · · 1 ∈ C)
B-2 CF2(JC) = ∅ ⇒ convex (C = Δ(C))

B-3 ∀ xσ ∈ CF1(JC), |σ| = 2, and ⇒ convex
if xixj ∈ CF1(JC), then xixk or xjxk ∈ CF1(JC) for all k ∈ [n] (Δ(C) has disjoint facets)

B-4 ∀ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), |τ | = 1 ⇒ convex (C is ∩–complete)

3.1. Proof of B-3

Recall that signature B-1 captures when a code contains the all-ones word, and thus the corresponding 
simplicial complex has a single facet. As a generalization, we consider codes whose simplicial complexes have 
disjoint facets, which are also provably convex [3]. In the following, we show these codes can be algebraically 
detected via the signature B-3, but first we need the following lemma.
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Lemma 3.1. The graph, or 1-skeleton, of Δ(C) is a disjoint union of maximal cliques if and only if the 
following property holds:

if xixj ∈ CF1(JC), then xixk or xjxk ∈ CF1(JC) for all k ∈ [n]. (∗)

Proof. Let G be the underlying graph of Δ = Δ(C), i.e. its 1-skeleton. Observe that xixj ∈ CF1(JC)
precisely when {i, j} is a minimal set missing from Δ, and so i and j are vertices of G, but the edge (ij) is 
missing from G.

(⇒) If G is a disjoint union of maximal cliques, then whenever two vertices i and j are in distinct maximal 
cliques, no other vertex k can be adjacent to both i and j. This means that whenever xixj ∈ CF1(JC), for 
every k ∈ [n], at least one of xixk or xjxk ∈ JC . Since these elements are minimal, we must have xixk or 
xjxk ∈ CF1(JC) (because xk /∈ JC for any k since we assume Uk 
= ∅).

(⇐) We prove this by contrapositive. Suppose that G is not the disjoint union of maximal cliques. Then 
there exist distinct vertices i, j, k ∈ G that are connected, but do not form a clique; specifically, (ik) and 
(jk) are edges in G, but (ij) is not. Since (ij) /∈ G, xixj ∈ CF1(JC), but neither xixk nor xjxk is in CF1(JC); 
thus violating the condition on CF1(JC) from the statement. �

Satisfying property (∗) from Lemma 3.1 alone is not sufficient to guarantee convexity, as the following 
example shows.

Example 3.2. Consider C = {000000, 111000, 110100, 101100, 000011, 110000, 101000, 100100} with

CF1(JC) = {x1x5, x1x6, x2x5, x2x6, x3x5, x3x6, x4x5, x4x6, x2x3x4} and

CF2(JC) = {x1(1 − x2)(1 − x3)(1 − x4), x2(1 − x1), x3(1 − x1), x4(1 − x1), x5(1 − x6), x6(1 − x5)}.

Observe that property (∗) from Lemma 3.1 holds for CF1(JC), and the graph of Δ(C) is the disjoint union 
of the 4-clique on {1, 2, 3, 4} and the edge (56). C is not convex, however, because it satisfies signature A-4 
via x1(1 − x2)(1 − x3)(1 − x4) ∈ CF2(JC) and x2x3x4 ∈ CF1(JC) which forces a local obstruction since 
Lk1(Δ|[4]) is the non-contractible hollow triangle.

Despite not necessarily being convex, codes satisfying property (∗) from Lemma 3.1 display an interesting 
relation. Consider the co-firing relation defined by i ∼ j if and only if neurons i and j “co-fire” together in 
C, i.e. {i, j} ⊆ σ for some σ ∈ C. It is straightforward to check that this is an equivalence relation precisely 
when the code satisfies property (∗), as that condition on the 1-skeleton of Δ(C) ensures transitivity.

We now turn to the subclass of codes described in Lemma 3.1 that have simplicial complexes with disjoint 
facets, and thus are guaranteed to be convex [3]. This will complete the proof of B-3.

Proposition 3.3. Given a code C, its simplicial complex Δ(C) has disjoint facets if and only if the following 
two properties hold:

1. For all xσ ∈ CF1(JC), we have |σ| = 2; and
2. If xixj ∈ CF1(JC), then xixk or xjxk ∈ CF1(JC) for all k ∈ [n].

Proof. Observe that Δ = Δ(C) has disjoint facets if and only if Δ is a disjoint union of simplices. This 
occurs precisely when (a) the 1-skeleton of Δ is a disjoint union of maximal cliques and (b) each maximal 
clique is in Δ (i.e. each maximal clique yields a simplex in Δ).

By Lemma 3.1, (a) holds if and only if Property 2 is satisfied. Note that (b) holds if and only if every 
clique of the 1-skeleton is in Δ, not just the maximal cliques, since Δ is closed under taking subsets. Property 
1 guarantees that xω ∈ JC (i.e. ω /∈ Δ) if and only if xω is a multiple of xixj ∈ CF1(JC) for some i, j ∈ ω, 
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and so {i, j} /∈ Δ. Thus Property 1 ensures ω /∈ Δ if and only if ω is missing an edge (ij), and thus is not
a clique. Hence (b) holds if and only if Property 1 is satisfied. �

Note that the signature in B-3 relies solely on CF1(JC), which is a generating set for the Stanley–Reisner 
ideal of Δ(C); thus, this property can be read off from the Stanley–Reisner ideal alone.

3.2. Proof of B-4

Recall from B-2 that a code C is a simplicial complex precisely when all pseudo-monomials in CF(JC)
have |τ | = 0, and in this case C is provably convex, and consequently has no local obstructions. It turns out 
that when all pseudo-monomials in CF2(JC) have |τ | = 1, Corollary 3.6 shows that no local obstructions 
can arise involving the neurons in σ and {i}. To prove this, we first need the following two lemmas.

Lemma 3.4. Let ρ ∈ F2[x1, . . . , xn] and i ∈ [n]. If ρ /∈ JC but ρ(1 − xi) ∈ JC , then ρxi /∈ JC .

Proof. If ρxi ∈ JC , then the sum ρ(1 − xi) + ρxi ∈ JC , but ρ(1 − xi) + ρxi = ρ /∈ JC by hypothesis. Thus, 
ρxi /∈ JC . �
Lemma 3.5. For a code C, if xσ /∈ JC but xσ(1 − xi) ∈ JC , then for any σ̃ ⊇ σ and any τ ⊇ {i}, the link 
Lkσ̃(Δ|σ̃∪τ ) is contractible.

Proof. To show the link Lkσ̃(Δ|σ̃∪τ ) is contractible, we show it is a cone. Let τ ′ ∈ Lkσ̃(Δ|σ̃∪τ ); note τ ′ ⊆ τ . 
This implies σ̃ ∪ τ ′ ∈ (Δ|σ̃∪τ ) ⊆ Δ(C), and so ρ = xσ̃xτ ′ /∈ JC . But ρ(1 − xi) ∈ JC since it is a multiple of 
xσ(1 −xi) ∈ JC . Thus by Lemma 3.4, ρxi /∈ JC which implies σ̃∪τ ′∪{i} ∈ Δ(C), and so τ ′∪{i} ∈ Lkσ̃(Δ|σ̃∪τ ). 
Thus, i is a cone point of Lkσ̃(Δ|σ̃∪τ ), and so the link is contractible. �
Corollary 3.6. For a code C, if xσ(1 −xi) ∈ CF(JC), then (σ̃, τ) is not a local obstruction of C for any σ̃ ⊇ σ

and any τ ⊇ {i}.

Proof. Observe that if xσ(1 − xi) ∈ CF(JC), then by minimality xσ /∈ JC . Thus by Lemma 3.5, for any 
(σ̃, τ), the link Lkσ̃(Δ|σ̃∪τ ) is contractible, and thus (σ̃, τ) cannot be a local obstruction. �

Corollary 3.6 shows that no RF relationship containing a minimal RF relationship (σ, {i}) (i.e. when 
xσ(1 −xi) ∈ CF(JC)) can produce a local obstruction. Thus, if a code only has minimal RF relationships of 
the form (σ, ∅) or (σ, {i}), then it has no local obstructions, since every RF relationship (σ, τ) must contain 
one of these minimal RF relationships. Such a code can be immediately identified from its canonical form, 
as every pseudo-monomial will satisfy |τ | ≤ 1. Furthermore, Proposition 3.7 shows that these codes are 
precisely ∩-complete codes. Since ∩-complete codes are max ∩-complete, Theorem 1.10 guarantees these 
codes are in fact convex beyond simply having no local obstructions. This completes the proof of B-4 and 
Theorem 1.9 from Section 2.

Proposition 3.7. For a code C, the following are equivalent:

(1) Every pseudo-monomial xσ

∏
i∈τ (1 − xi) in CF(JC) has |τ | ≤ 1,

(2) For each RF relationship (σ, τ) with τ 
= ∅, there exists an i ∈ τ such that (σ, {i}) is also an RF 
relationship, and

(3) C is ∩-complete.

In the proof, we will use the notation U|σ∪τ to denote the subcover U|σ∪τ
def= {Ui | i ∈ σ ∪ τ}. Also 

we use C|σ∪τ to denote the restricted code C|σ∪τ
def= {ω ∈ C | ω ⊆ σ ∪ τ}. Note that if C = C(U) then 
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C|σ∪τ = C(U|σ∪τ ). We also use the straightforward fact that if C is ∩-complete, then C|σ∪τ is ∩-complete 
for any σ ∪ τ ⊂ [n].

Proof. We prove (1) ⇔ (2), and then (1) ⇔ (3).
(1)⇔(2): By Lemma 1.4, there is a one-to-one correspondence between pseudo-monomials in CF(JC) and 

minimal RF relationships. Thus, every xσ

∏
i∈τ (1 −xi) in CF(JC) has |τ | ≤ 1 if and only if the only minimal 

RF relationships are those of the form (σ, ∅) and (σ, {i}) for some i ∈ [n]. Recall that if (σ, τ) is a RF 
relationship with τ 
= ∅, then Uσ 
= ∅ since Uσ ∩ Ui 
= ∅ for all i ∈ τ ; hence (σ, τ) contains a minimal RF 
relationship (σ′, τ ′) for some non-empty σ′ ⊆ σ and non-empty τ ′ ⊆ τ . We see that (1) holds if and only 
if each such RF relationship (σ, τ) contains a minimal relationship of the form (σ′, {i}) for some i ∈ τ , in 
which case, (σ, {i}) is also an RF relationship since Uσ ⊆ Uσ′ . Thus (1) and (2) are equivalent.

(1)⇒(3): Suppose CF(JC) only contains pseudo-monomials with |τ | ≤ 1. Consider a pair of overlapping 
codewords ω1, ω2 ∈ C and let σ = ω1 ∩ ω2. To obtain a contradiction, suppose σ /∈ C. Then σ ∈ Δ(C) \ C, 
since it is a subset of ω1, ω2 ∈ Δ(C). This implies that xσ

∏
i∈τ (1 − xi) ∈ JC for some τ 
= ∅ with σ ∩ τ = ∅. 

It follows that xσ

∏
i∈τ (1 − xi) must be a multiple of a Type 2 pseudo-monomial in the canonical form, 

say xσ′(1 − xi) ∈ CF(JC), where i ∈ τ and σ′ ⊆ σ is nonempty. In particular, xσ(1 − xi) ∈ JC , which 
implies Uσ ⊆ Ui by Table 1. Since σ ⊆ ω1, Uω1 ⊆ Uσ ⊆ Ui which implies i ∈ ω1 since otherwise the region 
corresponding to ω1 would be covered and thus could not produce a codeword. Similarly, i ∈ ω2, and so 
i ∈ ω1 ∩ ω2 = σ. But then i ∈ σ ∩ τ contradicting σ ∩ τ = ∅. Hence σ ∈ C and C is ∩-complete.

(3)⇒(1): Suppose C is ∩-complete, and consider an element xσ

∏
i∈τ (1 −xi) ∈ CF(JC). Note that for any 

cover U with C = C(U), this implies Uσ ⊆
⋃

i∈τ Ui in U|σ∪τ , and so σ /∈ C|σ∪τ . To obtain a contradiction, 
assume |τ | > 1 and let j, k ∈ τ with j 
= k.

Suppose that Uσ∪{j} ⊆
⋃

i∈τ\{j} Ui. Then it would follow that the portion of Uσ that is covered by 
Uj (i.e. Uσ ∩ Uj = Uσ∪{j}) is also covered by 

⋃
i∈τ\{j} Ui. This would imply that Uσ ⊆

⋃
i∈τ\{j} Ui, but 

that would contradict the minimality of Uσ ⊆
⋃

i∈τ Ui guaranteed by xσ

∏
i∈τ (1 − xi) ∈ CF(JC). Hence, 

Uσ∪{j} �
⋃

i∈τ\{j} Ui, and so

Uσ∪{j} \
⋃

i∈τ\{j}
Ui 
= ∅

ensuring that σ ∪ {j} ∈ C|σ∪τ .6 By the same argument, we have σ ∪ {k} ∈ C|σ∪τ .
Let ωj = σ ∪ {j} and ωk = σ ∪ {k}. Since the restricted code C|σ∪τ is ∩-complete, this implies that 

σ = ωj ∩ ωk must be in C|σ∪τ . But this contradicts the hypothesis that xσ

∏
i∈τ (1 − xi) ∈ CF(JC) with 

j, k ∈ τ , which guaranteed σ /∈ C|σ∪τ . Thus, we conclude that |τ | ≤ 1 and (1) holds. �
4. Examples

In this section, we provide examples to illustrate how one can use the algebraic signatures summarized 
in Table 5 to detect convexity or non-convexity. In Section 1.3, examples of codes satisfying A-2, A-3, and 
B-4 were given, and so we do not give examples for those signatures here.

Example 4.1 (signature A-1). Consider C1 = {000, 110, 101, 011}. This code has

CF1(JC1) = {x1x2x3} and CF2(JC1) = {xi(1 − xj)(1 − xk) | i, j, k = 1, 2, 3; and all indices distinct}.

6 Alternatively, we can see σ∪{j} ∈ C|σ∪τ algebraically, by considering ρ = xσ

∏
i∈τ\j(1 −xi). We have ρ(1 −xj) ∈ CF(JC) while 

ρ /∈ JC, by minimality of elements in CF(JC), and so Lemma 3.4 guarantees ρxj = xσxj

∏
i∈τ\j(1 −xi) /∈ JC. Thus σ∪{j} ∈ C|σ∪τ , 

since the absence of that pseudo-monomial from JC implies Uσ∪j is nonempty and is not covered sets in τ \ {j}.
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Table 5
Algebraic signatures of convex and non-convex codes. GC(σ, τ) is the simple graph on vertex set τ with edge 
set {(ij) ∈ τ × τ | xσxixj /∈ JC}.

Algebraic signature of JC Property of C
A-1 ∃ xσ(1 − xi)(1 − xj) ∈ CF2(JC) s.t. xσxixj ∈ JC ⇒ non-convex
A-2 ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) s.t. GC(σ, τ) is disconnected ⇒ non-convex

A-3 ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) s.t. xσxτ ∈ CF1(JC) ⇒ non-convex

A-4 ∃ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), and ∃ σ̃ ⊆ σ s.t. xσ̃xτ ∈ CF1(JC) ⇒ non-convexbut xσ′xτ ′ /∈ CF1(JC) for all σ′ ⊆ σ, τ ′ � τ

B-1 CF1(JC) = ∅ ⇒ convex (11 · · · 1 ∈ C)
B-2 CF2(JC) = ∅ ⇒ convex (C = Δ(C))

B-3 ∀ xσ ∈ CF1(JC), |σ| = 2, and ⇒ convex
if xixj ∈ CF1(JC), then xixk or xjxk ∈ CF1(JC) for all k ∈ [n] (Δ(C) has disjoint facets)

B-4 ∀ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), |τ | = 1 ⇒ convex (C is ∩–complete)

Observe that x1(1 −x2)(1 −x3) ∈ CF2(JC1) and x1x2x3 ∈ CF1(JC1) ⊆ JC1 . Thus signature A-1 applies, and 
so C1 is not convex.

At the level of receptive fields, the obstruction is that U1 is the disjoint union of nonempty sets U1 ∩ U2
and U1 ∩ U3; hence U1 is disconnected and not convex.

Example 4.2 (signature A-4). Consider C2 = {0, 1}5 \ {11000, 10111, 11111}. Then

CF1(JC2) = {x1x3x4x5} and CF2(JC2) = {x1x2(1 − x3)(1 − x4)(1 − x5)}.

Consider σ = {1, 2} and τ = {3, 4, 5}, so that xσ

∏
i∈τ (1 − xi) ∈ CF2(JC2). For σ̃ = {1}, we see xσ̃xτ ∈

CF1(JC2) and for all σ′ ⊆ σ, τ ′ � τ , xσ′xτ ′ /∈ CF1(JC2). Thus A-4 applies, and so C2 is not convex.
In terms of receptive fields, we have that U1 ∩Uτ = ∅, and so Uσ ∩Uτ = ∅. But for all σ′ ⊆ σ and τ ′ � τ , 

we have Uσ′ ∩ Uτ ′ 
= ∅. Hence, the collection of sets Uσ ∩ Ui for i ∈ τ form a hollow simplex covering Uσ, 
forcing Uσ to contain a hole.

Example 4.3 (signature B-1). Consider C4 = {000, 110, 101, 111}. Then

CF1(JC4) = ∅ and CF2(JC4) = {x2(1 − x1), x3(1 − x1), x1(1 − x2)(1 − x3)}.

Since CF1(JC4) is empty, signature B-1 applies, and so C4 is convex. We could have also seen this directly 
from the fact that 111 ∈ C4.

Example 4.4 (signature B-2). Consider C5 = {0000, 1000, 0100, 0010, 0001, 1100, 1010, 0110, 0011, 1110}. This 
code has

CF1(JC5) = {x1x4, x2x4} and CF2(JC5) = ∅.

Since CF2(JC5) is empty, signature B-2 applies, and so C5 is a simplicial complex, and hence is convex.

Example 4.5 (signature B-3). Consider C6 = {0000, 0100, 0001, 1100, 1010, 1110}. This code has

CF1(JC6) = {x1x4, x2x4, x3x4} and CF2(JC6) = {x3(1 − x1), x1(1 − x2)(1 − x3)}.

Observe that all the elements of CF1(JC6) have |σ| = 2, satisfying the first part of signature B-3. For 
x1x4 ∈ CF1(JC6), we have x2x4 ∈ CF1(JC6) and x3x4 ∈ CF1(JC6) so the second condition holds for i = 1, 
j = 4, and k = 2, 3. It is easy to see the condition also holds for i = 2, j = 4 and for i = 3, j = 4. Thus, 
signature B-3 applies, so Δ(C6) has disjoint facets (specifically, {1, 2, 3} and {4}) and C6 is convex.
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The signatures A-1 through A-4 guarantee non-convexity by way of a local obstruction that can be 
detected from the canonical form, while signatures B-1 through B-4 guarantee convexity, and thus no local 
obstructions. However, Example 2.6 showed that even in the absence of local obstructions corresponding to 
elements of CF(JC), a code C may still have local obstructions and thus be provably non-convex. Additionally, 
even when a code has no local obstructions of any type, it may still be non-convex (see C2 in Example 1.11(b), 
first observed to be non-convex in [10]). Despite these complicating factors, it may still be useful to identify 
when a code cannot have any local obstructions “arising” from canonical form elements; more precisely, it 
has no CF-detectable local obstructions, as defined below.

Definition 4.6. A local obstruction (σ, τ) is CF-detectable if there exists a local obstruction (σ′, τ ′) with 
σ′ ⊆ σ and τ ′ ⊆ τ , such that (σ′, τ ′) is a minimal RF relationship.

Table 6
Algebraic signatures of codes with no CF-detectable local obstructions. These codes 
are not guaranteed to be convex or non-convex, but do not have any local obstruc-
tions that can be detected from the canonical form.

Algebraic signature of JC Property of C

C-1 ∀ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), xσxτ /∈ JC ⇒ no CF-detectable

local obstructions

C-2 ∀ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), ⇒ no CF-detectable

∃ i ∈ τ s.t. xixω /∈ CF1(JC) for all ω ⊆ σ ∪ τ local obstructions

C-1 and C-2 give two algebraic signatures of codes with no CF-detectable local obstructions (Table 6). 
Supplemental Text S2 provides more background on CF-detectable local obstructions and Theorem 5.4
proving these signatures.

Example 4.7 (signature C-1). Consider the code

C7 = {0000000, 0100000, 0010000, 0001000, 0000100, 0000010, 1100000,

1010000, 1001000, 0110000, 0101000, 0011000, 0001100, 0000110,

0000101, 0000011, 1110000, 1101000, 1011000, 0111000, 0000111, 1111000}.

More compactly, we can describe the codewords as subsets of active neurons, and we obtain

C7 = {∅, 2, 3, 4, 5, 6, 12, 13, 14, 23, 24, 34, 45, 56, 57, 67, 123, 124, 134, 234, 567, 1234},

with maximal codewords 1234, 45, and 567. This code has

CF1(JC7) = {x1x5, x1x6, x1x7, x2x5, x2x6, x2x7, x3x5, x3x6, x3x7, x4x6, x4x7}, and

CF2(JC7) = {x1(1 − x2)(1 − x3)(1 − x4), x7(1 − x5)(1 − x6)}.

Since all the elements of CF1(JC7) have |σ| ≤ 2, we might attempt to apply signature B-3 to guarantee 
convexity; however, that signature fails here since x1x5 ∈ CF1(JC7) but neither x1x4 ∈ CF1(JC7) nor 
x4x5 ∈ CF1(JC7). Thus, we must turn to CF2(JC7). For x1(1 −x2)(1 −x3)(1 −x4), we see that x1x2x3x4 /∈ JC7

since no factor of it is in CF1(JC7). Similarly, for x7(1 −x5)(1 −x6), we see that x5x6x7 /∈ JC7 since it has no 
factors in CF1(JC7). Thus, signature C-1 is satisfied and C7 has no CF-detectable local obstructions. This 
signature does not enable us to conclude anything about the convexity of C7; however, C7 is in fact convex, 
as it is max ∩-complete.
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Fig. 5. Links from Example 4.7. (A) Lk1(Δ|1234) is a simplex. (B) Lk7(Δ|567) is a simplex.

Recall from Section 2.1 that the source of CF-detectable local obstructions is non-contractible links 
of the form Lkσ(Δ|σ∪τ ), where xσ

∏
i∈τ (1 − xi) ∈ CF2(JC). For C7, the relevant links occur when σ =

{1} and τ = {2, 3, 4} and when σ = {7} and τ = {5, 6}. Since x1x2x3x4 /∈ JC7 , the link Lk1(Δ|1234)
contains the top-dimensional face 234, and thus is a simplex, which is contractible (see Fig. 5A). Similarly, 
Lk7(Δ|567) (shown in Fig. 5B) is a simplex since x5x6x7 /∈ JC7 , and so is contractible. Signature C-1 precisely 
characterizes when all the relevant links Lkσ(Δ|σ∪τ ) are simplices, and hence contractible, for minimal 
receptive field relationships (σ, τ). This ensures the absence of any CF-detectable local obstructions. The 
previous example showed that some codes satisfying signature C-1 are convex; however, this signature does 
not guarantee convexity. Specifically, code C2 from Example 1.11 also satisfies this signature, and in fact 
has no local obstructions, yet that code is not convex [10].

Example 4.8 (signature C-2). Consider the code

C8 = {0000000, 0100000, 0010000, 0001000, 0000100, 0000010,

1100000, 1010000, 1001000, 0101000, 0011000, 0010100, 0001100,

0000110, 0010001, 0001001, 0000101, 0000011, 1101000, 1011000,

0011100, 0011001, 0010101, 0001101, 0000111, 0011101}.

More compactly,

C8 = {∅, 2, 3, 4, 5, 6, 12, 13, 14, 24, 34, 35, 45, 56, 37, 47, 57, 67, 124, 134, 345, 347, 357, 457, 567, 3457}.

This code has

CF1(JC8) = {x1x5, x1x6, x1x7, x2x3, x2x5, x2x6, x2x7, x3x6, x4x6} and

CF2(JC8) = {x1(1 − x2)(1 − x3)(1 − x4), x7(1 − x3)(1 − x4)(1 − x5)(1 − x6)}.

For x1(1 − x2)(1 − x3)(1 − x4) ∈ CF2(JC8), we have σ = {1} and τ = {2, 3, 4}. Observe that x4 does not 
appear together with x1, x2, or x3 in CF1(JC8), so for i = 4 ∈ τ , we have xixω /∈ CF1(JC8) for every 
ω ⊆ σ ∪ τ .

For x7(1 − x3)(1 − x4)(1 − x5)(1 − x6) ∈ CF2(JC8), we have σ = {7} and τ = {3, 4, 5, 6}. Observe that 
x5 does not appear with any of x3, x4, x6, or x7 in CF1(JC8), so for i = 5 ∈ τ , we have xixω /∈ CF1(JC8)
for every ω ⊆ σ ∪ τ . Thus, signature C-2 is satisfied, and so C8 has no CF-detectable local obstructions. In 
fact, C8 is convex, as it is max ∩-complete.

As noted in Example 4.7, to understand the absence of CF-detectable local obstructions we need to 
consider links for pairs (σ, τ) where xσ

∏
i∈τ (1 − xi) ∈ CF2(JC). For C8, the relevant links occur when 

σ = {1} and τ = {2, 3, 4} and when σ = {7} and τ = {3, 4, 5, 6}. The link Lk1(Δ|1234) is shown in Fig. 6A 
and is a cone with respect to vertex 4, so is contractible. Similarly, Lk7(Δ|34567) is shown in Fig. 6B and is 
a cone with respect to vertex 5, so is contractible. In fact, signature C-2 characterizes when all the relevant 
links Lkσ(Δ|σ∪τ ) are cones, and hence contractible, for minimal receptive field relationships (σ, τ). Thus, 
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Fig. 6. Links from Example 4.8. (A) Lk1(Δ|1234) is a cone with respect to 4. (B) Lk7(Δ|34567) is a cone with respect to vertex 5.

signature C-2 generalizes C-1. This again ensures the absence of any CF-detectable local obstructions, but 
does not necessarily ensure convexity (e.g. code C2 from Example 1.11 satisfies this signature, but is not 
convex).

It is worth noting though that ∩-complete codes (characterized by signature B-4) are a special class of 
codes satisfying signature C-2 that are guaranteed to be convex. Specifically, if a code satisfies B-4, then 
every element of CF2(JC) has the form xσ(1 − xi), and so Lemma 3.4 guarantees that xσxi /∈ JC . Thus, no 
factor of xσxi can be in CF1(JC), and so signature C-2 holds.

5. Supplemental text

S1: Computing the canonical form CF(JC)

In the following two examples, we illustrate how to compute the canonical form by hand. For details on 
how to algorithmically calculate CF(JC) and software to support this, see [12].

Example 5.1 (CF(JC5) from Example 4.4). Consider the code

C5 = {0000, 1000, 0100, 0010, 0001, 1100, 1010, 0110, 0011, 1110}

from Example 4.4. Here we show how to compute CF(JC5) by hand.
Recall the neural ideal JC

def= 〈χv | v ∈ Fn
2 \ C〉, where χv is the characteristic pseudo-monomial of v (as 

defined in Equation (1)). The non-codewords are 1001, 0101, 1101, 1011, 0111, 1111, and so

JC5 = 〈{x1x4(1 − x2)(1 − x3), x2x4(1 − x1)(1 − x3),

x1x2x4(1 − x3), x1x3x4(1 − x2), x2x3x4(1 − x1), x1x2x3x4}〉.

Since x1x4 is a minimal divisor of generators in JC5 that vanishes on all codewords (so it is in JC5), we 
have x1x4 ∈ CF1(JC5). Similarly, x2x4 ∈ CF1(JC5). Since all the generators of JC5 are multiples of x1x4 and 
x2x4, both of which are monomials, it follows that CF2(JC5) is empty and CF1(JC5) = {x1x4, x2x4}. Thus, 
CF(JC5) = CF1(JC5) ∪ CF2(JC5) where

CF1(JC5) = {x1x4, x2x4} and CF2(JC5) = ∅.

Example 5.2 (CF(JC6) from Example 4.5). Consider the code C6 = {0000, 0100, 0001, 1100, 1010, 1110} from 
Example 4.5. The non-codewords are 1000, 0010, 1001, 0110, 0101, 0011, 1101, 1011, 0111, 1111. Thus,

JC6 = 〈{x1(1 − x2)(1 − x3)(1 − x4), x3(1 − x1)(1 − x2)(1 − x4),

x1x4(1 − x2)(1 − x3), x2x3(1 − x1)(1 − x4), x2x4(1 − x1)(1 − x3),

x3x4(1 − x1)(1 − x2), x1x2x4(1 − x3), x1x3x4(1 − x2), x2x3x4(1 − x1), x1x2x3x4}〉.
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Since x1x4 is a minimal divisor of generators in JC6 that vanishes on all codewords, x1x4 ∈ CF1(JC6). 
Similarly, x2x4, x3x4 ∈ CF1(JC6). Since 1110 ∈ C6, none of x1x2, x1x3, nor x1x2x3 is in JC6 , and so 
CF1(JC6) = {x1x4, x2x4, x3x4}. Every pseudo-monomial in JC6 is a multiple of one of the monomials in 
CF1(JC6) except for x1(1 − x2)(1 − x3)(1 − x4), x3(1 − x1)(1 − x2)(1 − x4), and x2x3(1 − x1)(1 − x4). 
The minimal pseudo-monomials in JC6 that generate these are x3(1 − x1) and x1(1 − x2)(1 − x3), and so 
CF2(JC6) ⊇ {x3(1 −x1), x1(1 −x2)(1 −x3)}. In fact, one can check that this is the complete set of generators 
of CF2(JC) [5]. Thus, CF(JC6) = CF1(JC6) ∪ CF2(JC6) where

CF1(JC6) = {x1x4, x2x4, x3x4} and CF2(JC6) = {x3(1 − x1), x1(1 − x2)(1 − x3)}.

S2: CF-dectectable local obstructions

Some local obstructions (σ, τ) correspond to minimal RF relationships. Among those that do not, we 
distinguish local obstructions that can be “stripped down” (by removing neurons from σ and/or τ) to local 
obstructions corresponding to minimal RF relationships. We refer to local obstructions that correspond to 
minimal RF relationships or that can be stripped down to such as CF-detectable local obstructions (precise 
definition was given in Definition 4.6). As we will see, both these types of local obstructions can be detected 
directly from CF(JC).

Since every minimal RF relationship corresponds to a pseudo-monomial in CF(JC) (Lemma 1.4), 
Lemma 5.3 shows that all CF-detectable local obstructions can be determined solely from the canonical 
form.

Lemma 5.3. Given a code C, the following are equivalent:

1. The link Lkσ(Δ|σ∪τ ) is contractible for every (σ, τ) such that xσ

∏
i∈τ (1 − xi) ∈ CF2(JC),

2. The link Lkσ(Δ|σ∪τ ) is contractible for every minimal RF relationship (σ, τ) with τ 
= ∅, and
3. C has no CF-detectable local obstructions.

Proof. It is clear that (1) and (2) are equivalent since xσ

∏
i∈τ (1 − xi) ∈ CF2(JC) if and only if (σ, τ) is a 

minimal RF relationship with τ 
= ∅ by Lemma 1.4 and the definition of CF2(JC).
We now prove (2) ⇔ (3) by contrapositive. If C has a CF-detectable local obstruction (σ, τ), then by 

definition there exist σ′ ⊆ σ and τ ′ ⊆ τ such that (σ′, τ ′) is a minimal RF relationship that gives a local 
obstruction. Thus for that (σ′, τ ′), Lkσ′(Δ|σ′∪τ ′) is not contractible, and so (2) does not hold. Conversely, 
if there exists a minimal RF relationship (σ, τ) such that Lkσ(Δ|σ∪τ ) is not contractible, then (σ, τ) is itself 
a CF-detectable local obstruction, and so (3) does not hold. �
Theorem 5.4. If C has either of the algebraic signatures in rows C-1 or C-2 of Table 7, then C has no 
CF-detectable local obstructions.

Table 7
Algebraic signatures of codes with no CF-detectable local obstructions. These codes 
are not guaranteed to be convex or non-convex, but do not have any local obstruc-
tions that can be detected from the canonical form.

Algebraic signature of JC Property of C

C-1 ∀ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), xσxτ /∈ JC ⇒ no CF-detectable

local obstructions

C-2 ∀ xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), ⇒ no CF-detectable

∃ i ∈ τ s.t. xixω /∈ CF1(JC) for all ω ⊆ σ ∪ τ local obstructions
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Proof. (C-1) Observe that xσxτ /∈ JC implies that xσxτ ′ /∈ JC for all τ ′ ⊆ τ since JC is an ideal. Thus, 
τ ′ ∈ Lkσ(Δ|σ∪τ ) for all τ ′ ⊆ τ , and so Lkσ(Δ|σ∪τ ) is the full simplex on the vertex set τ . Thus Lkσ(Δ|σ∪τ )
is contractible. Since this holds for all (σ, τ) such that xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), Lemma 5.3 guarantees 

that C has no CF-detectable local obstructions.
(C-2) We will show that signature C-2 guarantees that for every (σ, τ) with xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), 

the link Lkσ(Δ|σ∪τ ) is a cone, and hence is contractible. Consider τ̃ ∈ Lkσ(Δ|σ∪τ ), so that τ̃ ⊆ τ and σ∪ τ̃ ∈
Δ(C). Since σ ∪ τ̃ ∈ Δ(C), we have xσxτ̃ /∈ JC . By hypothesis, there exists an i such that for every σ′ ⊆ σ

and τ ′ ⊆ τ̃ , xixσ′xτ ′ /∈ CF1(JC). Since CF1(JC) generates the monomials of JC, this condition together with 
xσxτ̃ /∈ JC guarantees that xixσxτ̃ /∈ JC , and so {i} ∪ σ ∪ τ̃ ∈ Δ(C) implying that {i} ∪ τ̃ ∈ Lkσ(Δ|σ∪τ ). 
Hence Lkσ(Δ|σ∪τ ) is a cone with respect to i, and so is contractible. Since this holds for all (σ, τ) such that 
xσ

∏
i∈τ (1 − xi) ∈ CF2(JC), Lemma 5.3 guarantees that C has no CF-detectable local obstructions. �

As mentioned at the end of Section 4, C-1 is just a special case of C-2. Specifically, if a code satisfies 
C-1, then every i ∈ τ will satisfy the conditions of C-2, since C-1 guarantees that each link is a simplex, 
and thus also is a cone with any vertex acting as a cone point. We nevertheless include the proof of C-1 to 
clarify the structure of these links.
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