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WHAT CAN TOPOLOGY TELL US

ABOUT THE NEURAL CODE?

CARINA CURTO

Abstract. Neuroscience is undergoing a period of rapid experimental progress
and expansion. New mathematical tools, previously unknown in the neuro-
science community, are now being used to tackle fundamental questions and
analyze emerging data sets. Consistent with this trend, the last decade has
seen an uptick in the use of topological ideas and methods in neuroscience. In
this paper I will survey recent applications of topology in neuroscience, and
explain why topology is an especially natural tool for understanding neural
codes.

1. Introduction

Applications of topology to scientific domains outside of pure mathematics are
becoming increasingly common. Neuroscience, a field undergoing a golden age of
progress in its own right, is no exception. The first reason for this is perhaps
obvious—at least to anyone familiar with topological data analysis. Like other ar-
eas of biology, neuroscience is generating a lot of new data, and some of these data
can be better understood with the help of topological methods. A second reason
is that a significant portion of neuroscience research involves studying networks,
and networks are particularly amenable to topological tools. Although this paper
will touch on a variety of such applications, most of my attention will be devoted
to a third reason—namely, that many interesting problems in neuroscience contain
topological questions in disguise. This is especially true when it comes to under-
standing neural codes and questions such as, How do the collective activities of
neurons represent information about the outside world?

I will begin with some well-known examples of neural codes and then use them
to illustrate how topological ideas naturally arise in this context. Next, I’ll take a
brief detour to describe other uses of topology in neuroscience. Finally, I will return
to neural codes and explain why topological methods are helpful for studying their
intrinsic properties. Taken together, these developments suggest that topology is
not only useful for analyzing neuroscience data, but it may also play a fundamental
role in the theory of how the brain works.

2. Neurons: nodes in a network or autonomous sensors?

It has been known for more than a century, since the time of Golgi and Ra-
mon y Cajal, that the neurons in our brains are connected to each other in vast,
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intricate networks. Neurons are electrically active cells. They communicate with
each other by firing action potentials (spikes)—tiny messages that are only received
by neighboring (synaptically connected) neurons in the network. Suppose we were
eavesdropping on a single neuron, carefully recording its electrical activity at each
point in time. What governs the neuron’s behavior? The obvious answer—it’s the
network, of course! If we could monitor the activity of all the other neurons, and
we knew exactly the pattern of connections between them, and were blessed with
an excellent model describing all relevant dynamics, then (maybe?) we would be
able to predict when our neuron will fire. If this seems hopeless now, imagine how
unpredictable the activity of a single neuron in a large cortical network must have
seemed in the 1950s when Hodgkin and Huxley had just finished working out the
complex nonlinear dynamics of action potentials for a simple, isolated cell [32].

And yet, around 1959, a miracle happened. It started when Hubel and Wiesel
inserted a microelectrode into the primary visual cortex of an anesthetized cat
and eavesdropped on a single neuron. They could neither monitor nor control the
activity of any other neurons in the network; they could only listen to one neuron
at a time. What they could control was the visual stimulus. In an attempt to get
the neuron to fire, they projected black and white patterns on a screen in front
of the open-eyed cat. Remarkably, they found that the neuron they were listening
to fired rapidly when the screen showed a black bar at a certain angle, say, 45◦.
Other neurons responded to different angles. It was as though each neuron was a
sensor for a particular feature of the visual scene. Its activity could be predicted
without knowing anything about the network, but by simply looking outside the
cat’s brain—at the stimulus on the screen.

Hubel and Wiesel had discovered orientation-tuned neurons [21], whose collec-
tive activity comprises a neural code for angles in the visual field (see Figure 1B).
Although they inhabit a large, densely connected cortical network, these neurons
do not behave as unpredictable units governed by complicated dynamics. Instead,
they appear to be responding directly to stimuli in the outside world. Their activity
has meaning.

A decade later, O’Keefe made a similar discovery, this time involving neurons
in a different area of the brain—the hippocampus. Unlike the visual cortex, there
is no obvious sensory pathway to the hippocampus. This made it all the more
mysterious when O’Keefe reported that his neurons were responding selectively
to different locations in the animal’s physical environment [28]. These neurons,
dubbed place cells, act as position sensors in space. When an animal is exploring
a particular environment, a place cell increases its firing rate as the animal passes
through its corresponding place field—that is, the localized region to which the
neuron preferentially responds (see Figure 1C).

Like Hubel and Wiesel, who received a Nobel prize for their work in 1981 [1],
O’Keefe’s discovery of place cells had an enormous impact in neuroscience. In 2014,
he shared the Nobel prize with Edvard and May-Britt Moser [5], former postdocs of
his who went on to discover an even stranger class of neurons that encode position
in a neighboring area of hippocampus called the entorhinal cortex. These neurons,
called grid cells, display periodic place fields that are arranged in a hexagonal
lattice. We’ll come back to grid cells in the next section.
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Figure 1. The neural network and neural coding pictures. (A)
Pyramidal neurons (triangles) are embedded in a recurrent network
together with inhibitory interneurons (circles). (B) An orientation-
tuned neuron in primary visual cortex with a preferred angle of 45◦.
The neuron fires many spikes in response to a bar at a 45◦ angle in
the animal’s visual field, but few spikes in response to a horizon-
tal bar. (C) Place cells in the hippocampus fire when the animal
passes through the corresponding place field. The activity of three
different neurons is shown (top), while the animal traces a trajec-
tory starting at the top left corner of its environment (bottom).
Each neuron’s activity is highest when the animal passes through
the corresponding place field (shaded disc).

So, are neurons nodes in a network or autonomous sensors of the outside world?
Both pictures are valid, and yet they lead to very different models of neural behav-
ior. Neural network theory deals with the first picture, and seeks to understand
how the activity of neurons emerges from properties of the network. In contrast,
neural coding theory often treats the network as a black box, focusing instead on
the relationship between neural activity and external stimuli. Many of the most
interesting problems in neuroscience are about understanding the neural code. This
includes, but is not limited to, figuring out the basic principles by which neural
activity represents sensory inputs to the eyes, nose, ears, whiskers, and tongue. Be-
cause of the discoveries of Hubel and Wiesel, O’Keefe, and many others, we often
know more about the coding properties of single neurons than we do about the
networks to which they belong. But many open questions remain. And topology,
as it turns out, is a natural tool for understanding the neural code.

3. Topology of hippocampal place cell codes

The term hippocampal place cell code refers to the neural code used by place
cells in the hippocampus to encode the animal’s position in space. Most of the re-
search about place cells, including O’Keefe’s original discovery, has been performed
in rodents (typically rats), and the experiments typically involve an animal moving
around in a restricted environment (see Figure 1C). It was immediately understood
that a population of place cells, each having a different place field, could collectivity
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Figure 2. Place fields for four place cells, recorded while a rat
explored a two-dimensional square box environment. Place fields
were computed from data provided by the Pastalkova lab.

encode the animal’s position in space [29], even though for a long time electrophysi-
ologists could only monitor one neuron at a time. When simultaneous recordings of
place cells became possible, it was shown via statistical inference (using previously
measured place fields) that the animal’s position could indeed be inferred from
population place cell activity [3]. Figure 2 shows four place fields corresponding to
simultaneously recorded place cells in area CA1 of rat hippocampus.

The role of topology in place cell codes begins with a simple observation, which
is perhaps obvious to anyone familiar with both place fields in neuroscience and
elementary topology. First, let’s recall the standard definitions of an open cover
and a good cover. A collection of open sets U = {U1, . . . , Un} is an open cover
of a topological space X if X =

⋃n
i=1 Ui. We say that U is a good cover if every

nonempty intersection
⋂

i∈σ Ui, for σ ⊆ {1, . . . , n}, is contractible. Now, observe
that a collection of place fields in a particular environment looks strikingly like an
open cover, with each Ui corresponding to a place field. Figure 3 displays three
different environments, typical of what is used in hippocampal experiments with
rodents, together with schematic arrangements of place fields in each.

Moreover, since place fields are approximately convex (see Figure 2) it is not
unreasonable to assume that they form a good cover of the underlying space. This
means the Nerve Lemma applies. Recall the notion of the nerve1 of a cover:

N (U) def
= {σ ⊂ [n] |

⋂

i∈σ

Ui �= ∅},

Figure 3. Three environments for a rat: (A) a square box envi-
ronment, also known as an “open field”; (B) an environment with a
hole or obstacle in the center; and (C) a maze with two arms. Each
environment displays a collection of place fields (shaded discs) that
fully cover the underlying space.

1Note that the name “nerve” here predated any connection to neuroscience!
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where [n] = {1, . . . , n}. Clearly, if σ ∈ N (U) and τ ⊂ σ, then τ ∈ N (U). This
property shows that N (U) is an abstract simplicial complex on the vertex set [n]—
that is, it is a set of subsets of [n] that is closed under taking further subsets. If
X is a sufficiently “nice” topological space, then the following well-known lemma
holds.

Lemma 3.1 (Nerve Lemma). Let U be a good cover of X. Then N (U) is homotopy-
equivalent to X. In particular, N (U) and X have exactly the same homology
groups.2

It is important to note that the Nerve Lemma fails if the good cover assumption
does not hold. Figure 4A depicts a good cover of an annulus by three open sets.
The corresponding nerve (right) exhibits the topology of a circle, which is indeed
homotopy-equivalent to the covered space. In Figure 4B, however, the cover is not
good, because the intersection U1∩U2 consists of two disconnected components and
is thus not contractible. Here the nerve (right) is homotopy-equivalent to a point,
in contradiction to the topology of the covered annulus.

U1

U3U2

1

2 3

U1

U2

1

2

A B

Figure 4. Good and bad covers. (A) A good cover U =
{U1, U2, U3} of an annulus (left), and the corresponding nerve
N (U) (right). (B) A “bad” cover of the annulus (left), and the
corresponding nerve (right). Only the nerve of the good cover ac-
curately reflects the topology of the annulus.

The wonderful thing about the Nerve Lemma, when interpreted in the context
of hippocampal place cells, is that N (U) can be inferred from the activity of place
cells alone—without actually knowing the place fields {Ui}. This is because the
concurrent activity of a group of place cells, indexed by σ ⊂ [n], indicates that
the corresponding place fields have a nonempty intersection,

⋂
i∈σ Ui �= ∅. In other

words, if we were eavesdropping on the activity of a population of place cells as
the animal fully explored its environment, then by finding which subsets of neurons
co-fire (see Figure 5) we could, in principle, estimate N (U), even if the place fields
themselves were unknown. Lemma 3.1 tells us that the homology of the simplicial
complex N (U) precisely matches the homology of the environment X. The place
cell code thus naturally reflects the topology of the represented space.3

2If we are only interested in matching homology, the good cover assumption can be relaxed
[15].

3In particular, place cell activity from the environment in Figure 3B could be used to detect
the nontrivial first homology group of the underlying space and, thus, distinguish this environment
from that of Figure 3A or 3C.
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Figure 5. By binning spike trains for a population of simulta-
neously recorded neurons, one can infer subsets of neurons that
co-fire. If these neurons were place cells, then the first codeword
1110 indicates that U1 ∩ U2 ∩ U3 �= ∅, while the third codeword
0101 tells us U2 ∩ U4 �= ∅.

These and related observations have led some researchers to speculate that the
hippocampal place cell code is fundamentally topological in nature [6, 14], while
others (including this author) have argued that considerable geometric information
is also present and can be extracted using topological methods [11, 20]. In order
to disambiguate topological and geometric features, Dabaghian et al. performed an
elegant experiment using linear tracks with flexible joints [13]. This allowed them
to alter geometric features of the environment while preserving the topological
structure as reflected by the animal’s place fields. They found that place fields
recorded from an animal running along the morphing track moved together with
the track, preserving the relative sequence of locations despite changes in angles and
movement direction. In other words, the place fields respected topological aspects
of the environment more than metric features [13].

What about the entorhinal grid cells? These neurons have firing fields with
multiple disconnected components, forming a hexagonal grid (see Figure 6A). This
means that grid fields violate the good cover assumption of the Nerve Lemma—if
we consider them as an open cover for the entire two-dimensional environment. If,
instead, we restrict our attention to a fundamental domain for these firing fields,
as illustrated in Figure 6B, then each grid field has just one (convex) component,
and the Nerve Lemma applies. From the spiking activity of grid cells we could
thus infer the topology of this fundamental domain. The reader familiar with the
topological classification of surfaces may recognize that this hexagonal domain,
with the identification of opposite edges, is precisely a torus. This indicates that
the space represented by grid cells is not the full environment, but a torus.

4. Topology in neuroscience: a bird’s-eye view

The examples from the previous section are by no means the only way that
topology is being used in neuroscience. Before plunging into further details about
what topology can tell us about neural codes, we now pause for a moment to
acknowledge some other interesting applications. The main thing they all have in
common is their recency. This is no doubt due to the rise of computational and
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Figure 6. Firing fields for grid cells. (A) Firing fields for four
entorhinal grid cells, each in a different color. A single grid field
consists of multiple disconnected regions and forms a hexagonal
grid in the animal’s two-dimensional environment. (B) A hexago-
nal fundamental domain contains just one disc-like region per grid
cell. Pairs of edges with the same label (a, b, or c) are identified
with orientations specified by the arrows.

applied algebraic topology, a relatively new development in applied mathematics
that was highlighted in the Bulletin of the American Mathematical Society nearly
a decade ago [17].

Roughly speaking, the uses of topology in neuroscience can be categorized into
three (overlapping) themes: (i) “traditional” topological data analysis applied to
neuroscience; (ii) an upgrade to network science; and (iii) understanding the neural
code. Here we briefly summarize work belonging to (i) and (ii). In the next section
we’ll return to (iii), which is the main focus of this talk.

4.1. “Traditional” TDA applied to neuroscience data sets. The earliest
and most familiar applications of topological data analysis (TDA) focused on the
problem of estimating the “shape” of point-cloud data. This kind of data set is
simply a collection of points, x1, . . . , x� ∈ R

n, where n is the dimensionality of the
data. A question one could ask is, Do these points appear to have been sampled
from a lower-dimensional manifold, such as a torus or a sphere?

The basic strategy is to consider open balls Bε(xi) of radius ε around each data
point, and then to construct a simplicial complex Kε that captures information
about how the balls intersect. This simplicial complex can either be the Cech
complex, which is the nerve of the open cover defined by the balls, or the Vietoris–
Rips complex, which is the clique complex4 of the graph obtained from pairwise
intersections of the balls. By varying ε, one obtains a sequence of nested simplicial
complexes {Kε} together with natural inclusion maps. Persistent homology tracks
homology cycles across these simplicial complexes, and allows one to determine

4 Recall that the clique complex of a graph G, denoted X(G), is simply the collection of all
cliques (all-to-all connected subgraphs) in G, viewed as a simplicial complex:

X(G) = {σ ⊂ [n] | (ij) ∈ G for all i, j ∈ σ}.
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whether there were homology classes that “persisted” for a long time. For example,
if the data points were sampled from a 3-sphere, one would see a persistent 3-cycle.

There are many excellent reviews of persistent homology, including [17], so I will
not go into further detail here. Instead, it is interesting to note that one of the early
applications of these techniques was in neuroscience—to analyze population activity
in the primary visual cortex [33]. Here it was found that the topological structure
of activity patterns is similar between spontaneous and evoked activity, and is
consistent with the topology of a 2-sphere. Moreover, the results of this analysis
were interpreted in the context of neural coding, making this work exemplary of
both themes (i) and (iii). Another application of persistent homology to point cloud
data in neuroscience was the analysis of the spatial structure of afferent neuron
terminals in crickets [4]. Again, the results were interpreted in terms of the coding
properties of the corresponding neurons, which are sensitive to air motion detected
by thin mechanosensory hairs on the cricket. Finally, it is worth mentioning that
these types of analyses are not confined to neural activity. For example, in [2] the
statistics of persistent cycles were used to study brain artery trees.

4.2. An upgrade to network science. There are many ways of constructing
networks in neuroscience, but the basic model that has been used for all of them is
the graph. The vertices of a graph can represent neurons, cell types, brain regions,
or fMRI voxels, while the edges reflect interactions between these units. Often, the
graph is weighted and the edge weights correspond to correlations between adjacent
nodes. For example, one can model a functional brain network from fMRI data as a
weighted graph where the edge weights correspond to activity correlations between
pairs of voxels. At the other extreme, a network where the vertices correspond to
neurons could have edge weights that reflect either pairwise correlations in neural
activity or synaptic connections.

Network science is a relatively young discipline that focuses on analyzing net-
works, primarily using tools derived from graph theory. The results of a particular
analysis could range from determining the structure of a network to identifying im-
portant subgraphs and/or graph-theoretic statistics (the distribution of in-degree or
out-degree across nodes, number of cycles, etc.) that carry meaning for the network
at hand. Sometimes, graph-theoretic features do not carry obvious meaning, but are
nevertheless useful for distinguishing networks that belong to distinct classes. For
example, a feature could be characteristic of functional brain networks derived from
a subgroup of subjects, distinguishing them from a “control” group. In this way
graph features may be a useful diagnostic tool for distinguishing diseased states,
pharmacologically induced states, cognitive abilities, or for uncovering systematic
differences based on gender or age.

The recent emergence of topological methods in network science stems from the
following “upgrade” to the network model: instead of a graph, one considers a sim-
plicial complex. Sometimes this simplicial complex reflects higher-order interactions
that are obtained from the data, and sometimes it is just the clique complex of the
graph G (see footnote 4); in other words, the higher-order simplices correspond to
cliques of G. Figure 7A shows a graph (top) and the corresponding clique complex
(bottom), with shaded simplices corresponding to two 3-cliques and a 4-clique. The
clique complex fills in many of the 1-cycles in the original graph, but some 1-cycles
remain (see the gold 4-gon), and higher-dimensional cycles may emerge.
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A B

Figure 7. Network science models: from graphs to clique com-
plexes and filtrations.

Computing homology groups of a clique complex X(G) is then a natural way
to detect topological features that are determined by the underlying graph G. In
the case of a weighted graph (the weights often represent interaction strengths in a
network), one can obtain a sequence of clique complexes by considering a related
sequence of simple graphs, {Gi}, where each graph is obtained from the previous
one by adding the edge corresponding to the next-highest weight (see Figure 7B).
The corresponding nested sequence of clique complexes,

X(G1) ⊆ X(G2) ⊆ . . . ⊆ X(G�),

can then be analyzed using persistent homology.
A major advantage of this approach for analyzing weighted graphs/networks

is that any topological invariant of {X(Gi)} is automatically an invariant of the
underlying weighted graph under nonlinear transformations of the weights {wij},
provided that the total ordering of weights is preserved. This feature is particularly
important in neuroscience applications, because interaction strengths are often mea-
sured in somewhat arbitrary units (such as image brightness or signal strength).
While one can usually assume a larger weight means a stronger interaction, the
precise values of the weights may not be meaningful. Topological tools discard this
information, while revealing a surprising amount of biologically relevant network
structure. In particular, the statistics of Betti curves have been used to infer hidden
geometric structure in the correlations of hippocampal neurons [20].

For a more thorough survey of topological methods in network science, I rec-
ommend the recent review article [19]. Here I will only mention that topological
network analyses have already been used in a variety of neuroscience applications,
many of them medically motivated: fMRI networks in patients with ADHD [16];
FDG-PET based networks in children with autism and ADHD [25]; morphological
networks in deaf adults [24]; metabolic connectivity in epileptic rats [7]; and func-
tional EEG connections in depressed mice [23]. Other applications to fMRI data
include human brain networks during learning [35] and drug-induced states [30].
At a finer scale, recordings of neural activity can also give rise to functional con-
nectivity networks among neurons (which are not the same as the neural networks
defined by synaptic connections). These networks have also been analyzed with
topological methods [20, 31, 34].



72 CARINA CURTO

5. The code of an open cover, and its algebraic description

We now return to neural codes. We have already seen how the hippocampal
place cell code reflects the topology of the underlying space, via the nerve N (U)
of a place field cover. In this section, we will associate a binary code to an open
cover. This notion is closer in spirit to a combinatorial neural code (see Figure 5),
and carries more detailed information than the nerve. There is also a nice algebraic
description of these codes, which keeps track of the essential features of the cover.
In the next section, we’ll see how topology is being used to determine intrinsic
properties of neural codes, such as convexity and dimension.

First, a few definitions. A binary pattern on n neurons is a string of 0’s and
1’s, with a 1 for each active neuron and a 0 denoting silence; equivalently, it is a
subset of (active) neurons σ ⊂ [n]. (Recall that [n] = {1, . . . , n}.) We use both
notations interchangeably. For example, 10110 and σ = {1, 3, 4} refer to the same
pattern, or codeword, on n = 5 neurons. A combinatorial neural code on n neurons
is a collection of binary patterns C ⊂ 2[n]. In other words, it is a binary code
of length n, where we interpret each binary digit as the “on” or “off” state of a
neuron. The simplicial complex of a code, Δ(C), is the smallest abstract simplicial
complex on [n] that contains all elements of C. In keeping with the hippocampal
place cell example, we are interested in codes that correspond to open covers of
some topological space.

Definition 5.1. Given an open cover U , the code of the cover is the binary code

C(U) def
= {σ ⊂ [n] |

⋂

i∈σ

Ui \
⋃

j∈[n]\σ
Uj �= ∅}.

Each codeword in C(U) corresponds to a region that is defined by the intersec-
tions of the open sets in U (Figure 8A). Note that the code C(U) is not the same
as the nerve N (U). Figures 8B and 8C display the code and the nerve of the
open cover in Figure 8A. While the nerve encodes which subsets of the Ui’s have
nonempty intersections, the code also carries information about set containments.
For example, U2 ⊆ U1 ∪ U3 can be inferred from C(U) because each codeword of
the form ∗1 ∗ ∗ has an additional 1 in position 1 or 3, indicating that if neuron 2
is firing, then so is neuron 1 or 3. Similarly, U2 ∩ U4 ⊆ U3 can be inferred from
the code because any word of the form ∗1 ∗ 1 necessarily has a 1 in position 3 as
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Figure 8. Codes and nerves of open covers. (A) An open cover
U , with each region carved out by the cover labeled by its corre-
sponding codeword. (B) The code C(U). (C) The nerve N (U).
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well. These containment relationships go beyond simple intersection data and can-
not be obtained from the nerve N (U). On the other hand, the nerve can easily be
recovered from the code since N (U) is the smallest simplicial complex that contains
it—that is,

N (U) = Δ(C(U)).
C(U) thus carries more detailed information than what is available in N (U).

The combinatorial data in C(U) can be encoded algebraically via the neural ideal
[12], much as simplicial complexes are algebraically encoded by Stanley–Reisner
ideals [27]. In order to represent a code algebraically, it is useful to consider binary
patterns of length n as elements of Fn

2 , where F2 is the finite field of two elements:
0 and 1. Given a code C ⊆ F

n
2 , it is natural to consider the ideal of polynomials

with coefficients in F2 that vanish on all codewords:

IC
def
= {f ∈ F2[x1, . . . , xn] | f(c) = 0 for all c ∈ C}.

Note that a polynomial f ∈ F2[x1, . . . , xn] can be evaluated on a binary pattern of
length n by simply replacing each indeterminate xi with the 0/1 value of the ith
neuron. For example, if f = x1x3(1 − x4) ∈ F2[x1, . . . , x4], then f(1010) = 1 and
f(1100) = 0.

The ideal IC and the closely related neural ideal JC
5 algebraically package the

combinatorial data of a code in a way that makes the set-theoretic relationships of
corresponding open covers easy to extract.

Lemma 5.2 ([12]). Let C be a binary code of length n (i.e., on n neurons), and
let U = {U1, . . . , Un} be any collection of open sets such that C = C(U). For any
σ, τ ⊆ [n], ∏

i∈σ

xi

∏

j∈τ

(1− xj) ∈ IC ⇔
⋂

i∈σ

Ui ⊆
⋃

j∈τ

Uj .

Note that it is easy to see that any binary code can be realized as the code of an
open cover.6 It is not true, however, that any code can arise from a good cover or a
convex cover—that is, an open cover consisting of convex open sets. The algebraic
framework of the neural ideal can be used to determine, in many cases, whether or
not a given code has a convex realization [10].

6. Using topology to study intrinsic properties

of neural codes

In our previous examples from neuroscience, the place cell and grid cell codes can
be thought of as arising from convex sets covering an underlying space. Because
the spatial correlates of these neurons are already known, it is not difficult to infer
what space is being represented by these codes. What could we say if we were

5In fact, IC can be expressed as the sum IC = JC + B, where B = 〈x2
1 − x1, . . . , x2

n − xn〉 and

JC
def
= 〈χv | v ∈ F

n
2 \ C〉 is the neural ideal, generated by the characteristic functions

χv
def
=

∏

{i|vi=1}
xi

∏

{j|vj=0}
(1− xj),

corresponding to noncodewords [12].
6For example, if the size of the code is |C| = �, we could choose disjoint open intervals

B1, . . . , B� ⊂ R, one for each codeword, and define the open sets U1, . . . , Un such that Ui is
the union of all open intervals Bj corresponding to codewords in which neuron i is “on” (that is,

there is a 1 in position i of the codeword).
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given just a code, C ⊂ {0, 1}n, without a priori knowledge of what the neurons
were encoding? Could we tell whether such a code can be realized via a convex
cover?

6.1. What can go wrong. The following lemma illustrates the simplest example
of what can go wrong.

Lemma 6.1. Let C ⊂ {0, 1}3 be a code that contains the codewords 110 and 101
but does not contain 100 and 111. Then C is not the code of a good or convex cover.

To see why the lemma holds, suppose U = {U1, U2, U3} is a cover such that
C = C(U). Because neuron 2 or 3 is “on” in any codeword for which neuron 1
is “on”, we must have that U1 ⊂ U2 ∪ U3. Moreover, we see from the code that
U1 ∩U2 �= ∅ and U1 ∩U3 �= ∅, while U1 ∩U2 ∩U3 = ∅. This means we can write U1

as a disjoint union of two nonempty sets, U1 ∩ U2 and U1 ∩ U3, showing that U1 is
disconnected, and thus U can be neither a good nor a convex cover.

This simple example shows that not all codes can arise from convex covers.
Moreover, the problem that prevents the code in Lemma 6.1 from being convex
is topological in nature. Specifically, the code dictates that there must be a set
containment,

Uσ ⊆
⋃

j∈τ

Uj ,

where Uσ =
⋂

i∈σ Ui, but the nerve of the resulting cover of Uσ by the sets
{Uσ ∩ Uj}j∈τ is not contractible. This leads to a contradiction if the sets Ui are
all assumed to be convex, because the sets {Uσ ∩ Uj}j∈τ are then also convex and
thus form a good cover of Uσ (see Figure 9). Since Uσ itself is convex, it follows
from the Nerve Lemma that N ({Uσ ∩ Uj}j∈τ ) must be contractible, contradicting
the data of the code.

These observations lead to the notion of a local obstruction to convexity [18],
which captures the topological problem that arises if certain codes are assumed to
have convex covers. The proof of the following lemma is essentially the argument
outlined above.

Figure 9. (A) A convex cover {Ui}5i=1. U5 is the middle set,
covered by the others. (B) The convex cover restricted to Uσ,
for σ = {5}. Note that the restriction of a convex cover to a
covered intersection, Uσ ⊆

⋃
j∈τ Uj , yields another convex cover,

{Uσ ∩ Uj}j∈τ . (In contrast, restricting a good cover to a covered
intersection does not guarantee a new good cover.)
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Lemma 6.2 ([18]). If C can be realized by a convex cover, then C has no local
obstructions.

The idea of using local obstructions to determine whether or not a neural code
has a convex realization has been recently followed up in a series of papers [8–10,26].
In particular, local obstructions have been characterized in terms of links,

LkΔ(σ)
def
= {ω ∈ Δ | σ ∩ ω = ∅ and σ ∪ ω ∈ Δ}.

The following theorem implies that convex codes must include as codewords any
σ ∈ Δ(C) for which LkΔ(σ) is not contractible.

Theorem 6.3 ([9]). Let C be a neural code, and let Δ = Δ(C). Then C has no
local obstructions if and only if LkΔ(σ) is contractible for all σ ∈ Δ \ C.

A nice consequence of this result is that for any simplicial complex Δ, one can use
a minimal free resolution of the Stanley–Reisner ideal IΔ, together with Hochster’s
formula from commutative algebra, to compute a set of “mandatory” codewords.
These codewords can be read off of the Betti numbers of the free resolution, and
they correspond to faces of Δ that must be included in any convex code C whose
simplicial complex is Δ [9].

Unfortunately, a code with no local obstructions need not be a convex code—
that is, it may not be realizable as the code of a convex open cover. In [26], the
following counterexample to the converse of Lemma 6.2 was discovered.

Example 6.4 ([26]). The code C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4} is
not a convex code, despite the fact that it has no local obstructions.

That this code has no local obstructions can be easily seen using Theorem 6.3.
The fact that there is no convex open cover, however, relies on geometric arguments
that are not obviously topological. Moreover, this code does have a good cover [26],
suggesting the existence of a new class of obstructions to convexity which may or
may not be topological in nature.

6.2. What can go right. Finally, it has been shown that several classes of neu-
ral codes are guaranteed to have convex realizations. Intersection-complete codes
satisfy the property that for any σ, τ ∈ C, the intersection σ ∩ τ ∈ C. These codes,
as well as the more general class of max intersection-complete codes, were shown
constructively to have convex covers in [8]. Additional classes of codes with convex
realizations have been described in [9].

Despite these developments, a complete characterization of convex codes is still
lacking. Finding the minimum dimension needed for a convex realization is also an
open question.

7. Codes from networks

We end by coming back to the beginning. Even if neural codes give us the illusion
that neurons in cortical and hippocampal areas are directly sensing the outside
world, we know that of course they are not. Their activity patterns are shaped
by the networks in which they reside. What can we learn about the architecture
of a network by studying its neural code? This question requires an improved
understanding of neural networks, not just neural codes. While many candidate
architectures have been proposed to explain, say, orientation-tuning in the visual
cortex, the interplay of neural network theory and neural coding is still in early
stages of development.
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Figure 10. A hyperplane arrangement in the positive orthant,
and the corresponding feedforward code.

Perhaps the simplest example of how the structure of a network can constrain
the neural code is the case of simple feedforward networks. These networks have
a single input layer of neurons and a single output layer. The resulting codes are
derived from hyperplane arrangements in the positive orthant of Rk, where k is
the number of neurons in the input layer and each hyperplane corresponds to a
neuron in the output layer (see Figure 10). Every codeword in a feedforward code
corresponds to a chamber in such a hyperplane arrangement.

It is not difficult to see from this picture that all feedforward codes are realizable
by convex covers—specifically, they arise from overlapping half-spaces [18]. On
the other hand, not every convex code is the code of a feedforward network [22].
Moreover, the discrepancy between feedforward codes and convex codes is not due
to restrictions on their simplicial complexes. As was shown in [18], every simplicial
complex can arise as Δ(C) for a feedforward code. As with convex codes, a complete
characterization of feedforward codes is still unknown. It seems clear, however, that
topological tools will play an essential role.
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