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We review recent work relating network connectivity to the

dynamics of neural activity. While concepts stemming from

network science provide a valuable starting point, the

interpretation of graph-theoretic structures and measures can

be highly dependent on the dynamics associated to the

network. Properties that are quite meaningful for linear

dynamics, such as random walk and network flow models, may

be of limited relevance in the neuroscience setting. Theoretical

and computational neuroscience are playing a vital role in

understanding the relationship between network connectivity

and the nonlinear dynamics associated to neural networks.
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Edited by Máté Lengyel and Brent Doiron

https://doi.org/10.1016/j.conb.2019.06.003

0959-4388/ã 2019 Elsevier Ltd. All rights reserved.

Introduction
Unlike other cellular networks, neural networks possess

intricate and precise patterns of connectivity, whose rules

are complex and difficult to ascertain. Another striking

feature of neural networks is their repertoire of rich and

varied dynamics. These two properties go hand in hand,

as the structure of connectivity plays an important role in

shaping neural activity. Connectomics, and related efforts

that aim to describe the structure of brain networks,

promises to deliver a vastly improved and detailed under-

standing of how networks of neurons are connected in the

brain [53,2,44,73,12,35,80,49,19,69�,20,36,83]. A typical

output of such research is a graph, with each vertex

representing a neuron and each (directed) edge repre-

senting a connection, or synapse, between cells. The

vertices may be further differentiated by location or cell
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type, and edges may be weighted to carry information

about connection strengths. Suppose we are handed such

a graph. What does the connectivity structure tell us about

a circuit’s function? How does the graph of a network

shape its dynamics? On the flip side, we may also ask how

this particular pattern of connectivity came about. Can we

explain it via simple rules of learning and development?

While much experimental work remains to be done, many

of the central questions relating network connectivity to

dynamics are theoretical in nature. Abstractly, a network

can be thought of as a graph together with a prescription

for the dynamics. The main dynamic variables are the

activity levels of each neuron, xi(t), and the synaptic

weights Wij. When we try to relate network connectivity

to dynamics, the main goal is to understand how the

structure of the graph affects the dynamics of the neurons.

This poses enormous challenges, because our current

understanding of the problem is limited by much more

than a lack of experimental data. Mathematically, infer-

ring properties of the dynamics from the underlying

network architecture is hard — even in idealized settings

where the dynamics are simple, the model is determin-

istic, and every detail of the connectivity graph is known.

Mathematical theories relating network structure to

dynamics are notoriously difficult to develop, except

when the dynamics are linear. In the nonlinear setting,

the easiest cases are the extremes of either a completely

random or geometrically structured network architecture

[79]. For more intricate patterns of connectivity, as we see

in neuroscience, even the simplest nonlinearities are

sufficient to introduce serious complexities in the rela-

tionship between graph structure and dynamics [57,56��].

In light of these challenges, how do we decide which

features of a connectivity graph are meaningful for a

network’s dynamics? A common approach has been to

look for structures in the zoo of graph features given to us

by network science. These structures typically arise in

two ways: first, they have been shown to be meaningful in

highly simplified network models (usually not neurosci-

ence-related); and second, they have been identified as

common or overrepresented across a variety of ‘natural’

networks. For the first way, examples of simplified net-

work models include a random walk model or a network

flow model. On the second way, an alternative approach is

to look for non-random features across a database of real

neural networks, such as those coming out of connec-

tomics. In both cases, the resulting graph properties may
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12 Computational neuroscience
be difficult to interpret in a neuroscience context. In

particular, when the properties are motivated by linear
dynamics, as in random walk and network flow models,

the selected features may not be relevant for networks

whose dynamics are fundamentally nonlinear. On the

other hand, adding too many biological details can

quickly make a network model intractable to both

mathematical and computational analysis. Finding a

good balance between biological relevance and

interpretability of graph structures is both a challenge

and an opportunity for theoretical and computational

neuroscience.

Graph-theoretic concepts and terminology
We begin by reviewing some useful graph theory con-

cepts and terminology, with the aid of Figure 1. In neu-

roscience we care primarily about directed networks, but

many of the graph-theoretic measures available to us are

more naturally defined on undirected graphs. An impor-

tant property of single nodes is the degree, which simply

counts the number of edges incident to a vertex. In

directed graphs, this is further refined into the in-degree
Figure 1

Graph-theoretic concepts for directed and undirected networks. (a) A direc

i ! j. Bidirectional edges, such as 5 $ 6, reflect the presence of both the i !
network in (a). (c) Motifs are induced subgraphs, obtained by selecting a su

has a variety of motifs, depicted here with matching vertex labels. (d) A geo

(typically undirected) edges between nodes obeying rules based on the dist

geometric organization, but also randomly selected long-range connections

probability p, independently for each pair of vertices. (g) A hierarchical, or m

connections between them.
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and out-degree. A vertex is called a source if it has in-degree

zero, and a sink if it has out-degree zero. The path length
from one node to another is the length of the shortest

(directed) path. For example, in Figure 1a node 9 is a

source, while 8 is a sink. The path length from node 2 to

node 5 is 2, assuming each edge is assigned a distance of

1. In general, if different distances (e.g. coming from

weights) are assigned to edges, we add these distances in

order to obtain the (shortest) path length.

We are also interested in understanding the organiza-

tion of graphical motifs, as these subnetworks could

provide the basic units, or building blocks, of neural

computation. Figure 1c depicts three different kinds of

motifs, all as induced subgraphs of the directed graph in

(a). While cycles and cliques are associated with recur-

rent network dynamics, a directed acyclic graph (DAG)

has a feedforward structure. Specifically, the nodes in a

DAG may be ordered in such a way that there can only

be an edge from earlier to later nodes in the order. For

example, the DAG motif in Figure 1c has such an

ordering: 3,5,1,8.
ted network is one in which each edge of the graph has a direction

 j and j ! i edges. (b) The undirected graph corresponding to the

bset of nodes and keeping all edges between them. The graph in (a)

metric graph consists of vertices embedded in a metric space, with

ance between them. (e) A small world network has an underlying

. (f) An Erdös–Rényi random graph assigns undirected edges with

odular, network consists of local modules with long-range
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The global network organizations that are most often

discussed in the literature range from Erdös–Rényi ran-

dom graphs (Figure 1f) to geometric ones (Figure 1d),

whose connectivity rules (or probabilities) are dictated by

a spatial organization of the nodes. In between these

extremes are the so-called ‘small world’ networks, such

as the Watts–Strogatz small world network depicted in

Figure 1e, which have a mix of geometric organization

together with random long-range connections [84].

Finally, networks can have a hierarchical or modular

structure, combining local motifs into larger networks

with multiple scales of organization [10] (see Figure 1g).

Graph measures from network science
There are several common graph structures that routinely

come up in network analyses [10,11,81,6��,71�,29]. Per-

haps the most obvious feature to study is the degree

distribution of the connectivity graph. The degree distri-

bution is the set of all degrees, with multiplicity, and

viewed as a histogram or probability distribution.

Although many features of graphs are not captured by

the degree distribution, certain types of graph structures

lead to stereotyped degree distributions, which can serve

as coarse signatures. In the case of an Erdös–Rényi

random graph, the degrees are Poisson distributed, while

scale-free networks are characterized by degree distribu-

tions that follow a power law [5].

In some cases, different types of degree distributions may

be associated to the same network structure. For example,

small world networks [84] are graphs characterized by a

different set of measures called the characteristic path
length, L, and the clustering coefficient, C:

L ¼ 1

nðn � 1Þ
X

i 6¼j

d ij and C ¼ 1

n

X

i

Ci;

where dij denotes the length of the shortest path from

node i to j, and Ci is the fraction of all possible connections

that is present in the neighborhood of i. A network with a

short characteristic path length, comparable to that of an

Erdös–Rényi random network, and a large clustering

coefficient, significantly higher than that of a random

network (and comparable to a geometric network), is

considered to be small world [84]. This can be achieved

in various ways. In the original Watts–Strogatz formula-

tion [84], small world networks were created by interpo-

lating between a completely regular geometric network

and one that is Erdös–Rényi random (see Figure 1d–f).

These networks have exponentially decaying degree

distributions. On the other hand, many scale-free net-

works are also small world, but have power law degree

distributions. Modularity can also give a network small

world characteristics, with very different degree distribu-

tions [37]. In particular, one could have a small world
www.sciencedirect.com 
network with uniform degree (that is, a delta function

degree distribution) as in Figure 1g.

The reason the small world structure is considered mean-

ingful for dynamics comes from thinking about simple

linear models, such as random walks, network flow, or

disease transmission. For example, in the case of infec-

tious disease spreading dynamics, Watts and Strogatz

showed that the time to global infection scales with

the characteristic path length. With coupled oscillator

dynamics, small world networks synchronize much more

quickly than expected given the (small) number of edges

[84]. More generally, having a small characteristic path

length, and related measures of centrality [9], are inter-

preted as facilitating the fast flow of information [10].

This notion of information flow along shortest paths,

however, does not have a straightforward interpretation

for neural networks.

Finally, it is worth noting that spectral properties of the

graph Laplacian (a modified version of the adjacency

matrix) can capture various measures of graph structure

such as number of connected components, bounds on

min/max degree, bipartiteness, and community structure

[3,50]. The graph Laplacian is also highly relevant for

diffusion-based dynamics [3] and chip-firing dynamics

[46]. It has been used to study macroscopic anatomical

neuronal networks of the macaque and cat, and the

microscopic network of C. elegans [17]. Here they also

found spectral signatures for particular motifs in the

network (see [4] for more details).

Relevance of graph measures to neural
dynamics
Figure 2 (top) summarizes various graph structures in

terms of degree distribution, geometric organization, and

modularity. Several studies have looked for signatures of

these graph properties in a variety of neural networks,

such as microscale connectomes like C. elegans [54,17,82],

mesoscale connectomes [34,17,75,70], functional connec-

tivity networks in cortex and hippocampus

[76,63,23,66,21�], and synthetic biological networks such

as the Blue Brain [77,30,24�]. Figure 2 also lists a variety

of dynamic models that are often considered when study-

ing networks (bottom left), and which are often used to

ascribe meaning to various graph properties. Although

there is a considerable literature applying network sci-

ence measures to neural networks [10,11,81,6��,71�,29], in

order to fully understand the meaning and appropriate-

ness of these measures we must consider dynamics that

are more relevant to neuroscience, including nonlinea-

rities and spiking.

Dynamic properties of interest for neural networks are

also distinct, and often richer, than what is considered in

traditional network science models. They include things

like oscillations, state transitions, attractor structure, and
Current Opinion in Neurobiology 2019, 58:11–20
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Figure 2

Graph structures, dynamic models, and dynamic properties of interest. Many of the graph structures we look for in neural networks are motivated

by their relevance in very simple dynamic models [10,6��]. These models are often linear, and may be poor predictors of nonlinear behavior that is

more typical of neural activity.
detailed correlation structure (see Figure 2, bottom right).

Much recent research in computational neuroscience

aims to connect graph structure to these kinds of dynamic

phenomena [48,22,43,27,64,67,85,47,68,78,7,13,45,26,74,

1,31,40,18,52�,58��,62��,61��,86]. Here we summarize a

few examples where graph structures, such as clusters

or hubs, have been shown to be relevant to neural

network dynamics, and also some measures where the

dynamic relevance is far more questionable.
Current Opinion in Neurobiology 2019, 58:11–20 
Recent experimental studies have shown that network

hubs significantly shape neural dynamics. Specifically,

functional connectivity was mapped in hippocampus

[8] and entorhinal cortex [55��], and a subset of the

neurons with high in-degree were shown to drive network

synchronization and/or slow down network oscillations

when optogenetically stimulated. Hubs have been shown

to have dynamic relevance in neuro-inspired modeling

work as well. For example, in [72] it is shown that the
www.sciencedirect.com
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presence of ‘weight hubs,’ neurons with strong incoming

edges, induces regular and irregular slow oscillationssimilar

to UP/DOWN state transitions in a generalized integrate-

and-fire neuron model. In a 3-state automaton model of

susceptible-excited-refractory (SER) dynamics, hubs were

shown to have a significant impact on directing co-activa-

tion patterns within a network [25]. Additionally, these co-

activation patterns are highly correlated with modular

structure, or clusters, in the network. Litwin-Kumar and

Doiron also show that the presence of clusters of highly

connected excitatory neurons significantly changes the

dynamics of balanced networks [51]. These clusters appear

to support attractor-like dynamics during which a cluster

transiently increases the neural firing rates while other

clusters have decreased firing rates, suppressed by inhibi-

tion, consistent with experimental findings from cortex.

In contrast, small world measures have shown little

dynamic relevance. In [32], the authors considered a

laminar model of cortical connectivity generated from

experimental connectivity statistics and investigated the

computational power of such a network with Hodgkin–

Huxley dynamics in contrast to a matched random net-

work and a network with matched small world measures

of clustering coefficient and average shortest path length.

The matched networks showed dramatically lower per-

formance on a variety of neuro-inspired computational

tasks. In [42] it was also found that characteristic path

length and average betweenness centrality alone do not

predict the emergence of population synchronization of

bursting neurons, and only when degree distribution is also

taken into accountcan this property be understood. Finally,

Govan et al. [28] considered dynamics similar to those of

Boolean networks on the C. elegans connectome and com-

pared the network activity to that of Erdös–Rényi random

and Watts–Strogatz small world networks that were

matched according to average degree, average shortest path
Figure 3

Overrepresented motifs and robust motifs. (a) Two motifs that were overrep

Generalized motifs obtained by doubling one of the nodes in the top graph 

elegans connectome [41]. (c) Directed cliques have an ordering of the node

(d) Robust motifs of TLNs.
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length and clustering coefficient. They found dramatically

different likelihoods of regular network oscillations across

these networks, despite matching parameters, indicating

the lack of dynamic relevance of these measures.

Furthermore, even in the case of linear models of network

flow, the relevance of a network measure is highly depen-

dent on the characteristics of the flow model for which it

was designed. Borgatti [9] nicely summarizes the relevant

features of numerous network flow models and highlights

how these features relate to different measures of node

centrality. Simulations of different flow dynamics on the

same network topology show that different centrality

statistics make dramatically different predictions for

these dynamics that are not informative when the features

of the dynamic flow do not match those for which the

measure was designed.

Graph motifs
To get a sense of the challenges involved in studying graph

motifs in neural networks, consider this: the number of

directed graphs of sizes n = 1, . . . , 5 are 1, 3, 16, 218, and

9608. These have been enumerated, and are available in

databases like the one in SageMath (www.sagemath.org).

For n = 6, on the other hand, there are roughly 1.5 million

directed graphs. Studying the dynamic properties associ-

ated to these structures by brute force methods appears

intractable, even for the simplest dynamics. When one

introduces additional variations, such as different node

types (for cell types) or different edge types (for synapse

types), the combinatorial complexity rises even higher.

Because of these challenges, most analyses looking for

overrepresented motifs in network graphs such as con-

nectomes have focused on the very smallest motifs, of size

n = 2, 3, 4 [54,76,33,63,82,66,24�]. The two motifs in

Figure 3a were identified as overrepresented in at least
resented in several distinct connectome studies [76,63,82]. (b)

of (a). These have also been found to be overrepresented in the C.

s for which i ! j if i < j. Note that bidirectional edges are also allowed.

Current Opinion in Neurobiology 2019, 58:11–20
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three different studies, ranging from connectivity data in

C. elegans to mammalian cortex [76,63,82]. Interestingly,

some simple generalizations of these small motifs have

also been found to be overrepresented [41]. For example,

the two graphs in Figure 3b were created from the top

graph in panel (a) by doubling one of the nodes (shaded),

and copying the same edge pattern to the rest of the

graph. In [41], these graphs were also found to be over-

represented in the C. elegans connectome. In a separate

study [65��], it was found that directed cliques are greatly

overrepresented in the Blue Brain’s cortical networks,

whose connections are devised to be biologically realistic.

Directed cliques are graphs with the following property:

there exists an ordering of the nodes 1, . . . , n such that

i ! j if i < j. In particular, there is at least one edge

between any pair of nodes, and an overall sense of

direction to the graph (see Figure 3c).

Once motifs have been found to be overrepresented, the

next question is to interpret them in the context of neural

dynamics. Two natural questions arise: how did these

motifs emerge through developmental and plasticity

rules? and how do they affect the network’s dynamics?

A number of studies have addressed the question of

how motifs affect dynamics in neural networks
Figure 4

Motif embedding matters. (a) A simple 3-cycle motif produces a sequential 

associated to a 3-cycle may or may not survive as an attractor of a larger n

one of them, 235, has an associated limit cycle (right). (c–e) Three additiona

However, they all exhibit qualitatively distinct dynamics. The network in (c) h

no attractor for 145. In contrast, the network in (d) has four chaotic attracto

clique [56��].
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[85,39,40,62��,38], and also how network dynamics pro-

duce emergent motifs via plasticity rules [60,59�]. While

some studies have shown a large effect of motif structure

[85,25,14,40], others have concluded that motifs without

knowledge of weights and other local parameters tell us

very little about a network’s dynamics [47]. Furthermore,

it has been suggested that only local properties, like the

degree distribution, matter [61��,62��]. For example, in

[33] it was found that motif structure was not important

for certain dynamic properties if one controlled for its

effects on the degree distribution.

Another approach to studying motifs is to look for specific

subfamilies of graphs that have been pre-identified, by

theoretical work, as being relevant to neural network

dynamics. In a recent study of threshold-linear networks

(TLNs), it was found that certain motifs are ‘robust’ in

the following sense: once the graph associated to the

network is fixed, the structure of (stable and unstable)

fixed points of the network is invariant across all allowed

choices of the synaptic weights [16��]. In other words,

robust motifs have highly constrained dynamics with

qualitative features that remain the same in the presence

of synaptic plasticity. Nearly all robust motifs up to size

n = 5 fit into two infinite families, depicted in Figure 3d,
limit cycle attractor in an inhibition-dominated TLN. (b) The attractor

etwork. In the 5-neuron network (left), there are two 3-cycles but only

l networks have identical connectivity statistics as the graph in (b).

as two limit cycles, corresponding to the 3-cycles 125 and 253, but

rs, while the one in (e) has three fixed point attractors, one for each 2-

www.sciencedirect.com
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corresponding to graphs that can be decomposed as a

DAG together with a target node, t, that receives edges

from all the other nodes [16��]. Interestingly, the over-

represented motifs in Figure 3a–c all fit into the robust

motif families shown in (d), so it may be that robust motifs

are more generally overrepresented in neural networks.

Motif embeddings and local connectivity
In addition to identifying new classes of motifs that may

be of interest, theoretical work can also give us hints on

the effects of motif embedding in larger networks. In

other words, the dynamic relevance of a given motif may

be highly dependent on how it interacts with other

neurons. As an example, consider the case of simple

threshold-linear network dynamics on graph motifs with

binary synapses (see [57,15�,56��] for more details). In

these networks, cyclic motifs give rise to periodic (limit

cycle) attractors, where the neurons fire in a repeated

sequence (see Figure 4a). These dynamics can be signifi-

cantly altered, however, depending on how the motif is

embedded in a larger network. In Figure 4b, there are two

3-cycle motifs, given by neurons 145 and 235. However,

in the associated TLN dynamics only one of these, 235,

produces a limit cycle. While the two motifs are identical,

their embedding in the larger network of 5 neurons is

different: the 235 cycle only sends one outgoing edge to

each external node, while 145 sends two edges to node

2. This produces large differences in their effect on the

network’s dynamics: only one has a surviving attractor.

Properties of the embedding can also affect the basins of

attraction for a motif’s associated attractor(s).

More generally, theoretical studies can alert us to the fact

that local connectivity statistics may be misleading. In

particular, networks with identical degree sequences can

have very different dynamics. For example, the four

networks in Figure 4b–e have identical degree sequences,

given by in/out degrees (1,2), (1,2), (2,1), (2,1) and (2,2).

Nevertheless, they all display qualitatively different

dynamics, ranging from one or two limit cycles (b,c) to

multiple chaotic attractors (d) or multiple stable fixed

points (e). This illustrates a situation in which the global

network structure has a strong effect on the dynamics,

while local connectivity statistics tells us very little.

Conclusions
The problem of relating network connectivity to dynam-

ics will continue to pose a serious challenge for theoretical

and computational neuroscience. Theory is essential for

identifying and interpreting important graph structures in

neural networks, while computational studies allow us to

analyze existing networks, and to test our ideas as to how

various graph structures can impact neural dynamics.

Although the tools of network science provide a valuable

starting point, it is important to keep in mind where these

measures come from. In particular, we should not assume

that because a measure is meaningful in the context of
www.sciencedirect.com 
simple (and linear) dynamic models that its relevance will

automatically translate to the more complicated (and

nonlinear) neuroscience setting. It also seems likely that

graph motifs will play an important role in understanding

the structure and function of neural circuits. Here, too, is

an area where new developments in theoretical and

computational neuroscience will be needed.
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