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Abstract

Neural representations of even temporally unstructured stimuli can show complex temporal dynamics. In many systems, neuronal
population codes show ‘progressive differentiation’, whereby population responses to different stimuli grow further apart during a
stimulus presentation. Here we analysed the response of auditory cortical populations in rats to extended tones. At onset (up to
300 ms), tone responses involved strong excitation of a large number of neurons; during sustained responses (after 500 ms) overall
firing rate decreased, but most cells still showed statistically significant rate modulation. Population vector trajectories evoked by
different tone frequencies expanded rapidly along an initially similar trajectory in the first tens of milliseconds after tone onset, later
diverging to smaller amplitude fixed points corresponding to sustained responses. The angular difference between onset and
sustained responses to the same tone was greater than between different tones in the same stimulus epoch. No clear
orthogonalization of responses was found with time, and predictability of the stimulus from population activity also decreased during
this period compared with onset. The question of whether population activity grew more or less sparse with time depended on the
precise mathematical sense given to this term. We conclude that auditory cortical population responses to tones differ from those
reported in many other systems, with progressive differentiation not seen for sustained stimuli. Sustained acoustic stimuli are typically
not behaviorally salient: we hypothesize that the dynamics we observe may instead allow an animal to maintain a representation of

such sounds, at low energetic cost.

Introduction

Spike trains of neocortical neurons have an intricate temporal
structure. In sensory areas, even presentation of a temporally
unstructured stimulus such as a static visual image or pure tone is
likely to induce a complex temporal pattern of spiking. The structure
of these patterns varies with both the stimulus and between
simultaneously recorded neurons, indicating complex spatiotemporal
patterns in neuronal populations (Hoffman et al., 2007; Luczak et al.,
2007; Ji & Wilson, 2008; Luczak et al., 2009). In recent years it has
become possible to record from large enough numbers of neurons to
study this structure experimentally. Analysis of the resulting data,
however, is a complex problem, with no single approach completely
characterizing the structure of population spike trains. Progress in this
field depends not just on the development of new technical
approaches, but the development of mathematical language in which
to clarify precisely the meaning of biological questions.

A useful concept to study neuronal population activity is the firing
rate vector (Laurent, 2002; Stopfer et al., 2003), a representation f of
the mean rate of a population of NV cells as a point in an N-dimensional
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space. Considering the dependence of this vector on time, one obtains
a trajectory f(¢) that characterizes the dynamics of the population rate,
i.e. a description of how it evolves during stimulus presentation.
Although this approach cannot capture variability and correlations in
activity on individual trials, it provides important information, and
allows the use of geometrical concepts that have proved invaluable in
other sciences. Similarity measures between vectors, such as Euclid-
ean distance or angle, also allow the comparison of the state of the
population at different time/stimulus combinations.

The simplest geometrical possibility one might expect for trajecto-
ries during presentations of static stimuli is linear scaling. Neurons of
many sensory systems, including primary receptors, adapt to static
stimuli so that stimulus onsets cause large responses that then
progressively diminish thereafter (Adrian & Zotterman, 1926; Fetti-
place & Ricci, 2003). Provided that the neurons of a population adapt
at approximately similar rates, the resulting rate vector should linearly
shrink toward the origin. Such a scheme would have a natural
computational interpretation. In many neural network models, normal-
ization mechanisms ensure that the set of downstream cells activated
by a pattern is determined by the orientation rather than the length
of the rate vector (Grossberg, 1976; Kohonen, 1989; Parkinson &
Parpia, 1998); linear scaling would therefore allow stimulus identity to
be read out in the same way at all times into the stimulus, while perhaps
allowing for lower stimulus salience due to decreasing magnitude as
time progresses. This simple picture, however, appears to be violated in
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a number of sensory systems in which rate vector trajectories show
not just scaling but rotation during the stimulus period (Friedrich &
Laurent, 2001; Hegde & Van Essen, 2004, 2006; Mazor & Laurent,
2005; Menz & Freeman, 2003; Stopfer et al., 2003).

An example of a biological question that has been addressed with
rate vector methods is whether neural representations progressively
differentiate, i.e. whether during the course of a stimulus presentation
population responses to different stimuli grow progressively further
apart. In this scenario, the initial activity triggered by stimulus
presentation carries coarse information about the stimulus, with
progressively finer details emerging later, affording animals a more
detailed representation of stimuli as time progresses. Progressive
differentiation has been reported in many neural systems (Sugase et al.,
1999; Friedrich & Laurent, 2001; Hegde & Van Essen, 2004). Is this a
general feature of sensory processing by neuronal populations? Or are
there other systems that do not exhibit this behavior? A second, related
question concerns sparsening — the possibility that a neuronal
representation involves progressively fewer cells with time into a
sensory stimulus. There are multiple definitions of sparseness (Will-
more & Tolhurst, 2001; Perez-Orive et al., 2002), and progress in this
regard requires an understanding of which measures give which results.

The auditory cortical response to tones provides an excellent
opportunity to study the neuronal representation of temporally
sustained stimuli. Sustained auditory stimuli are generally not
perceptually salient, and information about sustained background
sounds rarely influences animal behavior. This raises two related
questions: are sustained acoustic stimuli represented in auditory cortex
throughout their entire length? And if so, how does the nature of their
encoding change with time? For the first question, the very existence
of sustained responses is controversial. Many studies reported only
transient responses at stimulus onset and offset in anesthetized animals
(Phillips, 1985; deCharms & Merzenich, 1996; Heil, 1997; DeWeese
et al., 2003), while others (Vaadia et al., 1982; Sally & Kelly, 1988;
Volkov & Galazjuk, 1991; Bieser & Muller-Preuss, 1996; Recanzone,
2000; Lu et al., 2001; Wang et al., 2005) found sustained responses
under certain conditions.

We addressed these questions by studying population responses to
extended tone stimuli in rat auditory cortex under urethane
anesthesia. We found that most cells have statistically significant
responses even 1000 ms after stimulus onset, although during the
sustained period firing rates were typically lower than in the early
response. At the rate vector level, stimulus onset started with large-
amplitude deflection and rotation. By ~300 ms after tone onset, rate
vectors had asymptotically tended to fixed points of smaller
amplitudes. Progressive differentiation from onset to sustained period
was not present by most measures, mainly because the smaller
population vectors during sustained response produced a low signal-
to-noise ratio. This corresponded to lower predictability of the
stimulus from population activity on a single-trial basis. Although
the question of whether population activity grew more or less sparse
with time depended on the precise mathematical sense given to this
term, all analyses were consistent with a picture in which the
majority of neurons fire at close to baseline rate during the sustained
period, with a minority firing at substantially elevated rates for each
stimulus.

Materials and methods
Surgery and recording

Sprague-Dawley rats (300-450 g) were anesthetized with urethane
(1.5 g/kg) and placed in a stereotaxic apparatus. A 2—4-mm hole was

drilled in the skull above the auditory cortex, and the dura removed.
The skull cavity was filled with a mixture of wax and paraffin to
decrease brain pulsation and provide lateral support for the recording
probes. For recording, the head was held in a custom naso-orbital
restraint and a silicon microelectrode (Neuronexus Tech, Ann Arbor,
MI, USA) was lowered into the brain perpendicular to the cortical
surface, to a depth of 1-1.5 mm. Electrodes were estimated to be in
deep layers by field potential reversal (Kandel & Buzsaki, 1997), most
likely layer V due to electrode depth and the presence of broadly tuned
units of high background rate (Sakata & Harris, 2009). Probes
consisted of eight shanks (200-um shank separation), and each shank
had four recording sites (160 um® each site; 1-3-MQ impedance,
tetrode configuration). The location of the recording sites was
estimated to be primary auditory cortex (A1/AAF) based on
stereotaxic coordinates, vascular structure (Doron et al., 2002; Rut-
kowski et al., 2003; Sally & Kelly, 1988), tonotopic variation of
frequency tuning across recording shanks, and the presence of cells
with V-shaped tuning curves. Extracellular signals were band-pass
filtered (1-8 kHz) and amplified (1000 times) using a 64-channel
amplifier (Sensorium, Charlotte, VT, USA). The wide-band signal was
digitized continuously at 20 kHz with an analog-to-digital converter
card (UEI, Walpole, MA, USA) inside a standard PC. Units were
isolated by a semi-automatic algorithm (Harris et al., 2000), followed
by manual adjustment (http://klusters.sourceforge.net). Multi-unit
activity, clusters with low separation quality (isolation distance
< 20; Harris et al., 2001; Schmitzer-Torbert ef al., 2005) were
excluded from analysis. All experiments were carried out in accor-
dance with protocols approved by the Rutgers University Animal Care
and Use Committee, and conformed to NIH Guidelines on the Care
and Use of Laboratory Animals.

Acoustic stimulation

All experiments were conducted in a single-walled sound attenuat-
ing chamber (IAC, Bronx, NY, USA), internally coated with Sonex
acoustic foam (Acoustical solutions Richmond, VA, USA). Sounds
were generated by an RP2 signal processor, attenuated by a PAS
attenuator, and delivered free field by an ED1-ES1 speaker system
(Tucker-Davis Technologies, Alachua, FL, USA). The stimulus
battery consisted of 18 pure tones logarithmically spaced at
3-43 kHz. To compensate for the transfer function of the acoustic
chamber, tone amplitudes were calibrated prior to the experiment
using a condenser microphone placed next to the animal’s head
(7017, ACO Pacific, Belmont, CA, USA) and an MA3 microphone
amplifier (Tucker-Davis). Stimuli were 1 s long, interleaved by 1-s
silence, at 70 dB SPL (four datasets), or 500 ms long interleaved by
500-ms silence at 30, 40, 50, 60 and 70 dB SPL (seven datasets); in
the present study, only responses to 70-dB tones were analysed.
Tones were presented repeatedly (~200 repetitions of each
frequency for experiments with 1-s tones and ~100 for 500-ms
tones) in random order; in a subset of experiments, the order of
tones was fixed between repetitions (see Supporting information,
Fig. S2).

Data analysis

Data analyses were performed in MATLAB (Mathworks, Natick, MA,
USA). Early (onset), late (sustained) and baseline periods were defined
as 0—200 ms, 500-1000 ms (800—-1000 ms, when the epoch needed to
be of equal duration for statistical analysis) and —200 to 0 ms relative
to tone presentation; the offset period was defined as 0—200 ms after
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tone offset. Population vector trajectories fy(f) were computed for each
stimulus s (i.e. each tone frequency) giving the mean rate of each cell
at time ¢ after tone onset, by averaging firing rates across all ~200
repetitions in 5-ms bins, and smoothing by convolution with a
Hamming window (50-ms width).

The similarity of population vectors was computed using either
Euclidean distance ||f; — f,||, or their angle

o =cos”! (—fl e )
(€111

When || ||||[f2||=0, & was set to 7/2. Prior to angle comparison
the baseline firing rate was subtracted for each cell.

Coding sparseness was assessed by multiple measures. Lifetime
(cell-wise) sparseness was computed for each cell as
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where 7 is the number of stimuli and f is the cell’s firing rate vector
across frequencies. Population sparseness was computed for each
stimulus using the same formula, but now with n as the number of
cells and f the firing rate vector across cells for that stimulus. Lifetime
and population skewness and kurtosis were calculated similarly,
according to the formulas
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where p and ¢ are the mean and standard deviation of f.

For principal component analysis (PCA), the population firing rate
vectors f(z) for each combination of stimulus s and time 7 were
collected, and projections were computed from the top two eigenvec-
tors of the covariance matrix of these vectors (variances were not
normalized before applying PCA). For discriminant analysis, vectors
were combined for the late period only (500-1000 ms), and projec-
tions were computed from the top two eigenvectors of Z;' > p(where
> wand Y, are the within-stimulus and between-stimulus covariance
matrices, respectively), to maximize the separation of the responses to
different stimuli.

To evaluate the accuracy with which single-trial population
responses could predict the presented stimulus, we used one of two
metrics based on cross-validation (Kjaer ef al., 1994). For the first
metric, based on information theory, we estimated for each stimulus
response an a posteriori probability distribution for the presented
stimuli as follows. For a given response f, a measure of the distance of
this response to all other responses f; in the data set was computed,
which we denote as d(ff;). Two distance measures were used,
Euclidean distance and vector angle, as described above. Based on
these distances, the probability that the response f observed on any
trial was generated by stimulus s was estimated as

p(s )_ d(ff;) /Zedff
isj=s

where the sum in the numerator runs over the responses to all other
repetitions of the same stimulus s, and the sum in the denominator
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runs over all stimuli, and y is a regularization parameter. We note that
this is equivalent to a zero order local likelihood estimator (Loader,
1999). Stimulus predictability was estimated as

e (22)

1

providing a lower-bound estimate of mutual information. The
regularization parameter y was varied over a range of values, and
that giving the maximal information estimate was chosen. For the
second ‘winner-take-all” method, trials were repeatedly divided to
training (90%) and test (10%) sets, and test set trials were classified by
their Euclidean distance/vector angle from the group centroids of the
training set. The process was repeated until all test/training set
combinations were exhausted.

Results
Sustained firing to tone stimuli

We recorded a total of 698 cells in primary auditory cortex of five
rats under urethane anesthesia, while playing tone stimuli of 18
frequencies logarithmically spaced between 3 and 43.2 kHz at
70 dB SPL (see supporting Fig. S1 for an illustration of the spike-
sorting procedure). We started our analysis at the single cell level.
Examples of spike rasters and computed peristimulus time histo-
grams (PSTHs) are shown in Fig. 1 for four representative cells.
Visual inspection of spike rasters (Fig. 1) revealed a wide diversity
of stimulus tuning and response dynamics across the cell popula-
tion. As expected, neurons typically showed the greatest increases
in rate shortly after stimulus onset, but visible elevations or
depressions of firing rate could often be seen throughout the
stimulus period.

To analyse these results statistically, we first divided the stimulus
period into three epochs of equal duration corresponding to the onset
(0-200 ms after tone onset), sustained response (800—1000 ms after
tone onset) and offset (0-200 ms after tone offset). For each epoch, the
firing rate distribution of single trials was computed for each stimulus
(Fig. 2, box-and-whisker plots), and the presence of sensory tuning
was assessed by testing the null hypothesis that firing rate was
independent of stimulus frequency (Kruskal-Wallis non-parametric
ANOVA; parametric ANOVA gave similar results). Most cells showed
significant tuning in each time bin. In particular, a surprisingly large
number of cells (84.4%) showed a significant effect of tone frequency
on rate during the sustained period (P < 0.05), compared with 90.1%
in the onset period and 78.5% at offset (Fig. 2). Visual inspection of
firing rate curves as a function of frequency (Fig. 2A-D) revealed that
the differences in rate between frequencies corresponding to signif-
icant differences could be very subtle, especially during the sustained
period. In our experiments, each tone was repeated a large number of
times (> 100), enabling the detection of small but significant
differences in firing rate. To confirm that this significance did indeed
reflect an effect of the stimulus rather than a statistical artifact, we
performed a control analysis on the baseline periods (—200 to 0 ms)
immediately before stimulus presentation (Fig. 2, bottom). As
expected, the fraction of cells significantly tuned in this epoch
(4.9%) was close to the test’s expected false positive rate of 0.05. We
therefore conclude that a majority of cells show some degree of tuning
to tones throughout the stimulus, but that this tuning may be very
weak during the sustained period, requiring averaging over many
stimulus repetitions to be detected.
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F1G. 1. Responses of four example cells (A-D) to 1-s tone stimuli. Red rasters show spike trains evoked by multiple presentations of 70-dB tones of the indicated
frequency, and black lines indicate peristimulus time histogram computed from these spike trains. Inset: tuning curve showing firing rate evoked by 50-ms tone pips
of varying frequency and intensity. Bottom magenta line indicates stimulus duration. Top multicolored lines indicate baseline, onset, sustained and offset periods

used in Fig. 2. Scale bars: 10 Hz.

Neurons can encode information both by firing rate elevation or
suppression. To characterize how the balance of elevation and
suppression changes during the stimulus, we performed a different
analysis. For each cell, firing rates were computed in 20 ms bins,
and compared against a 20 ms baseline period preceding stimulus
onset (Wilcoxon’s rank-sum test), revealing whether the cell
responded significantly. As multiple comparisons were made, the
significance level was adjusted accordingly (Bonferroni correction).
Figure 3A shows the percentage of cells showing significant
excitation/suppression, as a function of time into the stimulus
presentation. Excitatory tuning peaks shortly after tone onset,
followed quickly by a second partially overlapping period of
suppression; this pattern of elevation followed by suppression was
mirrored in a plot of the mean rate as a function of time averaged
over all stimulus frequencies (Fig. 3B). Note that the smaller
fraction of tuned neurons than detected in Fig. 2 reflects decreased
statistical power due to the smaller time bins (20 vs. 200 ms) and
use of the Bonferroni method. The decrease in overall firing rate
during the sustained period was also accompanied by an increase in
tuning selectivity; Fig. 3C shows that a smaller percentage of
stimulus frequencies elicit significant excitation or inhibition during
the sustained response, compared with the onset period. Note that
tuning selectivity as defined here is not the same as tuning sharpness
of an ideal V-shaped tuning curve, but simply the percentage of
stimuli the cell responds to significantly.

Dynamics of population representations

We next asked how the responses of single neurons combine to
form population representations. To address this, we collected each
cell’s PSTH in response to each stimulus into a rate vector f(7),
giving the mean firing rate of each cell at time ¢ into the
presentation of stimulus s. Data from the four experiments
presenting 1-s tones were pooled to form a ‘virtual population’
(Harris, 2005) of 282 cells. For each stimulus, we therefore
obtained a trajectory through a 282-dimensional space over the
course of the stimulus.

To gain insight into the character of these trajectories, we started
with a visualization analysis. Visualization of high-dimensional data
can be achieved by multiple methods, typically involving projection of
the data onto a two-dimensional space. We first applied PCA, which
projects the trajectories onto the dimensions accounting for the
maximum fraction of total variance (Fig. 4A1). In this projection, the
most clearly visible feature was the onset response, which showed a
similar circular trajectory that was largely independent of tone
frequency. Sustained responses were barely distinguishable from
baseline firing in this projection, and offset responses again showed
circular profiles, broadly similar between tone frequencies, but
different from those seen at onset. Cells contributing most to this
projection had prominent onset and offset responses, but barely any
sustained responses (Fig. 4A2).
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FI1G. 2. The majority of cells have significantly tuned responses throughout the stimulus. (A—D) Box-and-whisker plots showing firing rate distributions across multiple
repetitions of 18 stimuli, for the example cells of Fig. 1. Red lines denote mean value (box: standard error, whiskers: standard deviation). Each row displays the response
in one of four epochs denoted by colored bars in Fig. 1. Significance of frequency tuning was assessed for each cell in each epoch by Kruskal-Wallis non-parametric
ANOVA. (E) Pie charts showing percentage of cells showing statistically significant tuning in each stimulus epoch. See supporting Fig. S2 for further related analyses.

To visualize sustained activity, we therefore adopted a different
method, multiple discriminant analysis, which selects a projection that
optimizes the separation of a chosen feature (in our case, sustained firing
rates; Fig. 4 B1; see Materials and methods). In this projection, the peak
no longer dominated, and sustained responses were clearly distinguish-
able from baseline and from each other. However, even though this
projection was chosen to maximize the differentiation of sustained
responses between stimuli, the onset responses are of approximately
equal magnitude to sustained responses. These data therefore indicate
that at the population level activity is dominated by onset responses, and
that information about tone frequency is also present in the sustained
period, but visible only in particularly chosen projections.

Time course of population vector rotation

The visualization analysis suggested that presentation of tone stimuli
caused rate vectors to rotate for an initial period after onset, leading to
fixed points during the sustained period. These fixed points differ from
the onset trajectories of the same stimulus, and are also distinct
between different stimuli. We note that rotation is not a priori the only
way for rate vectors to evolve during sustained stimuli. For example, if
the dynamics of tone responses were dominated by simple firing rate
adaptation, and if different cells adapted with a similar time course,
one would expect the vectors to scale down linearly throughout the
tone time course, but not rotate (Fig. 5A). To investigate the rotation
of population vectors statistically, we performed an analysis of the
angles between rate vectors. For a particular reference vector,
observed in response to a stimulus sy and post-stimulus time #,, the

angle between the reference vector fy, (#) and all other vectors fy(¥)
was computed, after subtraction of baseline firing rate vector f:

£() = T) - (£ (1) f>)
.00~ Ft0) -

0(s, t;50,t0) = cos™! <(

Figure 5B shows four examples of this analysis. It can be seen in
these examples that responses to different frequencies, but at the same
time (e.g. onset vs. onset), are closer in angle than responses to the
same frequency at different times. To confirm that these examples were
indeed representative of the general case, we computed the angles
between responses to the same tone at different times (fl onset vs.
f1 sustained) and between responses to different tones at the same time
(f1 onset vs. f2 onset; fl sustained vs. f2 sustained). The angles
between responses to the same tone at different times were significantly
greater, confirming that rate vector rotation makes a greater contribu-
tion to angular differences than differences between tone frequency
(Fig. 5C).

To investigate the time course over which the rate vector rotation
occurs, Fig. 5D shows the angle between the population vectors
evoked by a 14.4-kHz tone stimulus for each pair of times. A thin
diagonal stripe is visible after onset, leading to a square patch
spanning 300 ms to 1 s; this indicates that the population vector
begins rotating immediately after stimulus onset, and continues to do
so for ~300 ms, before converging to a steady-state response. Similar
dynamics are seen after tone offset. Figure SE shows the angles
between population vectors evoked by 14.4- and 31.6-kHz tones;
although the angles here are typically greater, a small spot is seen at
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FiG. 3. Balance of excitatory and inhibitory tuning throughout the stimulus.
(A) Percentage of cells showing significant excitatory or inhibitory response to
at least one stimulus, as a function of peristimulus time. Significance was
computed in 20-ms bins by Wilcoxon’s rank-sum test relative to pre-stimulus
baseline, Bonferroni corrected for 18 stimuli. Note that excitation peaks shortly
after tone onset, followed shortly by inhibition (Wehr & Zador, 2003). (B) Mean
firing rate of all cells. Note the initial peak followed by trough, corresponding to
the times of peak inhibitory and excitatory tuning in A. Dotted lines indicate
standard error. (C) Number of stimuli producing significant excitation or
inhibition as a function of peristimulus time, averaged over all cells. Note the
more selective tuning (i.e. smaller number of frequencies producing significant
responses) during the sustained period. This figure shows data from 1-s tones
only (magenta bar); for data from 500-ms tones see supporting Fig. S3.

onset, reflecting the angular similarity of onset vectors induced by
different tones. These analyses therefore confirm that, in keeping with
the visual picture presented in Fig. 4, the transition between onset and
sustained responses consists of a non-linear population vector rotation,
rather than linear scaling, leading to a fixed point a few hundred
milliseconds after stimulus onset. Furthermore, the angular difference
between responses to the same tone at different times exceeds the
difference between different tones at the same time.

Do rate vectors progressively differentiate?

In some neural systems, the time evolution of population represen-
tations has been reported to differentiate neural responses progres-
sively, meaning that whereas similar stimuli evoke similar rate vectors
at stimulus onset, their responses diverge with time thereafter
(Friedrich & Laurent, 2001; Menz & Freeman, 2003; Hegde & Van
Essen, 2004, 2006). Because the tuning selectivity of individual
neurons increases into the sustained period, we asked whether auditory
cortical tone representations might also show progressive differenti-
ation. The similarity between rate vectors can be assessed using
multiple measures. Here we consider two: the angle between vectors
(cf. Fig. 5A) and the Euclidean distance between them.

Figure 6A presents the results of an analysis measuring vector
similarity through angles. We divided the stimulus into fixed time
bins (0-30 ms, 30-60 ms, etc.), and computed for each time bin the
similarity between the population vectors evoked by each stimulus
pair (e.g. 3- vs. 7-kHz tone). The evolution of response similarity as
measured by the angle between population vectors is shown in
Fig. 6A1. Population vectors at onset (0-30 ms) are non-orthogonal
(angle < 90°), even for widely spaced tone frequencies. As time goes
by, the angle between vectors for even similar tones tends to 90°,
apparently indicating that these vectors do orthogonalize; these results
bear a striking resemblance to the results of Friedrich & Laurent
(2001) in the fish olfactory system.

Nevertheless, caution is required in interpreting this result. In high-
dimensional spaces, random vectors are orthogonal with high proba-
bility (Scott, 1992); we must therefore verify that the apparent
differentiation seen in Fig. 6A1 is not simply due to the effects of
random noise superimposed on vectors of small length. To investigate
this question, we applied a ‘cross-validation” approach: each of the
Nrepetitions of each stimulus was randomly assigned to one of two sets,
which were used to generate two independent estimates of the rate
vector trajectories fy(f). We then repeated the analysis of Fig. 6A1 for
these two vectors (Fig. 6A2). For the first few time bins, the results
appear similar to those of Fig. 6Al. For later time bins, while the
off-diagonal elements (corresponding to the angles between vectors for
different frequencies) are similar to those seen in Fig. 6A1, the diagonal
stripe, which shows the similarity of the population vectors estimated
for a single time and frequency from the two halves of the data set
(similarity with itself), also fades with time, indicating that the rate
vector responses to a single stimulus, estimated during the sustained
period in 30-ms time bins, are barely more similar across halves of the
data set than responses to different stimuli. When computing sustained
rate vectors using a larger time bin (500-1000 ms), the diagonal line
reappears, confirming that reliable responses to tones are present in the
sustained period, but require averaging over longer data epochs. Note,
however, that the appearance of this plot is visually similar to the
30-60-ms bin, indicating that progressive differentiation, as measured
by vector angle, is weak at best.

Figure 6C1 shows the average angle between population responses
from two halves of the dataset, comparing the stimulus with itself (‘self
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FIG. 4. Visualization of population firing rate vectors. The panels show projections of the mean firing rate vector trajectory of 282 cells, evoked by tones of three
frequencies, for increasingly long time periods from left to right. (A1) Trajectories viewed with principal component analysis (PCA), which finds the projection of
maximum variance. In this projection, onset responses are dominant. (A2) PSTHs of the five cells contributing most to the PCA projection. Arrows above each PSTH
indicate factor loadings in the projections above. (B1) Trajectories viewed with multiple discriminant analysis (MDA), to maximize the differences between sustained
responses. In this projection, onset, sustained and offset responses have approximately equal magnitude. Dashed circles: baseline activity, dotted circles: sustained

activity. (B2) PSTHs of the five cells contributing most to the MDA projection. Arrows as in A2.

angle’, red line), with the stimulus of the nearest tone frequency
(‘nearest angle’, blue line), and stimuli of distant frequencies (black
line). Progressive differentiation would require the angle between
non-identical stimuli to decrease compared with identical stimuli,

which is not the case except perhaps for the first time bin. Similarly, by
plotting self angle against nearest angle (Fig. 6C2), we should see
differentiation as a horizontal line; however, this plot is only close to
horizontal between the 0—30- and 30-60-ms bins, meaning that any
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seen shortly after onset and offset.

progressive differentiation is restricted to this early period. If similar-
ities between vectors are measured using Euclidean distance, the results
are even more striking. As Fig. 6B and D1-2 indicate, rate vectors for
separate tones move closer together, not further apart, with time into the
stimulus. We conclude that, although some progressive differentiation
as measured by vector angle may occur over the first 60 ms of tone
presentation, progressive differentiation does not occur over the
sustained period as assessed by vector angle, and the opposite
(‘progressive compression’) occurs as measured by Euclidean distance.

To assess the relevance of these results to encoding of information
on single trials, we performed a stimulus reconstruction analysis. The
tone period was divided into successive 50-ms time bins. From
the population response in each time bin on each trial, we predicted
the posterior probability that each possible stimulus would have
generated it, using a local smoothing method based on the similarity of
this response to exemplars from the rest of the data set (Loader, 1999).
The accuracy of this prediction was measured by log,-likelihood,
giving a lower-bound estimate of the mutual information of the
stimulus with population activity (Kjaer et al., 1994; Harris et al.,
2003; Itskov et al., 2008). Stimulus prediction was based on two
measures of response similarity, vector angle and Euclidean distance.
With both methods, stimulus predictability shows a constant decrease
throughout the tone presentation, confirming that activity at all points

in the sustained period contains less information than at onset
(Fig. 6E1). Even using an extended bin (500-1000 ms), predictability
is still smaller than in the 0-30-ms bin. We then used a second
approach (‘winner-take-all’ prediction), in which the population vector
on each trial was used to compute the most likely stimulus based on
Euclidean distance/angle from the centroid of each stimulus’
responses on the training set. This method gave similar results
(Fig. 6E2). We thus conclude that representation of the stimulus
persists into the sustained period, but in a weakened form.

Do rate vectors sparsen with time?

A ‘sparse code’ is typically defined as a neural representation where
information is carried by the activity of a small number of neurons.
Although this concept sounds simple, multiple mathematical measures
exist for quantifying sparseness (Willmore & Tolhurst, 2001),
suggesting that the character of a neural code cannot be summarized
by a single parameter. As shown above, the fraction of auditory
cortical cells showing significant excitation decreased during tone
presentation, along with the number of stimuli evoking excitation in
these cells. We therefore set out to investigate how multiple sparseness
measures change between onset and sustained responses.
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FIG. 6. Progressive differentiation analysis. (A1) Angles between population vectors evoked by different stimulus frequencies, at several time instances. Note the solid
line along the diagonal, indicating identity of the response to each frequency with itself. (A2) Same as A1, but comparing population vectors computed from two
separate halves of the data. The central diagonal gradually fades in the sustained period, indicating that the mean response is buried under noise. When the sustained
period is taken as one large bin (far right) the similarity both of responses to one tone across the two halves and of responses to different tones reappears. (B) Same as A,
but with similarity measured by Euclidean distance. Note that responses to different stimuli progressively grow closer together during the sustained period. (C1)
Average angles between population responses computed in two dataset halves, for identical stimuli (red trace), with the nearest other tone frequency (blue trace), and
with the average of the nine least similar stimuli (black trace). Before stimulus onset, angles of 90° indicate random activity. At onset, self-angle decreases, indicating
response reliability, before returning closer to 90° during the sustained response period, indicating the effect of noise. Comparison of angles between stimuli shows a
similar pattern, but with angles larger throughout. (C2) Mean self-angle plotted against mean nearest angle. Each point represents a time bin, color-coded as in Fig. 1
(red: onset, blue: sustained, orange: offset, green: baseline), with adjoining time bins joined by lines. On this plot, progressive differentiation would be represented by
horizontal lines, corresponding to changes in nearest- but not self-angles. The only line close to horizontal here is that joining the 0-30 and 30—60-ms bins, indicating
that if progressive differentiation does occur, it is restricted to this early period. (D1) Same analysis as C1 but with similarity gauged by Euclidean distance. Self-
similarity maintains a fairly constant value throughout; distances between stimuli peak at onset, and decay close to self-distance in the sustained period. (D2) Same as
C2, with Euclidean distance. (E1) Information theoretic analysis. Predictability of tone frequency from population activity, calculated in successive 50-ms time bins
based on similarity of the population firing rate response to training-set exemplars measured by Euclidean distance (red trace), and vector angle (blue trace).
Predictability is highest at onset, but still above zero during the sustained period. Dotted red and blue lines: predictability calculated from a 500-ms bin from the
sustained period. (E2) Stimulus predictability measured by the ‘winner-take-all” metric, showing the percentage of trials on which the correct stimulus out of the 18
presented was predicted from 50 ms of population activity. This figure shows average data from 1-s tones; for results with 500-ms tones, see supporting Fig. S4.
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Sparseness measures are divided into two types: those that assess
the tuning of single cells across multiple stimuli, and those that assess
the distribution of activity in neuronal populations to individual
stimuli. We started with the former. Three measures were used:
‘lifetime sparseness’ (essentially the coefficient of variation, trans-
formed to lie between 0 and 1), and the skewness and kurtosis of the
distribution of firing rates evoked by all stimuli (see Materials and
methods). The three measures yielded different results, with most
neurons showing larger lifetime sparseness at onset than in the
sustained period, but many of the same neurons showing larger values
of skewness and kurtosis in the sustained period (Fig. 7). This
apparent paradox is caused by the cell’s non-zero background firing
rate. Lifetime sparseness measures the difference in firing rates
between stimuli, relative to the cell’s mean rate. Even for cells with
more selective tuning during the sustained period (such as the black
and green cells in Fig. 7B), variance is greater at onset, while the
mean rate remains essentially the same in the two periods; therefore,
lifetime sparseness decreases, while kurtosis (which does not depend
on mean rate) increases.

A similar picture emerges from consideration of population
measures, which are computed from the histogram of firing rates
evoked in the population by a single stimulus. Population sparseness

again decreases during sustained periods (also due to the non-zero
baseline firing rates), but population skewness and kurtosis show an
almost uniform increase in the sustained period, indicating that activity
in the sustained period is characterized by a smaller number of neurons
firing at above the mean rate. Although the multiple measures of code
sparseness thus yield different numerical results on our data, all these
analyses are consistent with a simple picture: during stimulus onset,
information is carried by a large number of neurons, which respond
strongly to multiple stimuli; during the sustained period, information
is carried by a smaller number of neurons firing with more selective
tuning, with the majority of neurons weakly tuned and firing close to
baseline rate.

Discussion

We have examined the responses of neural populations in auditory
cortex to tone stimuli using rate vector methods. We found that rate
vectors evolve during the first few hundred milliseconds of tone
presentation, from a robust onset response to a more subtle sustained
response. Most neurons showed a statistically significant effect of tone
frequency on firing rate throughout the tone presentation. The nature
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Fig. SS5.
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of the code, however, markedly changed between stimulus onset and
the late (sustained) period. Population rate vectors rotated during the
initial ~300 ms of stimulus presentation, with the angular difference
between onset and sustained responses to a single tone exceeding the
angles between responses to different tones during a single stimulus
epoch. Despite more selective tuning of individual neurons, popula-
tion responses to different stimuli did not progressively differentiate,
instead producing a code in which the information carried by
selectively tuned neurons is counterbalanced by noise from the larger
population of neurons firing close to baseline rate.

For many questions, the answers depended on the precise mathe-
matical definitions given to biological terms. For example, while the
use of Euclidean distance and vector angle gave similar answers to the
question of progressive differentiation, performing the analysis
without cross-validation resulted in a misleadingly strong apparent
effect. For the question of sparsening, measures based on the
coefficient of variation gave different answers to skewness and
kurtosis. Despite these differences, our results were all consistent with
a single coding strategy, in which the majority of neurons fire at close
to non-zero baseline rate during the sustained period, with a minority
firing at substantially elevated rates for each stimulus. It is likely that a
single term such as ‘sparseness’ cannot fully capture the range of
strategies a neural population may use to encode information. As
population coding is studied in more systems, use of multiple
quantitative measures may more fully characterize differences between
potential coding strategies, as well as providing new terminology to
describe these strategies.

We were surprised by the large fraction of neurons showing
statistically significant frequency tuning during the late response
period. Many of these neurons showed only small differences in firing
rate with frequency. As statistical analysis of small effects is highly
sensitive to assumptions about the data, we took care to ensure this
result was not a false positive. First, the use of a non-parametric test
(Kruskal-Wallis, rather than ANOVA) ensured that significance would
not be erroneously detected due to non-Gaussianity of the spike count
data. Second, an analysis of the baseline periods immediately preceding
tone stimuli, where frequency tuning is impossible, yielded a false-
positive rate close to that expected with a 0.05 significance level. We
therefore concluded that the large number of significantly tuned cells
indeed reflected detection of small effects by a powerful statistical test;
the statistical power of this analysis is high due to the large number of
repetitions of each tone (> 100). We note also that the 84% fraction of
tuned cells found is likely an underestimate, and that analysis of even
more repetitions might find that virtually every cell in auditory cortex
has a small degree of frequency tuning in the late period.

The finding that auditory cortical neurons show complex temporal
dynamics, including sustained firing, during tone presentation, is
consistent with reports of previous single-cell recordings in awake,
ketamine-, halothane- or barbiturate-anesthetized subjects (Sally &
Kelly, 1988; Volkov & Galazyuk, 1992; Wang et al., 2005; Moshitch
et al., 2006), but contrasts with other reports using barbiturates or
ketamine-xylazine (deCharms & Merzenich, 1996; DeWeese et al.,
2003), which have suggested reliable spiking at onset without
rate changes during the sustained period. Although a full analysis of
the comparative effects of multiple anesthetics on sustained responses
is beyond the scope of the present study, our results suggest that
absence of auditory cortical sustained responses is not a consequence
of anesthesia per se, but rather of particular anesthetic/stimulus
conditions.

Dynamic evolution of neural codes during presentation of tempo-
rally unstructured stimuli has been reported in many sensory systems,
in evolutionarily remote species (Sugase et al., 1999; Friedrich &
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Laurent, 2001; Menz & Freeman, 2003; Stopfer et al., 2003; Mazor &
Laurent, 2005; Brincat & Connor, 2006). Why should such dynamics
be such a common feature of neural coding? Although the systems
shown to exhibit this behavior differ in many ways, they are all
recurrent neural networks. In models of recurrent networks, dynamic
evolution of population activity is common, and indeed can only be
suppressed by fine tuning of synaptic weights (Brody et al., 2003).
Dynamic evolution of population codes may thus be an almost
inevitable consequence of information processing by recurrent
networks.

What benefit could such representational dynamics provide an
organism? Although population vector rotation is a very common
feature of neural codes, the endpoint of these dynamics varies between
systems. In some sensory systems, population responses progressively
differentiate with time, so that perceptually similar stimuli that evoke
similar onset responses exhibit divergent sustained responses (Sugase
et al., 1999; Friedrich & Laurent, 2001; Hegde & Van Essen, 2004),
thus producing finer stimulus discrimination with time. In our results
this appears to be the case when the dataset is not cross-validated; with
cross-validation, however, progressive differentiation in the sustained
period is unclear or absent. Although Friedrich and Laurent did not
perform a cross-validated analysis of progressive differentiation, other
analyses from their study suggest that the differences between their
results and ours do indeed reflect differences in population coding of
the two sensory systems, rather than different analysis techniques. For
example, whereas we found that stimulus discriminability decreased
with time, they found that it increased (with cross-validation); whereas
we found that the firing rates of most cells decayed close to baseline
during the sustained period, they found more sustained high rate
responses.

Our results therefore suggest that population coding dynamics in
auditory cortex differs from that in many other systems studied to date.
Instead of progressive differentiation, we observed a re-coding of
information from an onset response requiring rapid firing of a large
number of neurons, to a sustained response in which most neurons
continue to fire around baseline rate. This may relate to the fact that
continuous acoustic stimuli are typically not perceptually or behav-
iorally salient. The progressive re-coding we observe may instead
allow an animal to maintain a representation of ongoing sounds, at low
energetic cost.

Supporting information

Additional supporting information may be found in the online version
of this article:

Fig. S1. Spike sorting method and results.

Fig. S2. Evolution of significant tuning with time.

Fig. S3. Same analysis as in Fig. 3, for 500-ms tones.

Fig. S4. Same analysis as Fig. 6, for 500-ms tones.

Fig. S5. Same analysis as Fig. 7, for 500-ms tones.
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