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Threshold-linear networks (TLNs) are models of neural networks that
consist of simple, perceptron-like neurons and exhibit nonlinear dynam-
ics determined by the network’s connectivity. The fixed points of a TLN,
including both stable and unstable equilibria, play a critical role in shap-
ing its emergent dynamics. In this work, we provide two novel characteri-
zations for the set of fixed points of a competitive TLN: the first is in terms
of a simple sign condition, while the second relies on the concept of dom-
ination. We apply these results to a special family of TLNs, called combi-
natorial threshold-linear networks (CTLNs), whose connectivity matrices
are defined from directed graphs. This leads us to prove a series of graph
rules that enable one to determine fixed points of a CTLN by analyzing
the underlying graph. In addition, we study larger networks composed
of smaller building block subnetworks and prove several theorems relat-
ing the fixed points of the full network to those of its components. Our
results provide the foundation for a kind of graphical calculus to infer
features of the dynamics from a network’s connectivity.

1 Introduction

Threshold-linear networks (TLNs) are commonly used models of recurrent
networks consisting of simple, perceptron-like neurons with nonlinear in-
teractions. The dynamics are given by the system of ordinary differential
equations,

dxi

dt
= −xi +

⎡⎣ n∑
j=1

Wi jx j + bi

⎤⎦
+

, i = 1, . . . , n, (1.1)
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where n is the number of neurons, xi(t) is the activity level (or “firing rate”)
of the ith neuron, Wi j is the connection strength from neuron j to neuron i,
and [·]+ def= max{·, 0} is the threshold nonlinearity. The external inputs bi ∈ R

may be heterogeneous but are assumed to be constant in time. We refer to
a given choice of TLN as (W, b). Competitive TLNs have the additional re-
quirement that all interactions are effectively inhibitory, with matrix entries
Wi j ≤ 0.

TLNs have previously been studied through the lens of permitted and
forbidden sets (Hahnloser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000;
Xie, Hahnloser, & Seung, 2002; Hahnloser, Seung, & Slotine, 2003; Curto,
Degeratu, & Itskov, 2012, 2013; Curto & Morrison, 2016), though this work
was largely restricted to the case of symmetric networks. TLNs that are both
symmetric and competitive generically exhibit multistability, with activity
that is guaranteed to converge to a stable fixed point irrespective of ini-
tial conditions (Hahnloser et al., 2003). This property motivated the use of
these networks as models for associative memory encoding and retrieval,
similar to the Hopfield model (Hopfield, 1982). Earlier results on the math-
ematical theory of TLNs thus focused primarily on stable fixed points of
symmetric networks. The papers (Hahnloser et al., 2000; Xie et al., 2002;
Hahnloser et al., 2003) gave characterizations and applications of permit-
ted sets, which are subsets of neurons that have the capacity to support a
stable fixed point of equation 1.1 for some (potentially unknown) external
input vector b. These authors also found nice properties satisfied by the full
collection of permitted sets of a symmetric TLN (Hahnloser et al., 2003).
The theory of permitted sets was further extended and developed by dif-
ferent authors in Curto et al. (2012, 2013). Finally, Curto and Morrison (2016)
shifted attention to the study of permitted sets that can be realized as fixed
point supports for a known, and uniform, external input. Like previous re-
sults, this work was largely restricted to stable fixed points of symmetric
TLNs.

The nonsymmetric case, however, is considerably more interesting:
asymmetric TLNs exhibit the full repertoire of nonlinear dynamic behav-
ior, including limit cycles, quasiperiodic attractors, and chaos (Morrison,
Degeratu, Itskov, & Curto, 2016). Furthermore, recent work has highlighted
the importance of unstable fixed points in shaping a network’s dynamic
attractors (Morrison & Curto, 2018; Morrison et al., 2019). Nevertheless, a
mathematical theory connecting unstable fixed points of equation 1.1 to the
structure of (W, b) has been lacking.

In this letter, we study the set of all fixed point supports, denoted
FP(W, b), for asymmetric, competitive W and nonnegative b. In particular,
we provide two new characterizations of FP(W, b): the first in terms of a
sign condition (see Theorem 1), and the second in terms of domination (see
Theorem 15), which for simplicity is restricted to networks with uniform b.
We introduce the language of permitted motifs of (W, b) to refer to subsets of
neurons that support a fixed point in their restricted subnetwork (all other
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Figure 1: (A) A neural network with excitatory pyramidal neurons (triangles)
and a background network of inhibitory interneurons (gray circles) that pro-
duce a global inhibition. The corresponding graph (right) retains only the exci-
tatory neurons and their connections. (B) Equations for the CTLN model.

subsets are called forbidden motifs). We find that whether a permitted motif
supports a fixed point in the full TLN depends critically on the embedding
of the subnetwork inside the larger network.

In order to investigate how the fixed points are shaped by qualitative
aspects of a network’s connectivity structure, we focus our attention on
applications and further development of this theory in the special case of
combinatorial threshold-linear networks (CTLNs), first introduced in Morrison
et al. (2016). CTLNs are a family of competitive TLNs with uniform inputs
and connectivity matrices W that are defined from simple directed graphs
(see Figure 1).1 Given a graph G and continuous parameters ε, δ and θ , the
associated CTLN is the network (W, θ ) where W = W (G, ε, δ) has entries:

Wi j =

⎧⎪⎨⎪⎩
0 if i = j,

−1 + ε if j → i in G,

−1 − δ if j �→ i in G.

(1.2)

Note that j → i indicates the presence of an edge from j to i in the graph
G, while j �→ i indicates the absence of such an edge. We also require that
θ > 0, δ > 0, and 0 < ε < δ

δ+1 . When these conditions are met, we say that
the parameters are within the legal range.

Despite the additional constraints, CTLNs display the full range of non-
linear dynamics that are observed in general TLNs (Morrison et al., 2016;
Morrison & Curto, 2018), and thus provide a rich but simplified setting in
which to study TLNs. Here, we focus on the theory of fixed point supports
FP(G) and how they can be inferred from the underlying connectivity graph
G. In a companion paper (Morrison et al., 2019), we study the relationship
between fixed points and dynamic attractors.

1
A graph is simple if it does not have loops or multiple edges between a pair of nodes.
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First, we use our general results about fixed points of TLNs to develop
some stronger tools that are specialized to CTLNs. These technical results
then allow us to prove a series of graph rules, connecting FP(G) directly to
the structure of G. In particular, any conclusions about the fixed points of a
CTLN that can be obtained from graph rules are automatically independent
of the choice of parameters ε, δ, and θ , provided these fall within the legal
range. We also study larger networks composed of smaller building block
subnetworks and prove several theorems relating the fixed points and per-
mitted motifs of the full network to those of its components. Our results
demonstrate that CTLNs are surprisingly tractable and provide the foun-
dation for a graphical calculus to infer features of a network’s dynamics
directly from its underlying connectivity.

The organization of this letter is as follows. In section 2, we begin by
reviewing some essential background on fixed points of general TLNs, in-
cluding prior results on their index and stability. Then in section 2.3, we
present a new characterization of FP(W, b) in terms of sign conditions (see
Theorem 2). In section 3, we specialize to CTLNs and show how the sign
conditions can allow us to determine fixed point supports directly from the
underlying graph G. We also introduce additional tools, such as graphical
domination and simply-added splits, that are later used to prove various
graph rules. Sections 4 and 5, on graph rules and their extensions to com-
posite graphs, are in some sense the heart of the letter. In particular, we
identify various families of graphs and structures that yield (parameter-
independent) permitted and forbidden motifs. Finally, in section 6 we
introduce a more general form of domination, applicable to the broader
family of TLNs, and provide a second characterization of FP(W, b). This
is then used to prove several of our earlier results, including Theorem 4 on
graphical domination.

2 Fixed Points of TLNs

2.1 Some General Background. We refer to a network with dynam-
ics 1.1 as a TLN (W, b) on n neurons. A fixed point x∗ of the network is a
point in the state space satisfying dxi

dt

∣∣
x=x∗ = 0 for each neuron i ∈ [n], where

[n] def= {1, . . . , n}—in other words,

x∗
i =

⎡⎣ n∑
j=1

Wi jx∗
j + bi

⎤⎦
+

, i = 1, . . . , n. (2.1)

The support of a fixed point is the subset of active neurons,

supp(x∗) def= {i ∈ [n] | x∗
i > 0}.

We typically refer to supports as subsets σ ⊆ [n].
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Definition 1. We say that a TLN (W, b) is competitive if Wi j ≤ 0,Wii = 0, and
bi ≥ 0 for all i, j ∈ [n].

Notice from equation 2.1 that because of the threshold nonlinearity, we
must have x∗

i ≥ 0 for each i ∈ [n]. For competitive (W, b), it follows that
whenever x∗

i > 0, we must have bi > 0. If bi = 0 for all i ∈ [n], the activity
of a competitive TLN will always decay to the fixed point x∗ = 0. To rule
this out, we also require that bi > 0 for at least one neuron, ensuring that all
fixed points are nontrivial (see definition 2). Furthermore, it is straightfor-
ward to check that the activity of a competitive TLN is always bounded. In
particular, if x(0) ∈ ∏n

i=1[0, bi], then x(t) ∈ ∏n
i=1[0, bi] for all t > 0.

We often restrict matrices and vectors to a particular subset of neurons
σ . We use the notation Aσ and bσ to denote a matrix A and a vector b that
have been truncated to include only entries with indices in σ . Furthermore,
we use the notation (Ai; b) to denote a matrix A whose ith column has been
replaced by the vector b, as in Cramer’s rule (see Lemma 1).2 In the case
of a restricted matrix, ((Aσ )i; bσ ) denotes the matrix Aσ where the column
corresponding to the index i ∈ σ has been replaced by bσ (note that this is
not typically the ith column of Aσ ).

Definition 2. We say that a TLN (W, b) is nondegenerate if

• bi > 0 for at least one i ∈ [n]
• det(I − Wσ ) �= 0 for each σ ⊆ [n]
• for each σ ⊆ [n] such that bi > 0 for all i ∈ σ , the corresponding Cramer’s

determinant is nonzero: det((I − Wσ )i; bσ ) �= 0

Unless otherwise specified, we will assume all TLNs are both
competitive and nondegenerate. Note that almost all networks of the
form 1.1 are nondegenerate, since having a zero determinant is a highly
fine-tuned condition.

If (W, b) is nondegenerate, there can be at most one fixed point per sup-
port. To see why, denote

xσ def= (I − Wσ )−1bσ . (2.2)

If there exists a fixed point x∗ with support σ , then x∗
i = xσ

i for each i ∈ σ

(and is zero otherwise). It follows from the definition that σ is the support
of a fixed point if and only if:

1. xσ
i > 0 for all i ∈ σ , and

2.
∑

i∈σ Wkixσ
i + bk ≤ 0 for all k /∈ σ .

2
The use of the subscript i inside (Ai; b) and ((Aσ )i; bσ ) has a different meaning from

the subscript σ in Aσ , because it refers to replacing the ith column by b (or bσ ), as opposed
to restricting the entries of A to the index set {i}. This is an abuse of notation, but the
meaning should always be clear from the context. We will only use the vector replacement
meaning inside expressions for Cramer’s determinants, such as det((I − Wσ )i; bσ ).
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(This is straightforward, but see Curto and Morrison, 2016, for more
details.)

We denote the set of all fixed point supports of a TLN (W, b) as

FP(W, b) def= {σ ⊆ [n] | σ is the support of a fixed point}.

Finding the fixed points of a nondegenerate TLN thus reduces to finding the
set of supports FP(W, b). Note that because we require bi ≥ 0, and bi > 0 for
at least one i, the empty set (the support of x∗ = 0) is never an element of
FP(W, b).

Since condition 1 above depends on only (Wσ , bσ ), a necessary condi-
tion for σ ∈ FP(W, b) is that σ ∈ FP(Wσ , bσ ). Such a fixed point survives
the addition of other nodes k /∈ σ precisely when condition 2 is satisfied.
Note that only the survival of the fixed point depends on the rest of the net-
work; the actual values of the xσ

i (for i ∈ σ ) cannot change. For this reason,
it makes sense to distinguish the subsets σ that support a fixed point on the
restricted networks (Wσ , bσ ), irrespective of whether these fixed points sur-
vive to the full network. In particular, if σ /∈ FP(Wσ , bσ ), we are guaranteed
that σ /∈ FP(W, b).

Definition 3 (permitted and forbidden motifs). Let (W, b) be a TLN on n neu-
rons. We say that σ ⊆ [n] is a permitted motif of the network if σ ∈ FP(Wσ , bσ ).
Otherwise, we say that σ is a forbidden motif.

2.2 Index and Parity. For each TLN fixed point, labeled by its support
σ ∈ FP(W, b), we define the index as

idx(σ ) def= sgn det(I − Wσ ).

Since we assume our TLNs are nondegenerate, det(I − Wσ ) �= 0 and thus
idx(σ ) ∈ {±1}. Moreover, if σ is the support of a stable fixed point, then
the eigenvalues of −I + Wσ must all have negative real part, and so those
of I − Wσ all have positive real part. This implies that idx(σ ) = +1 for all
stable fixed points.

The following theorem, given in Morrison et al. (2019), indicates that
fixed points with index +1 and −1 are almost perfectly balanced. It also
tells us that the parity of the total number of fixed points is always odd.

Theorem 1 (parity; Morrison et al., 2019). Let (W, b) be a TLN. Then

∑
σ∈FP(W,b)

idx(σ ) = +1.

In particular, the total number of fixed points |FP(W, b)| is always odd.
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As an immediate corollary, we obtain an upper bound on the number of
stable fixed points, which all have index +1. Here we also use the fact that
|FP(W, b)| ≤ 2n − 1, which is the number of nonempty subsets of [n].

Corollary 1. The number of stable fixed points in a TLN on n neurons is at most
2n−1.

2.3 Sign Conditions. In this section, we provide a new characterization
of fixed point supports of TLNs via the signs of particular Cramer’s deter-
minants. Recall Cramer’s rule:
Lemma 1. Let A be an n × n matrix with det A �= 0, and consider the linear sys-
tem Ax = b. This has a unique solution, x = A−1b. The entries of x can be expressed
as

xi = det(Ai; b)
detA

,

where (Ai; b) is the matrix obtained from A by replacing the ith column with b.

Indeed, it follows directly from Cramer’s rule that a fixed point of a TLN
(W, b) with support σ has values

xσ
i = det((I − Wσ )i; bσ ),

det(I − Wσ )
, for i ∈ σ. (2.3)

For any σ ⊆ [n], we are thus motivated to define

sσ
i

def= det((I − Wσ∪{i})i; bσ∪{i}), for each i ∈ [n]. (2.4)

Note that because we consider only TLNs that are nondegenerate (see def-
inition 2), we can assume all of Cramer’s determinants are nonzero, and
thus sσ

i �= 0 for all i ∈ [n] and σ ⊆ [n]. Moreover, it follows directly from the
definition that for any i ∈ [n],

sσ
i = sσ∪{i}

i . (2.5)

Note that for the empty set, we have s∅
i = s{i}

i = bi.
It turns out that fixed point supports of (competitive, nondegenerate)

TLNs can be fully determined from the signs of the sσ
i , yielding our first

characterization of FP(W, b). Recall that σ is a permitted motif of (W, b) if
σ ∈ FP(Wσ , bσ ).

Theorem 2 (sign conditions). Let (W, b) be a TLN on n neurons. For any
nonempty σ ⊆ [n],

σ is a permitted motif ⇔ sgn sσ
i = sgn sσ

j for all i, j ∈ σ.
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When σ is permitted, sgn sσ
i = sgn det(I − Wσ ) = idx(σ ) for all i ∈ σ . Further-

more,

σ ∈ FP(W, b) ⇔ sgn sσ
i = sgn sσ

j = −sgn sσ
k for all i, j ∈ σ, k �∈ σ.

Before we prove Theorem 2, we need the following lemma, which gives
a useful identity for computing sσ

k values:

Lemma 2. Let (W, b) be a TLN on n neurons, and let σ ⊆ [n]. Then

sσ
k =

∑
i∈σ

Wkisσ
i + bk det(I − Wσ ) for any k ∈ [n]. (2.6)

Proof. For k ∈ σ , it follows from the definition of xσ , equation 2.2, that xσ =
Wσ xσ + bσ , and thus

xσ
k =

∑
i∈σ

Wkixσ
i + bk.

Using equation 2.3, this yields sσ
k = ∑

i∈σ Wkisσ
i + bkdet(I − Wσ ), as desired.

Next, we consider k /∈ σ and compute

sσ
k = det((I − Wσ∪{k})k; bσ∪{k}) = det

(
I − Wσ bσ

−Wk1 · · · − Wk,k−1 bk

)
.

Applying the Laplace expansion for the determinant along the kth row, we
obtain

sσ
k =

∑
i∈σ

(−1)i+k(−Wki)(−1)(k−1)−idet((I − Wσ )i; bσ ) + bkdet(I − Wσ )

=
∑
i∈σ

Wkisσ
i + bkdet(I − Wσ ),

which completes the proof. �

We are now ready to prove Theorem 2:

Proof of Theorem 2 (sign conditions). Recall that σ ∈ FP(Wσ , bσ ) if and
only if xσ

i > 0 for each i ∈ σ (see equation 2.2 and subsequent remarks).
By Cramer’s rule, we have xσ

i = sσ
i

det(I−Wσ ) (see equation 2.3). Now suppose
σ ∈ FP(Wσ , bσ ). Since xσ

i > 0 for each i ∈ σ , we must have sgn sσ
i = sgn sσ

j =
sgn det(I − Wσ ) = idx(σ ) for all i, j ∈ σ .

For the reverse implication, suppose sgn sσ
i = sgn sσ

j for all i, j ∈ σ . This
immediately implies that all the xσ

i for i ∈ σ have the same sign, but we
must show this sign is positive. First, we show that bi > 0 for all i ∈ σ (in
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competitive TLNs, we always have bi ≥ 0). To see this, suppose there exists
a j ∈ σ such that b j = 0. Then by equation 2.6 we would have

sσ
j =

∑
i∈σ

Wjisσ
i + b jdet(I − Wσ ) =

∑
i∈σ\ j

Wjisσ
i ,

using the fact that Wj j = 0. Since Wji < 0 for all i �= j, the above equality
contradicts the assumption that all the signs of the sσ

i are equal for i ∈ σ . We
can thus conclude that bi > 0 for all i ∈ σ . This in turn ensures that xσ

i > 0 for
at least one (and thus all) i ∈ σ , because by definition (I − Wσ )xσ

i = bσ , and
all entries of (I − Wσ ) are nonnegative. Hence, σ ∈ FP(Wσ , bσ ), completing
the proof of the first part of the theorem.

To prove the second part, recall that σ ∈ FP(W, b) precisely when σ ∈
FP(Wσ , bσ ) and σ satisfies fixed point condition 2:

∑
i∈σ Wkixσ

i + bk ≤ 0 for
all k /∈ σ . Using equation (2.6) again and dividing by det(I − Wσ ), we find
that

sσ
k

det(I − Wσ )
=
∑
i∈σ

Wkixσ
i + bk. (2.7)

Since the network is nondegenerate, det(I − Wσ ) �= 0 and sσ
k �= 0, and so

condition 2 is equivalent to the sign condition: sgn sσ
k = −sgn det(I − Wσ ).

Putting this together with the above sign conditions for σ ∈ FP(Wσ , bσ ), we
see that σ ∈ FP(W, b) if and only if sgn sσ

i = sgn sσ
j = −sgn sσ

k for all i, j ∈
σ, k �∈ σ. �

In the following example, we show how to use Theorem 2 to find
FP(W, b) for a TLN of size 2 with a uniform external input b.

Example 1. Consider a TLN with W =
(

0 W12

W21 0

)
, for some W12,W21 < 0,

and external input b = 1. Recall that the empty set is never a fixed point
support of a competitive TLN with a positive input, so we restrict to con-
sidering nonempty subsets of {1, 2}. For σ = {1}, we see that sσ

1 = b1 = 1,
while

sσ
2 = det((I − Wσ∪2)2; b) = det

(
1 1

−W21 1

)
= 1 + W21.

In particular, sgn sσ
2 = −sgn sσ

1 precisely when W21 < −1. Thus, by Theo-
rem 2,

{1} ∈ FP(W, b) ⇔ W21 < −1.

By a similar argument, we have

{2} ∈ FP(W, b) ⇔ W12 < −1.
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Finally, consider σ = {1, 2}. We obtain sσ
1 = 1 + W12 and sσ

2 = 1 + W21. By
Theorem 2, σ ∈ FP(W, b) precisely when sgn(1 + W12) = sgn(1 + W21), and
so

{1, 2} ∈ FP(W, b) ⇔
{

W12 > −1 and W21 > −1, or

W12 < −1 and W21 < −1
.

Note that in the case where W is a CTLN, the condition W21 < −1 corre-
sponds to 1 �→ 2 in the associated graph G, while W12 < −1 indicates 2 �→ 1
in G. So the last condition reduces to {1, 2} ∈ FP(G|σ ) if and only if nodes 1
and 2 are either bidirectionally connected or disconnected in G.

Since the values of sσ
i for i ∈ σ depend only on (Wσ , bσ ), while the val-

ues sσ
k for k /∈ σ depend only on (Wσ∪{k}, bσ∪{k}), we immediately have the

following useful corollary:

Corollary 2. Let (W, b) be a TLN on n neurons, and let σ ⊆ [n]. The following
are equivalent:

1. σ ∈ FP(W, b)
2. σ ∈ FP(Wτ , bτ ) for all σ ⊆ τ ⊆ [n].
3. σ ∈ FP(Wσ , bσ ) and σ ∈ FP(Wσ∪{k}, bσ∪{k}) for all k /∈ σ

4. σ ∈ FP(Wσ∪{k}, bσ∪{k}) for all k /∈ σ

Theorem 2 also gives a relationship between the indices of fixed points
whose supports differ by only one neuron.

Lemma 3 (alternation). Let (W, b) be a TLN. If σ, σ ∪ {k} ∈ FP(W, b), for k /∈ σ,

are both fixed point supports, then

idx(σ ∪ {k}) = −idx(σ ).

Proof. If σ, σ ∪ {k} ∈ FP(W, b), then by Theorem 2, we have idx(σ ) =
sgn sσ

i = −sgn sσ
k for any i ∈ σ . Recalling that sσ∪{k}

k = sσ
k , we see that idx(σ ∪

{k}) = −idx(σ ), as desired. �
Corollary 3. If σ ∈ FP(W, b) is the support of a stable fixed point, then there is
no other stable fixed point with support σ , σ \ k, or σ ∪ {k} for any k ∈ [n].

3 Fixed Points of CTLNs

When (W, b) comes from a CTLN with graph G and parameters ε, δ, and θ ,
so that W = W (G, ε, δ) and b = θ1, we use the notation

FP(G) = FP(G, ε, δ) def= FP(W (G, ε, δ), θ1).
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Note that we always suppress θ from the notation, since it can easily be
seen that the value of θ does not affect the set of fixed point supports, so
long as θ > 0. (Different θ values merely rescale the fixed point values.) In
addition, we typically suppress the ε and δ dependence as well, using the
simpler notation FP(G) to denote the set of fixed point supports when ε and
δ are understood to be fixed.

For some graphs, FP(G) = FP(G, ε, δ) does indeed depend on the choice
of ε and δ, but our theoretical results almost always deal with aspects of
FP(G) that are independent of the choice of parameters, provided these lie
within the legal range.3 For example, a graph rule could tell us about certain
fixed point supports that can be ruled out and are thus not contained in
FP(G). Such a conclusion is parameter independent, even if there are other
supports in FP(G) whose presence depends on parameters.

Recall that σ is a permitted motif if σ ∈ FP(Wσ , bσ ) and is forbidden
otherwise. We use the same language for CTLNs: σ is a permitted motif if
σ ∈ FP(G|σ ), where G|σ is the induced subgraph obtained by restricting ver-
tices and edges to the vertex set σ . If σ /∈ FP(G|σ ), we say that σ is a forbidden
motif. Note that this may depend on the choice of parameters ε, δ.

The results in this section provide a technical foundation for the graph
rules and building block rules that we present in sections 4 and 5, respec-
tively. Before moving on to the main content, we pause briefly to provide
some simple bounds on the total activity at fixed points of CTLNs, irre-
spective of the support. These bounds, like the actual fixed point values, do
depend on ε, δ, and θ , even when the supports FP(G) do not.

Lemma 4. If x∗ is a fixed point of a CTLN on n nodes, with parameters ε, δ, and
θ , then

θ

1 + δ
<

n∑
i=1

x∗
i <

θ

1 − ε
.

Proof. Let σ be the support of x∗. Then (I − Wσ )x∗
σ = θ1σ , and so θ = Rj · x∗

σ ,
where Rj is the jth row vector of I − Wσ . Since all entries of Rj and x∗

σ are
positive and the off-diagonal entries of I − Wσ are all at least 1 − ε and at
most 1 + δ, it follows that

(1 − ε)
∑
i∈σ

x∗
i + εx∗

j ≤ θ ≤ (1 + δ)
∑
i∈σ

x∗
i − δx∗

j

for any j ∈ σ . Since x∗
j > 0, we have (1 − ε)

∑
i∈σ x∗

i < θ < (1 + δ)
∑

i∈σ x∗
i ,

which implies the desired result. �

3
For any result that does depend on ε and δ, we indicate this explicitly.
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Figure 2: Graph with sσ
i values for all nonempty σ . (A) Graph with FP(G, ε, δ).

(B1–B7) In each panel, the nodes in the gray-shaded region comprise σ , and each
node is labeled with its sσ

i value.

3.1 Sign Rules for CTLNs. Recall from section 2.3 that Theorem 2 gives
sign conditions for when a subset σ is a permitted motif or a fixed point
support in a general TLN (W, b). We illustrate this result for the special case
of CTLNs in the following example.

Example 2. Let G be the graph in Figure 2A. We will use the sign conditions
to find the permitted motifs and FP(G) = FP(G, ε, δ). Recall from section 2.1
that the empty set is never the support of a fixed point, and so we restrict to
analyzing the nonempty subsets of {1, 2, 3}. Each panel in Figure 2 shows a
choice of σ (gray-shaded regions) and the values of sσ

i = det((I − Wσ∪i)i; θ1)
for all i ∈ {1, 2, 3}. For example, in panel B1, s{1}

1 = det(θ ) = θ and s{1}
2 =

det
(

1 θ

1 − ε θ

)
= εθ .

Observe that every singleton {i} is a permitted motif, as are {1, 2}, {2, 3},
and {1, 2, 3} since these subsets satisfy sgn sσ

i = sgn sσ
j for all i, j ∈ σ . A per-

mitted motif survives as a fixed point of G precisely when the external nodes
all have the opposite sign for sσ

k . Thus, the only singleton fixed point sup-
port is {3} since it satisfies sgn s{3}

i = −sgn s{3}
3 for i = 1, 2 (see panel B3 in

Figure 2). Continuing this analysis, we find that FP(G) = {3, 12, 123}. Fur-
thermore, since the signs of sσ

i are constant across ε, δ > 0 for each i ∈
{1, 2, 3} and σ ⊆ {1, 2, 3}, we see that FP(G) is in fact parameter indepen-
dent.

Figure 18 in appendix section A.1 shows all directed graphs of size n ≤ 3
labeled with the full support s[n]

i values for each node i ∈ [n]. From this, we
see that 6 of the 16 directed graphs of size 3 are permitted motifs, and the
remainder are forbidden, independent of the choice of parameters.

3.2 Simply-Added Splits. In this section, we introduce the concept of
simply-added splits, whereby the vertices of a graph are partitioned in a



106 C. Curto, J. Geneson, and K. Morrison

Figure 3: In this graph, ω is simply-added to τ , and thus each k ∈ ω either sends
all possible edges to τ or no edges. There is no constraint on the edges within τ ,
within ω, or from τ to ω.

special way that allows us to easily compute certain sσ
i values. This kind

of structure will play a prominent role in section 5, where we build larger
graphs from component subgraphs. In particular, simply-added splits are
essential to our ability to relate FP(G) for such a composite graph to the
FP(Gi) of its components. They also provide an additional tool for proving
some of the graph rules in section 4.

Definition 4 (simply-added). Let G be a graph on n nodes, τ ⊂ [n] nonempty,
and k /∈ τ . We say that k is a projector onto τ if k → i for all i ∈ τ . We say that
k is a nonprojector onto τ if k �→ i for all i ∈ τ . For any nonempty τ, ω ⊂ [n]
such that τ ∩ ω = ∅, we say ω is simply-added to τ if for each k ∈ ω, k is either a
projector or a nonprojector onto τ (see Figure 3). In this case, we say that the (τ, ω)
is a simply-added split of the subgraph G|σ , for σ = τ ∪ ω.

The following theorem shows that the sσ
i values factor nicely when a set

of neurons is simply-added to a subgraph.

Theorem 3 (simply-added). Let G be a graph on n nodes, and let τ, ω ⊂ [n] be
such that ω is simply-added to τ . For σ = τ ∪ ω,

sσ
i = 1

θ
sω

i sτ
i = αsτ

i for each i ∈ τ,

where α = 1
θ

sω
i has the same value for every i ∈ τ .

More generally, for any σ ⊆ τ ∪ ω,

sσ
i = 1

θ
sσ∩ω

i sσ∩τ
i = αsσ∩τ

i for each i ∈ τ,

where α = 1
θ

sσ∩ω
i .

Recall, using equation 2.5 that s∅
i = θ , since for CTLNs bi = θ for each i ∈

[n]. With this convention, Theorem 3 holds even if σ ∩ τ or σ ∩ ω is empty.
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To prove Theorem 3, we use the standard formula for the determinant of
a 2 × 2 block matrix,

det

[
A B

C D

]
= det(A)det(D − CA−1B), (3.1)

which applies as long as A is invertible.

Proof of Theorem 3. Since ω is simply-added to τ , each k ∈ ω is either a
projector or nonprojector onto τ . Thus, for each k ∈ ω, Wik = −1 + ck for all
i ∈ τ , where ck = ε if k is a projector or ck = −δ if k is nonprojector.

First consider σ = τ ∪ ω. For any i ∈ τ , we compute:

sσ
i = θdet((I − Wσ )i; 1) = θdet

⎛⎜⎜⎜⎜⎜⎝
1 1 − ck1 · · · 1 − ck	

I − Wτ\{i}
...

...
...

1 1 − ck1 · · · 1 − ck	

∗ 1 1 − ck1 · · · 1 − ck	

∗ 1 I − Wω

⎞⎟⎟⎟⎟⎟⎠

= θdet

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0

I − Wτ\{i}
...

...
...

1 0 · · · 0
∗ 1 0 · · · 0
∗ 1 I − Wω − A

⎞⎟⎟⎟⎟⎟⎠
= θdet((I − Wτ )i; 1)det(I − Wω − A),

where A consists of the modifications to the I − Wω block that arise from
clearing out the top right block using the column of 1s.

Now observe that θdet((I − Wτ )i; 1) = sτ
i , while

det(I − Wω − A) = det
(

1 0 · · · 0
1 I − Wω − A

)
= det

(
1 1 − ck1 · · · 1 − ck	

1 I − Wω

)
= det((I − Wω∪{i})i; 1) = 1

θ
sω∪{i}

i = 1
θ

sω
i .

We therefore have sσ
i = 1

θ
sτ

i sω
i and see that sω

i has the same value for each
i ∈ τ .

Now consider σ ⊆ τ ∪ ω. Note that σ = (σ ∩ τ ) ∪ (σ ∩ ω), where σ ∩ ω

is simply-added to σ ∩ τ (since ω is simply-added to τ ). To compute sσ
i for

i ∈ τ , we consider two cases. First, suppose i ∈ σ ∩ τ . In this case, applying
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the previous formula to σ = (σ ∩ τ ) ∪ (σ ∩ ω) immediately yields the de-
sired result. Now consider i ∈ τ \ σ . In this case, we can apply the previous
formula to σ ∪ i = ((σ ∩ τ ) ∪ i) ∪ (σ ∩ ω), and so

sσ
i = sσ∪i

i = 1
θ

sσ∩ω
i s(σ∩τ )∪i

i = 1
θ

sσ∩ω
i sσ∩τ

i ,

where the first and last equalities use equation 2.5. Thus, the desired for-
mula for sσ

i holds for all i ∈ τ . �

Note that if ω = {k}, where k is a projector onto τ , then sω
i = εθ for each

i ∈ τ . On the other hand, if k is a nonprojector onto τ , then sω
i = −δθ for each

i ∈ τ . To see this, observe that s{k}
i = s{i,k}

i = (1 + Wik)θ , which evaluates to εθ

if k → i, and −δθ for k �→ i. This gives the following useful corollary.

Corollary 4. Suppose σ = τ ∪ {k}, where k is simply-added onto τ . If k is a pro-
jector, then sσ

i = εsτ
i for each i ∈ τ . If k is a nonprojector, then sσ

i = −δsτ
i for each

i ∈ τ .

Example 3. Let G be the graph in Figure 2A. For σ = {1, 2, 3}, we see that
σ has a simply-added split σ = τ ∪ ω where τ = {1, 2} and ω = {3} is a non-
projector onto τ . Applying Corollary 4, we have sσ

i = −δsτ
i for i = 1, 2. We

see from panel B4 in Figure 2 that sτ
i = εθ , and panel B7 shows sσ

i = −δεθ

for i = 1, 2. Furthermore, σ actually has a second simply-added split: σ =
τ ∪ ω, where τ = {2, 3} and ω = {1} is a projector onto τ . In this case, Corol-
lary 4 guarantees that sσ

i = εsτ
i for i = 2, 3. Since sτ

i = −δθ for i = 2, 3 (see
panel B6 of Figure 2), we see that this second simply-added split gives a
consistent value for sσ

2 .

3.3 Graphical Domination. One of the most important tools we will use
to prove the graph rules in section 4 is the concept of graphical domination.
This refers to certain “domination” relationships between vertices in the
graph of a CTLN that can be identified by examining the graph alone (e.g.,
without computing sσ

i values). The presence of such a relationship within a
subgraph G|σ is sufficient to guarantee that σ is a forbidden motif. Graph-
ical domination can also be used to determine whether a permitted motif
survives as a fixed point support in a larger network. These facts are col-
lected in Theorem 4. Because they rely only on the graph structure, any re-
sults about a CTLN obtained from graphical domination are automatically
parameter independent, within the legal range.

Although we will make frequent use of Theorem 4 in sections 4 and 5, we
postpone the proof until section 6.3. This is because graphical domination is
a special case of a more general notion of domination, which we introduce
in section 6.

Definition 5. We say that k graphically dominates j with respect to σ if σ ∩
{ j, k} �= ∅ and the following three conditions all hold:
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Figure 4: The three cases of graphical domination in Theorem 4. In each panel,
k graphically dominates j with respect to σ (the outermost shaded region). The
inner shaded regions illustrate the subsets of nodes that send edges to j and k.
Note that the vertices sending edges to j are a subset of those sending edges
to k, but this containment need not be strict. Dashed arrows indicate optional
edges between j and k.

1. For each i ∈ σ \ { j, k}, if i → j then i → k.
2. If j ∈ σ , then j → k.
3. If k ∈ σ , then k �→ j.

Theorem 4 (graphical domination). Suppose k graphically dominates j with re-
spect to σ (see Figure 4). Then the following statements all hold:

1. If j, k ∈ σ , then σ /∈ FP(G|σ ), and so σ /∈ FP(G). (inside-in domination)
2. If j ∈ σ and k �∈ σ , then σ /∈ FP(G|σ∪{k}), and so σ /∈ FP(G). (outside-in

domination)
3. If j /∈ σ , k ∈ σ , and σ ∈ FP(G|σ ), then σ ∈ FP(G|σ∪{ j}). (inside-out dom-

ination)

Graphical domination is a special case of a more general notion of dom-
ination, which applies to any TLN. We discuss general domination in sec-
tion 6, and show in Theorem 15 that it gives us a complete characterization
of fixed point supports, similar to the sign conditions in Theorem 2. In sec-
tion 6.3, we use general domination to prove Theorem 4.

Part 1 of Theorem 4 tells us that if there is any graphical domination
inside σ , then σ is not a permitted motif and therefore cannot be a fixed
point support in FP(G). Part 2 tells us that if there is any node j ∈ σ that is
dominated by a k outside σ , then σ does not survive as a fixed point support
of G, irrespective of whether σ is a permitted motif. Finally, part 3 implies
that if for each j /∈ σ there exists a k inside σ that dominates j, then σ is
guaranteed to survive as a fixed point support in FP(G), provided σ is a
permitted motif.

It is important to note that any results obtained via graphical domination
hold for all values of ε, δ within the legal range. Thus, if σ is forbidden by
graphical domination, it is forbidden independent of parameters; similarly,
if σ survives (or does not survive) due to graphical domination, this fact is
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also parameter independent. This is not necessarily the case for forbidden
motifs that do not have graphical domination (see appendix section A.2 for
examples).

We will see in section 5 that when a motif is forbidden by graphical dom-
ination, this feature gets inherited to larger graphs that have this motif as
their skeleton. This follows from the fact that graphical domination inter-
plays nicely with simply-added splits.4 For this reason, it is useful to define
a stronger notion of forbidden motif:

Definition 6 (strongly forbidden). Consider a CTLN on n nodes. We say that σ ⊆
[n] is strongly forbidden if there exist j, k ∈ σ such that k graphically dominates
j with respect to σ .

3.4 Uniform In-Degree. Here we introduce uniform in-degree graphs,
which comprise a large and interesting family of permitted motifs. This
family is particularly nice because the survival rules are parameter inde-
pendent and can be easily checked directly from the graph (see Theorem 5).

Definition 7. We say that σ has uniform in-degree d if every i ∈ σ has in-degree
din

i = d within G|σ .

Note that the subgraph G|σ could have uniform in-degree, but the nodes of
σ may have different degrees with respect to the full graph G.

There exist graphs with uniform in-degree d for any 0 ≤ d ≤ |σ | − 1.
When d = 0, the graph is necessarily an independent set, that is, a collection
of nodes with no edges between them; when d = |σ | − 1, it is a clique, that
is, every pair of nodes is connected by a bidirectional edge. For in-between
values of d, however, there are several distinct possibilities. For example, if
|σ | = 4 and d = 1, the subgraph G|σ could be a 4-cycle, a pair of 2-cliques,
or a 3-cycle with a single outgoing edge to a fourth node (we call this last
graph the “tadpole”). Notice that the tadpole graph illustrates that a uni-
form in-degree subgraph need not be cyclically symmetric and need not
have uniform out-degree. Figure 5 illustrates several examples of uniform
in-degree graphs.

Theorem 5 (uniform in-degree). Let σ have uniform in-degree d. For k /∈ σ , let

dk
de f= |{i ∈ σ | i → k}| be the number of edges k receives from σ . Then

σ ∈ FP(G|σ∪{k}) ⇔ dk ≤ d.

Furthermore, if |σ | > 1 and d < |σ |/2, then the fixed point is unstable. If d =
|σ | − 1 (i.e., if σ is a clique), then the fixed point is stable.

4
Suppose ω is simply-added to τ . If j, k ∈ τ , and k graphically dominates j with respect

to τ , then k also graphically dominates j with respect to τ ∪ ω. This is because all edges
from ω to j have corresponding edges from ω to k.
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Figure 5: Examples of uniform in-degree graphs. (A1–A4) All graphs with uni-
form in-degree on n = 3 vertices. (B1–B4) Some examples with n = 4 and n = 5
vertices.

The proof of Theorem 5 requires general domination and is thus post-
poned to section 6.4. Note that this result, like graphical domination, is pa-
rameter independent.

Next we show how the eigenvalues of a uniform in-degree subnetwork
I − Wτ are inherited when a subset ω is simply-added to τ . Recall that in the
proof of Theorem 3 (simply-added), the determinant calculation was sim-
plified by the insertion of the all-ones vector, which occurred in the expres-
sions sσ

i = θdet((I − Wσ )i; 1). When τ has uniform in-degree, we can apply
a similar trick to compute the eigenvalues of I − Wσ , where σ = τ ∪ ω.

Lemma 5. Let σ have a simply-added split τ ∪ ω, where τ is uniform in-degree.
Let Rτ be the row sum of I − Wτ . Note that this is the top (Perron-Frobenius) eigen-
value of I − Wτ . Then

eig(I − Wσ ) ⊃ eig(I − Wτ ) \ Rτ .

So all the eigenvalues of τ get inherited, except possibly the top one Rτ . In particular,
if τ is unstable, then σ is also unstable.

Proof. To calculate eig(I − Wσ ), observe that

det(I − Wσ − λI) = det

⎛⎜⎜⎜⎝
α1 . . . α|ω|

I − Wτ − λI
...

...
α1 . . . α|ω|

∗ I − Wω − λI

⎞⎟⎟⎟⎠ ,

where αi = 1 − ε if i is a projector onto τ , and αi = 1 + δ otherwise. Let

A = ((I − Wτ − λI)|τ |; (Rτ − λ)1)
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be the matrix obtained from I − Wτ − λI by replacing the last column with
a column of Rτ − λ. Note that det(I − Wτ − λI) = det(A) since A can be ob-
tained from I − Wτ − λI by adding all the columns of the matrix to its last
column. Performing these same column operations on the full matrix yields

det(I − Wσ − λI) = det

⎛⎜⎜⎜⎝
α1 . . . α|ω|

A
...

...
α1 . . . α|ω|

∗ I − Wω − λI

⎞⎟⎟⎟⎠ .

Using the last column of A (scaled by αi
Rτ −λ

), we can clear out the top right
of the matrix to obtain

det(I − Wσ − λI) = det
(

A 0
∗ B

)
,

where B = 1
Rτ −λ

C for some matrix C whose entries are all polynomial in λ.
Note that det B = 1

(Rτ −λ)|ω| detC, and so

det(I − Wσ − λI) = det(A)det(B) = det(I − Wτ − λI)
det(C)

(Rτ − λ)|ω| .

Thus, all the roots of det(I − Wτ − λI) must also be roots of det(I − Wσ − λI)
except possibly λ = Rτ , and so eig(I−Wσ ) ⊃ eig(I−Wτ )\Rτ as desired. �

This result will be useful in section 5.1 in the context of composite graphs
(see Proposition 1).

4 Graph Rules for CTLNs

In this section, we prove a variety of graph rules characterizing fixed point
supports of CTLNs in terms of the underlying graph G. These are truly
“graph rules” in that they depend only on G and are thus independent of
the choice of parameters ε, δ, and θ (provided these fall within the legal
range). We will again use the streamlined notation FP(G) to denote the set
of fixed point supports, as in section 3.

A few of our results express the relationship between FP(G) and FP(G′)
for a pair of related graphs G and G′ (see, e.g., Rule 7), or have the form
σ ∪ {k} ∈ FP(G) if and only if σ ∈ FP(G) (e.g., Rule 8). Such relationships
are also parameter independent, even when the sets FP(G) and FP(G′) are
themselves parameter dependent. In particular, for a different set of param-
eters, the fixed point supports FP(G) and FP(G′) may change, but the given
relationship between them stays the same. These statements should thus be
understood as applying to CTLNs with fixed and matching parameters.
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4.1 Uniform In-Degree and Parity. We begin with a very simple rule
that follows directly from Theorem 1 (parity).

Rule 1 (parity). For any graph G, the total number of fixed points |FP(G)| is
odd.

Next, we digest Theorem 5 to obtain graph rules for some important
special cases of uniform in-degree graphs: independent sets, cliques, and
cycles. First, we repackage Theorem 5 as a rule to include it here for
completeness.

Rule 2 (uniform in-degree). Let σ have uniform in-degree d. For k /∈ σ , let

dk
def= |{i ∈ σ | i → k}| be the number of edges k receives from σ . Then

σ ∈ FP(G) ⇔ dk ≤ d for all k �∈ σ.

An independent set is a collection of nodes with no edges between them
within the restricted subgraph; such a set is uniform in-degree with d = 0.
Recall a sink is a node with no outgoing edges.

Rule 3 (independent sets). Suppose σ ⊆ [n] is an independent set. Then

σ ∈ FP(G) ⇔ σ is a union of sinks.

Furthermore, when σ ∈ FP(G), the fixed point is stable if and only if |σ | = 1.
In addition, idx(σ ) = (−1)|σ |−1.

To see the index formula in Rule 3, observe that a singleton has index 1,
and by Lemma 3 (alternation), the indices must alternate their signs accord-
ing to the size of the independent set.

A subset σ is a clique if every pair of nodes has a bidirectional edge be-
tween them in G|σ , and thus it has uniform in-degree d = |σ | − 1. We say
that a node k /∈ σ is a target of σ when i → k for all i ∈ σ . We say σ is target-
free if there is no node k ∈ [n] \ σ that k is a target of σ .

Rule 4 (cliques). Suppose σ ⊆ [n] is a clique. Then

σ ∈ FP(G) ⇔ σ is target-free.

Furthermore, when σ ∈ FP(G), the fixed point is always stable and has
idx(σ ) = +1.

Recall that a cycle is a cyclically symmetric subgraph with uniform in-
degree 1. Applying Theorem 5 yields the following result:
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Figure 6: (A) A (proper) source in the graph. (B) A sink in the graph. (C) A
projector onto the gray region. (D) A target of the gray region. Dashed lines
indicate that all back edges are optional.

Rule 5 (cycles). Suppose σ ⊆ [n] is a cycle. Then

σ ∈ FP(G) ⇔ for all k /∈ σ, k receives at most 1 edge from σ.

Furthermore, when σ ∈ FP(G), the fixed point is always unstable, but
idx(σ ) = +1.

The index in Rules 4 and 5 follows from the fact that the sum of the in-
dices of fixed points is always 1 (see Theorem 1), together with the obser-
vation that no proper subset of a clique or a cycle can support a fixed point.
In the case of cliques, every proper subset is a clique with a target and thus
does not survive. For a cycle, it is easy to see that any proper subset either
contains a domination relationship or is an independent set that does not
survive by Rule 3.

4.2 Adding a Single Node. Here we consider how fixed point supports
are affected by the addition of a single node to a graph; specifically, we can
fully characterize the effect on the fixed points when the added node is a
source, sink, projector, or target (see Figure 6). A source is a node that has
no incoming edges. We say a source is proper if it has at least one outgoing
edge. A sink is a node that has no outgoing edges. Recall that a node k is a
projector onto σ if k → i for all i ∈ σ ; note that there may or may not be edges
back from σ to k. Finally, recall that a node k is a target of σ if it receives an
edge from every node in σ (again there may or may not be back edges from
k to σ ).

The proofs of the remaining rules will make use of the following techni-
cal results from the previous three sections:

• Theorem 2 (sign conditions) characterizing σ ∈ FP(G) via the signs of
the sσ

i
• Corollary 2, which presents equivalent conditions for σ ∈ FP(G) in

terms of survival of σ in intermediate subgraphs G|τ for τ ⊇ σ

• Theorem 3 (simply-added) and Corollary 4, which describe how sσ
i

factors when σ contains a simply-added split
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Figure 7: Three example graphs with their respective FP(G).

• Theorem 4 (graphical domination) guaranteeing that if σ has inside-
in or outside-in domination, then σ /∈ FP(G), while the presence of
inside-out domination of a node k /∈ σ ensures the survival of a per-
mitted motif σ to FP(G|σ∪k).

The next two rules show that no fixed point support can contain a node
that is a proper source in the restricted subgraph, and that any node that is
a proper source in all of G can be removed without any effect on FP(G).

Rule 6 (sources in σ ). Let G be a graph on n nodes and σ ⊆ [n]. If there exists
a k ∈ σ such that k is a proper source in G|σ , then σ /∈ FP(G). More generally,
if there exists an 	 ∈ [n] such that σ contains a proper source in G|σ∪{	}, then
σ /∈ FP(G).

Proof. Suppose there exists an 	 ∈ [n] such that k ∈ σ is a proper source in
G|σ∪{	} with k → 	. Then 	 graphically dominates k since k has no inputs in
G|σ∪{	} and k → 	. Hence, σ /∈ FP(G|σ∪{	}) by Theorem 4, and so σ /∈ FP(G)
by Corollary 2. �

Rule 7 (sources in G). Let G be a graph on n nodes and k ∈ [n]. If k is a proper
source in G, then

FP(G) = FP(G|[n]\{k}).

Proof. Since k is a proper source in G, there exists 	 ∈ [n] such that k → 	.
Thus, for any σ ⊆ [n] with k ∈ σ , σ contains a proper source in G|σ∪{	}, and
so σ /∈ FP(G) by Rule 6. For σ ⊆ [n] \ {k}, σ ∈ FP(G) implies σ ∈ FP(G|[n]\{k}),
by Corollary 2. Hence, FP(G) ⊆ FP(G|[n]\{k}). To see the reverse inclusion, let
σ ∈ FP(G|[n]\{k}). For any i ∈ σ , i inside-out dominates k with respect to σ ,
and so by Theorem 4, σ survives and thus σ ∈ FP(G). Therefore, FP(G) ⊇
FP(G|[n]\{k}). �

As an illustration of Rule 7, consider the graph in Figure 7B, which is
obtained from the graph in panel A by adding a proper source, node 4. Ob-
serve that FP(G) is identical for these two graphs, since the fixed points of
G are preserved on removal of the proper source.
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Rule 8 shows that the addition of a sink k creates a new fixed point sup-
port σ ∪ {k} precisely when σ is a surviving fixed point of the original graph.

Rule 8 (sinks). Let G be a graph on n nodes and k ∈ [n]. If k is a sink in G,
then for any nonempty σ ⊆ [n] \ {k},

σ ∪ {k} ∈ FP(G) ⇔ σ ∈ FP(G),

and idx(σ ∪ {k}) = −idx(σ ).

Proof. Since k is a sink in G, k is a nonprojector onto [n] \ {k}, and for all
i ∈ [n] \ {k}, we have sσ∪{k}

i = −δsσ
i by Corollary 4. Thus, for all i, j ∈ σ , we

have sgn sσ∪{k}
i = sgn sσ∪{k}

j if and only if sgn sσ
i = sgn sσ

j . Similarly, for all 	 ∈
[n] \ (σ ∪ {k}), sgn sσ∪{k}

	 = −sgn sσ∪{k}
i if and only if sgn sσ

	 = −sgn sσ
i . Hence

all the signs for all i ∈ [n] \ {k} have the proper relationship for σ ∪ {k} to be a
fixed point support precisely when σ is a fixed point support. Thus, the only
remaining sign to check is that of sσ∪{k}

k = sσ
k . Observe that σ ∪ {k} ∈ FP(G)

precisely when, for all i ∈ σ ,

sgn sσ∪{k}
k = sgn sσ∪{k}

i = sgn(−δsσ
i ) = −sgn sσ

i ,

in which case, sgn sσ
k = −sgn sσ

i and so σ ∈ FP(G). Thus, the result holds
and idx(σ ∪ {k}) = −idx(σ ), as desired. �

As an example, consider the graph in Figure 7A, which consists of a
clique {1, 2} and a sink node 3. By Rule 8 (sinks), {1, 2, 3} ∈ FP(G) if and
only if {1, 2} ∈ FP(G). Since {1, 2} is a target-free clique, it survives as a
fixed point by Rule 4, and thus {1, 2, 3} ∈ FP(G) as well. In contrast, in
Figure 7C, the addition of the sink node 4 eliminates the fixed point sup-
ports {1, 2} and {1, 2, 3} by Rule 2 (uniform in-degree). Thus, we know that
{1, 2, 4}, {1, 2, 3, 4} /∈ FP(G) by Rule 8.

For our next rule, we consider when the added node k is a projector onto
σ . In contrast to when k is a sink, σ ∪ {k} will be a fixed point support pre-
cisely when σ does not survive the addition of k.

Rule 9 (projectors). Let G be a graph on n nodes and k ∈ [n]. If k is a projector
onto [n] \ {k}, then for any nonempty σ ⊆ [n] \ {k},

σ ∪ {k} ∈ FP(G) ⇔ σ �∈ FP(G) and σ ∈ FP(G|[n]\{k}),

and idx(σ ∪ {k}) = idx(σ ).

Proof. Since k is a projector onto [n] \ {k}, we have that sσ∪{k}
i = εsσ

i for all
i ∈ [n] \ {k} (see Corollary 4). By the same logic as in the proof of Rule 8,
all the signs for i ∈ [n] \ {k} have the proper relationship for σ ∪ {k} to be
a fixed point support precisely when σ is a fixed point support in G|[n]\{k}.
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Thus, the only remaining sign to check is that of sσ∪{k}
k = sσ

k . Observe that
σ ∪ {k} ∈ FP(G) precisely when σ ∈ FP(G|[n]\{k}), and for all i ∈ σ ,

sgn sσ∪{k}
k = sgn sσ∪{k}

i = sgn sσ
i .

In this case, sgn sσ
k = sgn sσ

i and so σ /∈ FP(G). Finally, idx(σ ∪ {k}) = idx(σ ).
�

The next rule shows that if σ has a target, it can never support a fixed
point.

Rule 10 (targets). Let G be a graph on n nodes and σ ⊆ [n]. If there exists
k ∈ [n] \ σ such that k is a target of σ , then σ /∈ FP(G).

Proof. For every i ∈ σ , k outside-in dominates i with respect to σ , and so
σ /∈ FP(G). �

As an illustration of Rule 10, notice that in Figure 7C, node 4 is a target
of {1, 2}, and thus {1, 2} /∈ FP(G).

The last two rules characterize the collection of fixed point supports
when a graph contains a node that is either fully bidirectionally connected
to all other nodes or, at the other extreme, is isolated and has no connections
to other nodes.

Rule 11 (bidirectionally connected nodes). Let G be a graph on n nodes and
k ∈ [n]. If k ↔ i for all i ∈ [n] \ {k}, then

FP(G) = {σ ∪ {k} | σ ∈ FP(G|[n]\{k})}.

Thus, |FP(G)| = |FP(G|[n]\{k})|.
Proof. Observe that k is a target of [n] \ {k}, and so for any σ with k /∈ σ ,
σ /∈ FP(G) by Rule 10. Since k is also a projector onto [n] \ {k}, Rule 9 applies,
and so σ ∪ {k} ∈ FP(G) if and only if σ ∈ FP(G|[n]\{k}) since σ /∈ FP(G) for all
such σ . �

Recall that a node is isolated if it has no incoming and no outgoing edges.

Rule 12 (isolated nodes). Let G be a graph on n nodes and k ∈ [n]. If k is an
isolated node in G, then

FP(G) = FP(G|[n]\{k}) ∪ {σ ∪ {k} | σ ∈ FP(G|[n]\{k})} ∪ {k}.

Thus, |FP(G)| = 2|FP(G|[n]\{k})| + 1.

Proof. Let σ ∈ FP(G|[n]\{k}). For any i ∈ σ , we have i inside-out dominates
k with respect to σ , and so σ ∈ FP(G). Since k is isolated, it is also a sink,
and thus by Rule 8, σ ∪ {k} ∈ FP(G) for all σ ∈ FP(G). Finally, {k} ∈ FP(G)
by Rule 3 since it is trivially an independent set that is a sink. �
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4.3 Parameter Independence in FP(G). All the CTLN graph rules
presented thus far, including graphical domination, are parameter inde-
pendent. Thus, any arguments relying on these results are guaranteed to
depend solely on the graph structure. In light of this, it is natural to ask
to what extent FP(G) is parameter independent. The proof of Theorem 6
shows that graph rules are sufficient to characterize the full set FP(G) for
all graphs on n ≤ 4 nodes, and thus FP(G) is parameter independent for all
such graphs:

Theorem 6. Let G be a graph on n ≤ 4 nodes. Then FP(G) is constant across
all values of ε and δ in the legal range. In other words, FP(G) is parameter
independent.

Proof. Figure 18 in appendix section A.1 gives all directed graphs of size
n ≤ 3 together with the sσ

i values, for σ = [n]. In particular, it can be seen
that the signs of the sσ

i for these small graphs are all parameter independent.
Applying Theorem 2 (sign conditions), we see that there are nine permitted
motifs of size |σ | ≤ 3. Equivalently, all nine permitted motifs can be identi-
fied by graph rules, and all the other motifs can be shown to be forbidden
by inside-in graphical domination. The survival rules for the permitted mo-
tifs are also parameter independent. Seven of them are uniform in-degree,
and thus their survival is parameter independent by Rule 2, while for the
remaining two, either inside-out or outside-in graphical domination ap-
plies to every possible embedding of the motifs into larger graphs. It fol-
lows that all fixed point supports that are proper subsets of [n] for n ≤ 4 are
parameter independent. Moreover, by Rule 1 (parity), we can always de-
termine whether the full support [n] is in FP(G) from knowledge of which
proper subsets are in FP(G). We conclude that for n ≤ 4, FP(G) is parameter
independent. �

It turns out that among permitted motifs of size |σ | = 4, a few have
parameter-dependent survival rules when embedded in graphs of size
n ≥ 5. Figure 8 shows all three permitted motifs of size 4 whose survival
is parameter dependent, together with the embeddings where this depen-
dence occurs. (For all other embeddings, the survival rules are parameter
independent and can be derived from graphical domination.) In fact, the
precise dependence on ε and δ can be easily computed (see example 4) and
is also shown in Figure 8. In appendix section A.2, we give some exam-
ple graphs on n = 5 that have parameter-dependent FP(G) as a result of
having one or more of these motifs embedded in a parameter-dependent
manner.

Example 4. For the three graphs in Figure 8, we will use Theorem 2 (sign
conditions) to work out the parameter dependence of the survival of these
motifs. In each case, let σ = {1, 2, 3, 4} and let node 5 be the one in red.
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Figure 8: Parameter-dependent survival. The three permitted motifs with |σ | =
4 that have parameter-dependent survival rules. In each panel, the graph in the
gray-shaded region corresponds to σ and the red node is an external node that
has an impact on the survival of σ . Note that all edges from the red node back
to σ do not have an impact on the survival of σ and are thus omitted for clarity.
In graph A, an equivalent embedding has edges from vertices 3 and 4 to the red
node, by symmetry. In each case, the polynomial inequality gives the precise
condition under which σ survives.

A. Let G be the graph in Figure 8A. Computing sσ
i = det((I − Wσ )i; θ1)

for all i ∈ σ , we obtain

sσ
1 = εθ (ε2 + 2εδ + 2δ2), sσ

2 = sσ
3 = εθ (ε2 + εδ + δ2),

sσ
4 = εθ (2ε2 + 3εδ + 2δ2).

Since sgn sσ
i = sgn sσ

j for all i, j ∈ σ , we see that σ is permitted by
Theorem 2 (sign conditions). In addition, we have sσ

5 = εθ (ε3 + ε2δ −
δ3). Since σ survives if and only if sgn sσ

5 = −sgn sσ
i for all i ∈ σ , we

see that σ survives precisely when ε3 + ε2δ − δ3 < 0.

B. Let G be the graph in Figure 8B. Here we have

sσ
1 = εδ2θ, sσ

2 = sσ
3 = εθ (ε2 + εδ + δ2), sσ

4 = εθ (ε2 + 2εδ + 2δ2),

and since the signs of the sσ
i all agree, we see that σ is a permitted

motif. Then since sσ
5 = εθ (ε3 + ε2δ − δ3), we again see that σ survives

precisely when ε3 + ε2δ − δ3 < 0.

C. Let G be the graph in Figure 8C. For this graph, we have

sσ
1 = sσ

2 = sσ
3 = −ε2δθ, sσ

4 = −ε2θ (ε + 2δ),

showing that σ is a permitted motif. In addition, sσ
5 = −ε2θ (ε2 + εδ −

δ2), yielding the condition for survival of σ : ε2 + εδ − δ2 < 0.

For certain classes of graphs, we can get parameter independence of
FP(G) through at least n = 5. A directed graph is called oriented if it has no
bidirectional edges. (Note that all the graphs in Figure 8 have the bidirec-
tional edge 2 ↔ 3 and are thus not oriented.)
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Theorem 7. Let G be an oriented graph on n ≤ 5 nodes. Then FP(G) is parameter
independent.

Proof. In appendix section A.3, we examine all permitted motifs with |σ | ≤
4 that can arise as subgraphs of an oriented graph and show that the cor-
responding survival rules are all parameter independent. Combining this
with Rule 1 (parity), we see that the full FP(G) is parameter independent
for oriented graphs of size n ≤ 5. �

We have already seen that parameter independence of FP(G) cannot ex-
tend to all n = 5 graphs (see appendix section A.2 for some explicit exam-
ples). It is possible, however, that Theorem 7 can be extended to oriented
graphs with n > 5.

5 Building Block Graph Rules for CTLNs

In sections 3 and 4, we have presented a variety of graph rules that enable us
to determine when certain subgraphs are permitted or forbidden motifs, as
well as their survival rules. In this section, we consider larger networks cor-
responding to composite graphs that are built from component subgraphs
and address the question: If we know FP(Gi) for each component Gi, what
can we say about FP(G) for the full network? Our main results are collected
in section 5.1. These results can be thought of as graph rules for networks
that can be decomposed into smaller building blocks whose structure is bet-
ter understood. In the remaining subsections, we prove these results and
provide additional details on the fixed point supports of composite graphs.

As in sections 3 and 4, we simplify notation and write FP(G) instead of
FP(G, ε, δ). Note that whenever such expressions occur in the same claim,
such as FP(G) and FP(Gi), the same choices for ε and δ must be assumed in
each instance. All the results, however, are parameter independent.

5.1 Composite Graphs.

Definition 8 (composite graph). Given a set of graphs G1, . . . , GN, and a graph
Ĝ on N nodes, the composite graph with components Gi and skeleton Ĝ is the
graph G constructed by taking the union of all component graphs and adding edges
between components according to the following rule: if u ∈ Gi and v ∈ Gj, then
u → v in G if and only if i → j in Ĝ. (See Figure 9.)

Note that any graph G can trivially be thought of as a composite graph,
with each component a single vertex. The results in this section are more
interesting when at least one component in the graph is larger.

The first result says that if G|σ is a composite graph, for some σ ⊆ [n],
and any component σi is a forbidden motif, then σ is also a forbidden mo-
tif. In other words, one bad apple spoils the bunch. The proof is given in
section 5.2.



Fixed Points of Competitive Threshold-Linear Networks 121

Figure 9: (A) A skeleton graph Ĝ. (B) An arbitrary composite graph with skele-
ton Ĝ from panel A. Each node i in the skeleton is replaced with a component
graph Gi whose connections to the rest of the graph are prescribed by the con-
nections of node i in Ĝ. (C) An example composite graph with skeleton Ĝ from
panel A.

Theorem 8. Let G|σ be any composite graph with components G|σ1 , . . . , G|σN . If
σi is a forbidden motif for any i ∈ [N], then σ is also a forbidden motif.

Next we show that if G|σ is a composite graph that has an unstable uni-
form in-degree component, this is sufficient to guarantee that σ is also un-
stable.
Proposition 1. Let G|σ be any composite graph with components G|σ1 , . . . , G|σN .
If σi is a uniform in-degree permitted motif that is unstable for any i ∈ [N], then σ

is unstable (or rather I − Wσ is unstable).

Proof. By definition of a composite graph, σ has a simply-added split
where σ \ σi is simply-added to σi. Since there exists a σi that is uniform in-
degree, we can apply Lemma 5 to show that all the eigenvalues of I − Wσi

are inherited to I − Wσ except for possibly the top eigenvalue (which is the
row sum of I − Wσi ). Since σi is unstable, I − Wσi has at least one negative
eigenvalue, and this cannot be the top eigenvalue, since the row sum is
always positive. Thus, I − Wσ inherits this negative eigenvalue, and so is
unstable. �

For the following results, G is always a composite graph on n vertices,
with skeleton Ĝ and components G1, . . . , GN. For any σ ⊆ [n], we define

σi
def= σ ∩ τi, where τi is the set of vertices in component Gi. Note that [n] =

∪iτi, and Gi = G|τi .
Recall that a graph is strongly forbidden if it has inside-in graphical dom-

ination. The next theorem shows that when the skeleton is strongly forbid-
den, the full graph is as well:

Theorem 9. Let G be a composite graph with skeleton Ĝ. If Ĝ is strongly forbidden,
then G is strongly forbidden.

A strongly forbidden skeleton is thus sufficient to guarantee that G is
strongly forbidden even if all the components Gi are permitted. Graphi-
cal domination within the skeleton is essential to this result: the following
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Figure 10: (A1) A strongly forbidden motif, where node 1 graphically domi-
nates node 3 with respect to {1, 2, 3}. (A2) A composite graph whose skeleton
is the graph from panel A1. This graph is a strongly forbidden motif since ev-
ery node in component G1 graphically dominates every node in G3. (B1) A for-
bidden motif that has no graphical domination. (B2) A composite graph whose
skeleton is the graph from panel B1. This graph is a (uniform in-degree) permit-
ted motif despite having a forbidden skeleton.

example shows that Theorem 9 cannot be extended to skeletons that are
forbidden but not strongly forbidden.

Example 5. Consider the graph in panel A1 of Figure 10. This graph is
strongly forbidden since node 1 graphically dominates node 3 with respect
to the full support {1, 2, 3}. The graph in panel A2 of Figure 10 is a com-
posite obtained from the skeleton in panel A1 by inserting 2-cliques at two
of the nodes. Theorem 9 guarantees that the graph in panel A2 is strongly
forbidden since it has a strongly forbidden skeleton. In particular, we see
that every node in G1 graphically dominates each node in G3.

In contrast, consider the graph in panel B1 of Figure 10, which has
no graphical domination and thus is not strongly forbidden. It turns out
that this graph is still a forbidden motif: it has the form σ ∪ {k} where
σ = {1, 2, 3, 4} and k = 5 is a sink. Since σ has uniform in-degree d = 1
and 5 receives two edges from σ , we see σ /∈ FP(G) by Rule 2 and thus
σ ∪ {5} /∈ FP(G) by Rule 8 (sinks). The composite graph in panel B2 of Fig-
ure 10 has the graph from panel B1 as its skeleton, again with 2-cliques
inserted at two of the nodes. However, this graph is not forbidden, despite
having a forbidden skeleton, since it has uniform in-degree 2 (see Rule 2).
This example shows that Theorem 9 cannot be generalized from skeletons
that are strongly forbidden to those that are merely forbidden.

Next we consider some special classes of composite graphs where we
can guarantee that the full support is permitted precisely when all the com-
ponents are permitted.

Definition 9. Let G be a composite graph with components G1, . . . , GN and skele-
ton Ĝ. If Ĝ is an independent set, then we say that G is the disjoint union of the
components Gi. If Ĝ is a clique, then we say G is the clique union of the Gi. Finally,
if Ĝ is a cycle, then G is a cyclic union of its components. (See Figure 11.)

Theorem 10. Let G|σ be either a disjoint union, a clique union, or a cyclic union
with nonempty components G|σ1 , . . . , G|σN . Then σ is a permitted motif if and only
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Figure 11: (A) A disjoint union. (B) A clique union. (C) A cyclic union.

if σi is a permitted motif for every i ∈ [N]. Moreover, when σ is permitted, the index
factors as:

idx(σ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(−1)N−1

N∏
i=1

idx(σi), for disjoint unions,

N∏
i=1

idx(σi), for clique or cyclic unions.

Note that the expressions for the indices, idx(σ ), are identical or nearly
identical between clique unions, cyclic unions, and disjoint unions. A sim-
ple rule of thumb is that the index of σ in these unions is given by the prod-
uct of the indices of all components σi with the index of the skeleton. In the
case of clique unions and cyclic unions, the skeletons have a unique (full
support) fixed point, whose index is thus +1. For disjoint unions, the skele-
ton is an independent set of size N with index (−1)N−1 (see Rule 3).

Disjoint unions, clique unions, and cyclic unions are all examples of com-
posite graphs whose skeletons are permitted motifs. It is thus natural to
ask whether Theorem 10 holds for other composite graphs with permitted
skeletons. In fact, we conjecture that this theorem holds more generally.

Conjecture 1. Let G be a composite graph whose skeleton Ĝ is a permitted
motif. Then G is a permitted motif if and only if every component Gi is
permitted.

Note that the forward direction is a direct consequence of Theorem 8.
It is also worth noting that even if true, this conjecture does not cover all
permitted motifs that are composite graphs. For example, the graph in panel
B2 of Figure 10 is a permitted motif, but its skeleton is forbidden.

The proof of Theorem 10 is given in section 5.3. There we provide sep-
arate proofs for the disjoint, clique, and cyclic unions and also work out
the full sets FP(G) in the case where all of G has one of these special com-
posite structures. Furthermore, these results imply that FP(G) is parame-
ter independent whenever all the FP(Gi) are parameter independent (see
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Corollary 5). In section 5.4, we consider survival rules for disjoint unions
and clique unions that are embedded in larger graphs.

But first, in section 5.2, we present some lemmas that help us to prove
the theorems on composite graphs stated above. There we also prove The-
orems 8 and 9.

5.2 Some Lemmas for Composite Graphs.

Lemma 6. Let G be a composite graph, and consider σ ⊆ [n]. For any component
Gi such that σi = σ ∩ τi �= ∅,

sgn sσ
j = sgn sσ

k ⇔ sgn sσi
j = sgn sσi

k , for all j, k ∈ τi.

Proof. Observe that [n] \ τi is simply-added to τi for each i ∈ [N], by the
nature of the composite graph construction, and thus σ \ σi is simply-added
to τi. By Theorem 3, sσ

j = αsσi
j , where α = 1

θ
sσ\σi

j is identical for all j ∈ τi. �

With this lemma, we can immediately prove Theorem 8.

Proof of Theorem 8. Suppose G|σ is a composite graph with components
G|σ1 , . . . , G|σN , and one of the σi is a forbidden motif. Then, by Theorem 2
(sign conditions), there exists j, k ∈ σi such that sgn sσi

j �= sgn sσi
k , and there-

fore by Lemma 6, we have sgn sσ
j �= sgn sσ

k . Thus, σ is a forbidden motif. �
Lemma 7. If σ ∈ FP(G), then σi ∈ FP(Gi) for each i ∈ [N] such that σi �= ∅.

Proof. If σ ∈ FP(G), then for any j, k ∈ σi and 	 ∈ τi \ σi, we have sgn sσ
j =

sgn sσ
k = −sgn sσ

	 by Theorem 2 (sign conditions). By Lemma 6, we infer that
sgn sσi

j = sgn sσi
k = −sgn sσi

	 , and so σi satisfies the sign conditions within Gi.
Thus, σi ∈ FP(Gi). �

As an immediate consequence of Lemma 7, we see that if any compo-
nent σi of σ is forbidden (or non-surviving) in Gi, then σ is forbidden (or
non-surviving) in G. The next lemma shows that if σ is a permitted motif,
the survival of each of its components in G is sufficient to guarantee the
survival of σ .

Lemma 8. If σ ∈ FP(G|σ ) and σi ∈ FP(Gi) for each i ∈ [N], then σ ∈ FP(G).

Proof. First, note that σi ∈ FP(Gi) implies σi �= ∅ for each i ∈ [N], and
sgn sσi

j = sgn sσi
k = −sgn sσi

	 for all j, k ∈ σi and 	 ∈ τi \ σi. On the other hand,
σ ∈ FP(G|σ ) implies sgn sσ

j = sgn sσ
k for all j, k ∈ σ . Now applying Lemma 6,

we see that sgn sσ
	 = −sgn sσ

j for 	 ∈ [n] \ σ and j ∈ σ . It follows that the sign
conditions are satisfied, and so σ ∈ FP(G). �

The next lemma tells us that graphical domination in the skeleton graph
Ĝ gets inherited to the composite graph G.
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Lemma 9. Let G be a composite graph with skeleton Ĝ. If k̂ graphically dominates
ĵ with respect to σ̂ in Ĝ, then for any k ∈ Gk̂ and any j ∈ Gĵ, we have that k graph-

ically dominates j with respect to σ =
⋃
i∈σ̂

Gi.

Proof. Let [n] denote the vertices of G and [N] the vertices of Ĝ. Consider
σ̂ ⊆ [N], and suppose there exists ĵ, k̂ ∈ [N] such that k̂ graphically domi-
nates ĵ with respect to σ̂ . By definition of graphical domination, this means
that (1) for any ı̂ ∈ σ̂ , ı̂ → ĵ implies ı̂ → k̂; (2) if ĵ ∈ σ̂ , then ĵ → k̂; and (3)
if k̂ ∈ σ̂ , then k̂ �→ ĵ. We will show that in G, any j ∈ Gĵ and k ∈ Gk̂ sat-
isfy these same properties, and so k graphically dominates j with respect
to σ .

By definition of the composite graph, ĵ → k̂ and k̂ �→ ĵ in the skeleton
immediately imply j → k and k �→ j in G|σ , and so satisfying conditions 2
and 3 in the skeleton guarantees they are satisfied in G. Now we turn to
condition 1. Consider i ∈ σ such that i → j in G|σ . If i and j are both in
component σĵ, then j ∈ σ and so ĵ ∈ σ̂ . Thus, condition 2 holds and ĵ → k̂ in
Ĝ|σ̂ , which implies that i → k in G|σ . If they are in different components (i.e.,
i ∈ σı̂ for some ı̂ �= ĵ), then by definition of a composite graph, i → j implies
ı̂ → ĵ in Ĝ|σ̂ , and so by condition 1, we must have ı̂ → k̂ and thus i → k in
G|σ . Thus, for any i ∈ σ , i → j implies i → k and condition 1 is satisfied.
Hence, k graphically dominates j with respect to σ , and so G|σ is strongly
forbidden. �

As an immediate consequence, we obtain Theorem 9, since inside-in
graphical domination within any graph implies that it is strongly forbid-
den.

5.3 Proof of Theorem 10 (Disjoint, Clique, and Cyclic Unions). To
prove Theorem 10, we separately consider composite graphs that are dis-
joint unions, clique unions, and cyclic unions. We characterize the full FP(G)
of these graphs. In the next section, we provide partial survival rules when
these motifs are embedded in larger graphs.

As before, in this section we assume G is a composite graph on n vertices,
with skeleton Ĝ and components G1, . . . , GN. For any σ ⊆ [n], we denote
σi = σ ∩ τi, where τi is the set of vertices in Gi. Note that [n] = ∪iτi, and
Gi = G|τi .

Theorem 11 (disjoint union). Let G be a disjoint union of components G1, . . . ,

GN. For any nonempty σ ⊆ [n],

σ ∈ FP(G) ⇔ σi ∈ FP(Gi) ∪ ∅ for all i ∈ [N].

Moreover, for any σ ∈ FP(G), the index is given by



126 C. Curto, J. Geneson, and K. Morrison

idx(σ ) = (−1)|σ̂ |−1
∏
i∈σ̂

idx(σi), where σ̂
de f= {i ∈ [N] | σi �= ∅}.

In particular, Theorem 11 tells us that

FP(G) = {σ ⊆ [n] | σi ∈ FP(Gi) ∪ ∅ for each i ∈ [N]},

and so,

|FP(G)| =
N∏

i=1

(|FP(Gi)| + 1) − 1.

For example, if |FP(Gi)| = 1 for each i ∈ [N], as in the case of the indepen-
dent set (where every component is a single node), then |FP(G)| = 2N − 1.

Proof. (⇒) This follows immediately from Lemma 7.
(⇐) To simplify notation, we fix θ = 1.5 Suppose σ has the property that

σi ∈ FP(Gi) for each i ∈ σ̂ , where σ̂
def= {i ∈ [N] | σi �= ∅}. Consider j ∈ σi, and

observe that for any k �= i, σk is simply-added to σi. Using Theorem 3, we
thus obtain sσi∪σk

j = sσi
j sσk

j . Moreover, for any other 	 ∈ σ̂ \ {i, k}, we also have
that σ	 is simply-added to σi ∪ σk, and so

sσi∪σk∪σ	

j = sσi
j sσk

j sσ	

j .

Continuing in this fashion yields

sσ
j =

∏
	∈σ̂

sσ	

j .

Furthermore, the above formula also holds for j /∈ σ . This is because j ∈ τk

for some k, and all other (nonempty) σi are simply-added to τk, not just to
σk.

Note that for each σi ∈ FP(Gi), σi survives as a fixed point in FP(G) by
inside-out domination. Therefore, for any j ∈ [n], sgn sσi

j = idx(σi) if and
only if j ∈ σi. For j ∈ σ , we have j ∈ σi for exactly one i ∈ σ̂ , and thus

sgn sσ
j = sgn sσi

j

∏
	∈σ̂\i

sgn sσ	

j = idx(σi)
∏

	∈σ̂\i

(−idx(σ	)) = (−1)|σ̂ |−1
∏
	∈σ̂

idx(σ	).

5
Note that FP(G) never depends on the value of θ , provided θ > 0, so this choice cannot

affect the results.
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Since the sign of sσ
j is the same for all j ∈ σ , we see σ is permitted and the

index idx(σ ) must match the sign of sσ
j (by Theorem 2). On the other hand,

for j /∈ σ ,

sgn sσ
j =

∏
	∈σ̂

sgn sσ	

j =
∏
	∈σ̂

(−idx(σ	)) = (−1)|σ̂ | ∏
	∈σ̂

idx(σ	) = −idx(σ ).

By Theorem 2, we conclude that σ ∈ FP(G) with idx(σ ) = (−1)|σ̂ |−1 ∏
	∈σ̂

idx(σ	). �

The next theorem characterizes the full FP(G) whenever G is a clique
union.

Theorem 12 (clique union). Let G be a graph on n vertices that is a clique union
of N subgraphs G1, . . . , GN. For any σ ⊆ [n],

σ ∈ FP(G) ⇔ σi ∈ FP(Gi) for all i ∈ [N].

Moreover, if σ ∈ FP(G), then idx(σ ) = ∏N
i=1 idx(σi).

Note that the theorem implies that the total number of fixed points
satisfies

|FP(G)| =
N∏

i=1

|FP(Gi)|.

In particular, if each component Gi has a unique fixed point, then G has a
unique fixed point.

Proof. (⇒) Suppose σ ∈ FP(G). Lemma 7 guarantees that for any i ∈ [N],
σi ∈ FP(Gi) or σi = ∅. If we assume there exists an i ∈ [N] such that σi = ∅,
then any k ∈ τi is a target of σ , and thus by Rule 10, we cannot have σ ∈
FP(G), a contradiction. We thus conclude that σi �= ∅, and so σi ∈ FP(Gi),
for all i ∈ [N].

(⇐) To simplify notation, we fix θ = 1. Suppose σi ∈ FP(Gi) for all i ∈ [N].
In particular, each σi is nonempty. As with disjoint unions, clique unions
have the property that each σ	 is simply-added to any union of the other
components. We thus have the same formula as in the proof of Theorem 11,
where for any j ∈ [n] and σ ⊆ [n] the value sσ

j factors as

sσ
j =

∏
	∈[N]

sσ	

j .

Note that here, the product is necessarily over all 	 ∈ [N], since each σ	 is
nonempty. Moreover, for any 	 ∈ [N] such that j /∈ τ	, j is a target of σ	, and
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so σ	 /∈ FP(G|σ	∪ j ). This implies, by Theorem 2, that sgn sσ	

j = idx(σ	) for all
j /∈ τ	.

To show that σ ∈ FP(G), we must show that sgn sσ
j = idx(σ ) for each j ∈

σ , and has the opposite sign if j /∈ σ (see Theorem 2). Consider j ∈ σ , and
observe that j ∈ σi for some i. Clearly, sgn sσi

j = idx(σi). By the argument
above, we also have sgn sσ	

j = idx(σ	) for each 	 ∈ [N] \ i. Therefore, using

the above product formula for sσ
j , we have sgn sσ

j = ∏N
	=1 idx(σ	). Since the

sign matches for all j ∈ σ , we have that σ is permitted and also that idx(σ ) =∏N
	=1 idx(σ	), as desired.
On the other hand, for any j /∈ σ , there exists an i such that j ∈ τi \ σi.

Since σi ∈ FP(Gi), sgn sσi
j = −idx(σi), while for all other 	 ∈ [N] \ i, we have

j /∈ τ	 and so sgn sσ	

j = idx(σ	). Thus,

sgn sσ
j = −idx(σi)

∏
	∈[N]\i

idx(σ	) = −
N∏

	=1

idx(σ	) = −idx(σ ).

By Theorem 2, we conclude that σ ∈ FP(G). �
We conclude this section with Theorem 13 and its proof, characterizing

FP(G) when G is a cyclic union.

Theorem 13 (cyclic union). Let G be a cyclic union of components G1, . . . , GN.

Then

σ ∈ FP(G) ⇔ σi ∈ FP(Gi) for all i ∈ [N].

Moreover, if σ ∈ FP(G), then idx(σ ) = ∏N
i=1 idx(σi).

Note that, just as with the clique union, the theorem implies that for
cyclic unions,

|FP(G)| =
N∏

i=1

|FP(Gi)|.

To prove Theorem 13, we will need the following lemmas:

Lemma 10. Let G be a cyclic union of components G1, . . . , GN. If σ ∈ FP(G),
then σi �= ∅ for all i ∈ [N].

Proof. Let σ ∈ FP(G) and σ̂ = {i ∈ [N] | σi �= ∅}. Suppose for the sake of
contradiction that σ̂ �= [N]. Then the skeleton Ĝ|σ̂ of σ is a proper subset
of a cycle, and so the skeleton must either contain a proper source or be
an independent set. If Ĝ|σ̂ contains a proper source, then σ̂ has inside-in
graphical domination, and so by Lemma 9, that same domination lifts to
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inside-in graphical domination in σ . If σ̂ is an independent set, then there
is outside-in graphical domination of σ̂ by any external node that receives
an edge from σ̂ . Thus, again by Lemma 9, that domination relationship lifts
to outside-in graphical domination of σ . But then σ /∈ FP(G) by Theorem 4,
yielding a contradiction. Thus, we must have σ̂ = [N], that is, σi �= ∅ for all
i ∈ [N]. �

The next lemma is an immediate consequence of Lemmas 7 and 8.

Lemma 11. Let σ ⊆ [n] have nontrivial overlap with each component of G, so that
σi �= ∅ for each i ∈ [N]. Then

σ ∈ FP(G) ⇔ σ ∈ FP(G|σ ) and σi ∈ FP(Gi) for each i ∈ [N].

We are now ready to prove the cyclic union theorem.

Proof of Theorem 13 (cyclic union). We prove this by complete induction
on n, the total number of vertices of G, and for a fixed number of compo-
nents N. The base case is n = N, so that G is an n-cycle. In this case, there is
a unique fixed point of full support (by the remarks following Rule 5), and
every component is a single vertex with index 1. The result trivially holds.

Now assume the inductive hypothesis that the theorem statement holds
for all cyclic unions with N components and m vertices, where N ≤ m < n.
By Lemmas 10 and 11,

σ ∈ FP(G) ⇔ σ ∈ FP(G|σ ) and σi ∈ FP(Gi) for all i ∈ [N].

So to prove the first theorem statement for a graph of n vertices, it suffices
to show that if σi ∈ FP(Gi) for all i ∈ [N], then σ ∈ FP(G|σ ).

Suppose |σ | < n, and suppose σi ∈ FP(Gi) for all i ∈ [N]. Recall that if
σi ∈ FP(Gi), then σi ∈ FP(G|σi ). Applying the inductive hypothesis to G|σ ,
we see that this in turn implies σ ∈ FP(G|σ ), as desired. Moreover, the index
formula holds because idx(σ ) is the same as what it was in the smaller graph
G|σ and is thus given immediately by the inductive hypothesis.

Now assume |σ | = n. This means G|σ = G, and σi = τi for each i ∈ [N].
By Lemma 11, σ ∈ FP(G) implies σi ∈ FP(Gi) for all i ∈ [N]. So what re-
mains is to show the converse direction and that the index formula holds.
Suppose τi ∈ FP(Gi) for each i ∈ [N]. If σ = [n] /∈ FP(G), then |FP(G)| =∏

i∈[N] |FP(Gi)| − 1, since all the smaller elements of FP(G) are indeed given
by picking a fixed point support from each component graph Gi. By parity,
each |FP(Gi)| is odd, and hence the product of these terms is odd. It follows
that |FP(G)| is even, contradicting parity for G. We conclude, then, that we
must have σ ∈ FP(G).

Finally, we show that the index formula holds for σ = [n] (by assump-
tion, it holds for |σ | < n). Using Theorem 1 (the index theorem) for FP(G),
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Figure 12: The two skeletons Ĝ considered in Lemma 12.

we compute

1 =
∑

σ∈FP(G)

idx(σ ) =
∑

σ∈FP(G)\[n]

idx(σ ) + idx([n])

=
∑

σ∈FP(G)\[n]

⎛⎝∏
i∈[N]

idx(σi)

⎞⎠ + idx([n])

=
∏

i∈[N]

⎛⎝ ∑
ω∈FP(Gi )

idx(ω)

⎞⎠ −
∏

i∈[N]

idx(τi) + idx([n])

= 1 −
∏

i∈[N]

idx(τi) + idx([n]).

Note that in the last equality, we have used the index theorem to see that
the indices sum to 1 for each FP(Gi). It follows that idx([n]) = ∏

i∈[N] idx(τi),
as desired. �

It is worth thinking about what properties of cycles made the induc-
tion argument in theorem 13 work. Namely, we needed Ĝ to be a permit-
ted motif and for every proper subset of its vertices to be either strongly
forbidden or guaranteed not to survive as a fixed point support due to
outside-in graphical domination, as in Lemma 10. In other words, FP(Ĝ)
must have a unique fixed point that has full support, with all proper sub-
sets excluded via graphical domination. Note that cliques also have this
property, so Theorem 12 could have been proven with a similar inductive
argument.

The following lemma provides an example of how the inductive argu-
ment can generalize beyond clique unions and cyclic unions.

Lemma 12. Let G be a composite graph with one of the skeletons Ĝ depicted in
Figure 12, with N = 4 or N = 5. Then



Fixed Points of Competitive Threshold-Linear Networks 131

σ ∈ FP(G) ⇔ σi ∈ FP(Gi) for all i ∈ [N].

Moreover, if σ ∈ FP(G), then idx(σ ) = ∏N
i=1 idx(σi).

Proof sketch. First, consider the N = 4 skeleton in Figure 12A. In this case,
Ĝ has uniform in-degree 2 and is thus a permitted motif. It is straightfor-
ward to check that all proper subsets of Ĝ are either strongly forbidden or
do not survive as fixed point supports due to outside-in graphical domi-
nation. Thus, an analogue of Lemma 10 holds, and Lemma 11 applies. The
induction proof of Theorem 13 can therefore be easily adapted to this case,
yielding the desired result.

For the N = 5 skeleton (see Figure 12B), we can again check that all
proper subsets of Ĝ are either strongly forbidden or do not survive as fixed
point supports due to outside-in graphical domination. By Rule 1 (parity),
the full graph must be a permitted motif. The remaining arguments then
follow exactly as in the previous case. �

We are now ready to prove Theorem 10. Putting together Theorems 11
to 13, we immediately obtain the proof.

Proof of Theorem 10. To see the first statement, apply Theorems 11 to 13
for G = G|σ a disjoint union, a clique union, and a cyclic union, respectively.
Since each σi is nonempty, it follows in every case that σ ∈ FP(G|σ ) if and
only if σi ∈ FP(G|σi ) for all i ∈ [N]. Hence, σ is a permitted motif if and only
if each σi is a permitted motif. The index formulas also follow directly from
Theorems 11 to 13. Note that in the case of the disjoint union, σ̂ = [N] and
|σ̂ | = N because we assume here that each σi is nonempty. �

Observe that Theorems 11 to 13 show that for any disjoint, clique, or
cyclic union, FP(G) can only depend on the parameters ε and δ via the
FP(Gi). Thus, if FP(Gi) is parameter independent for all i, then FP(G) is also
parameter independent.

Corollary 5. Let G be a disjoint, clique, or cyclic union of components G1, . . . , GN

with vertex sets τ1, . . . , τN. Then

FP(G) is parameter independent ⇔ FP(Gi) is parameter independent

for all i ∈ [N].

In particular, if |τi| ≤ 4 for all i ∈ [N], then FP(G) is parameter independent.

Note that the last statement follows from Theorem 6.

5.4 Survival Rules for Disjoint Unions and Clique Unions. Next we
consider disjoint, clique, and cyclic unions that are embedded in a larger
graph, G, which is not assumed to have any special composite structure.
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Figure 13: (A) A cyclic union that does not survive the addition of node k, by
graphical domination. (B) A cyclic union that does survive the addition of node
k, by uniform in-degree.

Proposition 2 shows that a necessary condition for a disjoint union σ to sur-
vive in the larger graph is that every component σi is itself a surviving fixed
point support. In contrast, Proposition 3 shows that a sufficient condition
for a clique union fixed point to survive in G is that at least one component
σi survives the addition of the other vertices in G. The proofs of these results
rely on general domination, and so we save them for section 6.5.

Proposition 2 (survival of disjoint union). Let G|σ be a subgraph of G that is a
disjoint union of components G|σ1 , . . . , G|σN . If σi /∈ FP(G) for any i ∈ [N], then
σ /∈ FP(G).

Proposition 3 (survival of clique union). Let σ be a permitted motif that is a clique
union of components G|σ1 , . . . , G|σN inside a larger graph G. If for each k ∈ [n] \ σ ,
there exists an i ∈ [N] such that σi ∈ FP(G|σi∪k), then σ ∈ FP(G).

Propositions 2 and 3 gave simple survival conditions for the composite
graph solely in terms of the survival of the individual components. Unfor-
tunately there is no analogous result for cyclic unions because the order of
the surviving/non-surviving components within the cyclic union can have
an impact on the survival of the composite graph. Specifically consider the
graphs in Figure 13, which are cyclic unions with outgoing edges to an ex-
ternal node k. For both of these graphs, the components of the cyclic union
are two 2-cliques and two singletons, and in both, the singleton components
are permitted motifs that do not survive in the full graph since they have
outgoing edges to node k. The only difference between the two graphs is the
order in which those components were inserted in the cyclic union. How-
ever, the cyclic union does not survive in the full graph in Figure 13A, while
it does survive in the full graph in Figure 13B. To see this, note that in panel
A, node k outside-in graphically dominates the node to its left, and thus
the cyclic union does not survive. In panel B, the cyclic union has uniform
in-degree 2 and node k receives only two edges from it; thus, by Rule 2,
the cyclic union survives. This contrast shows that we cannot hope for a
survival rule for cyclic unions that relies only on knowing the survival of
individual components.



Fixed Points of Competitive Threshold-Linear Networks 133

Figure 14: Bidirectional simply-added split. In this graph, τ is simply-added to
ω and vice versa. Thus, τ is composed of two classes of nodes: projectors onto
ω (top dark gray region) and nonprojectors onto ω (bottom light gray region).
Similarly, ω can be decomposed into projectors and nonprojectors onto τ . The
thick arrows indicate that every node of a given region sends an edge to every
node in the other region. The edges within τ and ω can be arbitrary.

5.5 Bidirectional Simply-Added Splits. A key feature of composite
graphs that allowed us to prove the previous results is that for each com-
ponent, Gi, the rest of the graph is simply-added onto it. Furthermore, in
the case of disjoint unions and clique unions, every subset of components
has the property that the rest of the graph is simply-added onto it, and vice
versa. This is also true of all composite graphs with only two components,
but is not a general feature of composite graphs. For example, cyclic unions
do not have this property: no single component is simply-added onto the
rest of the graph.

Here we consider graphs G that have a bidirectional simply-added split,
meaning that [n] = τ ∪ ω, where ω is simply-added onto τ and τ is simply-
added onto ω. Note that although every composite graph with N = 2 com-
ponents satisfies this property, G need not be such a graph (see Figure 14).
For example, τ could send both projectors and nonprojectors to ω, and vice
versa, so that G|τ and G|ω are not valid components of a composite graph.

The following theorem will use some new notation. Let G be a graph on
n nodes. For any ω ⊆ [n], let Sω denote the fixed point supports of G|ω that
survive to be fixed points of G, and let Dω denote the non-surviving (dying)
fixed points:

Sω
def= FP(G|ω ) ∩ FP(G), and Dω

def= FP(G|ω ) \ Sω.

Recall that by Corollary 2, in order to check if σ ∈ FP(G|ω ) survives to FP(G),
we need only to check that σ ∈ FP(G|ω∪k) for each k /∈ ω. In the case where
G has a simply-added split, [n] = τ ∪ ω, with ω simply-added onto τ , each
k /∈ ω receives precisely the same edges from ω, and so we need only check
that σ ∈ FP(G|ω∪k) for a single k ∈ τ . In this case,

Sω = {σ ⊆ ω | σ ∈ FP(G|ω∪k)},

for any choice of k ∈ τ .
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Theorem 14. Let G be a graph with bidirectional simply-added split [n] = τ ∪ ω.
For any nonempty σ ⊆ [n], let σ = στ ∪ σω where στ = σ ∩ τ and σω = σ ∩ ω.
Then, σ ∈ FP(G) if and only if one of the following holds:

i. στ ∈ Sτ ∪ ∅ and σω ∈ Sω ∪ ∅ or
ii. στ ∈ Dτ and σω ∈ Dω.

Moreover, if σ ∈ FP(G) and both στ and σω are nonempty, then its index is given
by

idx(σ ) =
{−idx(στ )idx(σω ), if στ ∈ Sτ , σω ∈ Sω

idx(στ )idx(σω ), if στ ∈ Dτ , σω ∈ Dω

.

Otherwise, σ = στ or σω, and has the same index.

Proof. First we consider the case where στ or σω is empty. Without loss of
generality, suppose στ = ∅. Then σ = σω, and clearly σ ∈ FP(G) if and only
if σω ∈ Sω.

Now suppose σ ⊆ [n] with both στ and σω nonempty. Since G has a bidi-
rectional simply-added split along (τ, ω), using Theorem 3, we see that for
any i ∈ [n], we have

sσ
i = 1

θ
sστ

i sσω

i .

Furthermore, for any i ∈ τ , all sσω

i have the same value, and so sσ
i = αsστ

i .
Similarly, for any j ∈ ω, we have sσ

j = βsσω

j . Thus, the relative signs of sστ

i
across i ∈ τ are preserved in the sσ

i , and the same for the relative signs of
sσω

j across j ∈ ω. Hence, σ ∈ FP(G) if and only if στ ∈ FP(G|τ ), σω ∈ FP(G|ω ),
and sgn(sσ

i ) = sgn(sσ
j ) for any i ∈ στ and j ∈ σω.

To see when the above signs agree, observe that στ ∈ FP(G|τ ) implies
sgn(sστ

i ) = idx(στ ) for all i ∈ στ , and similarly sgn(sσω

j ) = idx(σω ) for all j ∈
σω. Therefore, sgn(sσ

i ) = sgn(sσ
j ) if and only if

sgn(sσω

i )idx(στ ) = sgn(sστ

j )idx(σω ). (5.1)

However, sgn(sσω

i ) and sgn(sστ

j ) depend on whether σω and στ , respec-
tively, survive to fixed points of G. To track this, we define χ (στ ) = 1 if
στ ∈ Sτ , and χ (στ ) = −1 if στ ∈ Dτ . (Note that στ ∈ FP(G|τ ) implies στ ∈
Sτ ∪̇Dτ .) In particular, since j /∈ στ , we see that sgn(sστ

j ) agrees with idx(στ )
if and only if στ ∈ Dτ . Thus, we can write sgn(sστ

j ) = −χ (στ )idx(στ ) and
sgn(sσω

i ) = −χ (σω )idx(σω ). Plugging this into equation 5.1, we see that
sgn(sσ

i ) = sgn(sσ
j ) if and only if



Fixed Points of Competitive Threshold-Linear Networks 135

−χ (σω )idx(σω )idx(στ ) = −χ (στ )idx(στ )idx(σω ),

which holds if and only if χ (στ ) = χ (σω ). In other words, we can conclude
that σ ∈ FP(G) if and only if both στ ∈ Sτ and σω ∈ Sω, or both στ ∈ Dτ and
σω ∈ Dω, as desired. Finally, the index formulas follow from observing that
if σ ∈ FP(G), then idx(σ ) = −χ (στ )idx(στ )idx(σω ). �

It is worth noting that Theorem 14 allows us to recover the results on
disjoint unions and clique unions as a special case. If τ and ω contain only
nonprojectors, then τ ∪ ω is a disjoint union, where every fixed point of each
subset survives: Sτ = FP(G|τ ), Sω = FP(G|ω ), and Dτ = Dω = ∅. Thus, Theo-
rem 14 shows that the fixed points of a disjoint union are all the fixed points
of the individual components and unions of these. If τ and ω contain only
projectors, then τ ∪ ω is a clique union. In this case, every fixed point of each
subset does not survive (dies) because it has a target, and so Dτ = FP(G|τ ),
Dω = FP(G|ω ), and Sτ = Sω = ∅. Therefore, Theorem 14 shows that the fixed
points of a clique union are solely the unions of fixed points from every
component.

6 Domination

In this section, we introduce a more general form of domination, which is
broader than the concept of graphical domination introduced in section 3.3.
Domination applies to all competitive and nondegenerate TLNs with uni-
form external inputs, so that bi = b j = θ for all i, j ∈ [n]. Furthermore, while
graphical domination is insufficient to determine all permitted and forbid-
den motifs of a CTLN (see appendix section A.3), general domination pre-
cisely characterizes all fixed point supports not only for CTLNs but also for
TLNs. In particular, our main result on domination, Theorem 15, gives an
alternative to Theorem 2 (sign conditions).

As we will see later in this section, this broader form of domination is
not practical for explicit computations, but provides a useful technical tool
for proving results about fixed points without appealing to the signs of the
sσ

i . In particular, domination will allow us to prove Theorems 4 (graphical
domination) and 5 (uniform in-degree), as well as Propositions 2 and 3 (sur-
vival rules for disjoint and clique unions).

6.1 General Domination. Let (W, θ ) be a TLN with uniform inputs θ ,
and define W̃ = −I + W . The quantities of interest for general domination
are the sums:

wσ
j

def=
∑
i∈σ

W̃ji|sσ
i |. (6.1)
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Figure 15: The butterfly graph for example 6.

In contrast to Theorem 2 (sign conditions), where the signs of the sσ
i were

essential to determining fixed point supports, here we completely discard
the signs and use only the absolute values |sσ

i |.
The definition of the wσ

j may seem mysterious at first. Before defining
domination or stating our main theorem about it, we will work through
an example that shows how the wσ

j values encode information about the
fixed point supports of a TLN. Two main observations will emerge from this
example. First, if σ ∈ FP(W, θ ), then wσ

j = wσ
k for all j, k ∈ σ . In other words,

the wσ
j precisely match for all nodes inside a permitted motif. Second, if

σ ∈ FP(W, θ ) and there is some k /∈ σ , then for j ∈ σ , we have wσ
j > wσ

k . So
the values of wσ

j inside the fixed point support are all equal to each other
and greater than the values of wσ

k for nodes outside.

Example 6. Consider a CTLN whose graph G is the butterfly graph in Fig-
ure 15, which is studied in detail in appendix section A.3. By appealing
to earlier graph rules and parity, it is straightforward to see that FP(G) =
{123, 234, 1234}. In this example, we explore the values of wσ

j for different
subsets of vertices in this graph.

First, consider σ = {1, 2, 3, 4}, which we already know is a permitted mo-
tif. In appendix section A.3, we compute the following values for the but-
terfly graph:

sσ
1 = sσ

4 = −δθ (ε2 + εδ + δ2), sσ
2 = −δθ (2ε2 + 2εδ + δ2),

sσ
3 = −δθ (2ε2 + 3εδ + 2δ2).

Using these calculations, we can compute the wσ
j values—for example,

wσ
1 =

∑
i∈σ

W̃1i|sσ
i | = (−1)|sσ

1 | + (−1 − δ)|sσ
2 | + (−1 + ε)|sσ

3 | + (−1 − δ)|sσ
4 |

= δθ (2ε3 − 6ε2 − 7εδ − εδ2 − 5δ2 − 2δ3).
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By symmetry, it is clear that wσ
4 = wσ

1 , but in fact, all the wσ
j values are equal

across j ∈ σ . Although it is not obvious that wσ
2 should match wσ

1 , it does:

wσ
2 =

∑
i∈σ

W̃2i|sσ
i | = (−1)|sσ

2 | + (−1 + ε)(|sσ
1 | + |sσ

4 |) + (−1 − δ)|sσ
3 |

= δθ (2ε3 − 6ε2 − 7εδ − εδ2 − 5δ2 − 2δ3).

Theorem 15 will show that this is the hallmark of permitted motifs.
Next consider τ = {1, 2, 3}. Since τ is a 3-cycle, the sτ

i values can be ob-
tained from graph 8 in Figure 18, giving us sτ

i = θ (ε2 + εδ + δ2) for all i ∈ τ .
Then, for all j ∈ τ ,

wτ
j =

∑
i∈σ

W̃ji|sσ
i | = θ (ε2 + εδ + δ2)(−1 + (−1 + ε) + (−1 − δ))

= θ (ε2 + εδ + δ2)(−3 + ε − δ).

In addition,

wτ
4 =

∑
i∈σ

W̃4i|sσ
i | = θ (ε2 + εδ + δ2)((−1 + ε) + 2(−1 − δ))

= θ (ε2 + εδ + δ2)(−3 + ε − 2δ).

Notice that wτ
j > wτ

4 for all j ∈ τ . In fact, the inequality that wτ
j > wτ

k for all
j ∈ τ and k /∈ τ must be satisfied for any permitted motif τ to survive as
a fixed point of a larger graph G. This observation, together with the fact
that within a permitted motif all the values wσ

j match, is captured below in
Theorem 15.

In order to compute the values wσ
j in example 6, we used our precom-

puted values for sσ
i . However, once we know the sσ

i , we can simply apply
Theorem 2 (sign conditions) and be done. In particular, it is not practical to
explicitly compute the wσ

j in order to check whether σ is a fixed point sup-
port. The true value of introducing the wσ

j is that arguments can be made
about their relative values without knowing the signs of the sσ

i , and this in
turn can be used to determine whether σ ∈ FP(W, θ ). With this motivation,
we now define domination, which is a generalization of graphical domina-
tion (introduced in section 3.3).

Definition 10 (domination). Consider a TLN (W, θ ) on n neurons, let σ ⊆ [n]
be nonempty, and let wσ

j be defined as in equation 6.1. For any j, k ∈ [n], we say
that

• k dominates j with respect to σ , and write k >σ j, whenever wσ
k > wσ

j .
• k is equivalent to j with respect to σ , and write k ∼σ j, whenever wσ

k = wσ
j .
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Figure 16: Graph for example 7.

• k is not dominated by j with respect to σ , and write k ≥σ j, whenever
wσ

k ≥ wσ
j .

Moreover, if j ∼σ k for all j, k ∈ σ , then we say that σ is domination-free.

The domination relation satisfies nice properties. Clearly, if 	 >σ k and
k >σ j, then 	 >σ j. Furthermore, if k >σ j, then we cannot also have j >σ k.
We thus see that >σ is transitive and antisymmetric but not reflexive, while
≥σ is transitive, antisymmetric, and reflexive. This makes >σ a strict partial
order and ≥σ a partial order. Incomparable elements under >σ belong to
equivalence classes of the equivalence relation ∼σ . It is easy to see that >σ ,

≥σ , and ∼σ interact just as the usual “>,≥” and “=” do. In particular, if
	 >σ k and k ∼σ j, then 	 >σ j.

We can now give our second characterization of FP(W, θ ), for the case of
uniform inputs bi = θ > 0 for each i ∈ [n]. Recall from definition 3 that σ is
a permitted motif if σ ∈ FP(Wσ , θ ) and σ is a forbidden motif otherwise. In
order to have σ ∈ FP(W, θ ), we must have that σ is a permitted motif that
survives as a fixed point support in the full network.

Theorem 15 (general domination). Let (W, θ ) be a TLN, and let σ ⊆ [n]. Then

σ is a permitted motif ⇔ σ is domination free.

If σ is a permitted motif, then σ ∈ FP(W, θ ) if and only if for each k �∈ σ , there
exists j ∈ σ such that j >σ k.

In addition to telling us that permitted motifs are domination free, The-
orem 15 states that permitted motifs survive precisely when every node
outside the motif is (inside-out) dominated by some node inside. This is
precisely what we saw in example 6. Namely, the wτ

j and wσ
j all matched

for j ∈ τ or j ∈ σ , respectively. Moreover, for j ∈ τ and k /∈ τ , we saw that
wτ

j > wτ
k , and thus j >τ k, consistent with the fact that τ ∈ FP(G).

Before presenting the proof of Theorem 15, in the next section, we illus-
trate it with another example. Let G be the graph in Figure 16; consider
τ = {1, 2, 3, 4}. Since τ is uniform in-degree (with d = 1) and node 5 re-
ceives more than d edges from τ , Theorem 5 guarantees that τ is a permitted
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motif that does not survive in the full graph, and so we know that τ ∈
FP(G|τ ) but τ /∈ FP(G). However, this result cannot be obtained from graphi-
cal domination. In fact, the proof of Theorem 5 relies on general domination.
In the following example, we will show that τ /∈ FP(G) directly, using The-
orem 15 (domination). This previews the proof of Theorem 5 in section 6.4.

Example 7. Let G be the graph in Figure 16, and let τ = {1, 2, 3, 4}. Observe
that for each i ∈ τ , we can compute sτ

i = det((I − Wτ )i; θ1) = εθ (ε2 + 2εδ +
2δ2). Then for all j ∈ τ , we have

wτ
j =

∑
i∈τ

W̃ji|sτ
i | = εθ (ε2 + 2εδ + 2δ2)

∑
i∈τ

W̃ji

= εθ (ε2 + 2εδ + 2δ2)(−4 + ε − 2δ).

Since the wτ
j have the same value for all j ∈ τ , we see that τ is domination-

free, and hence is permitted. Next,

wτ
5 =

∑
i∈τ

W̃5i|sτ
i | = εθ (ε2 + 2εδ + 2δ2)

∑
i∈τ

W̃5i

= εθ (ε2 + 2εδ + 2δ2)(−4 + 2ε − 2δ) > wτ
j ,

for j ∈ τ . Thus, 5 >τ j, and so τ /∈ FP(G) by Theorem 15.
Now consider σ = {1, 2, 3, 4, 5}. Observe that node 5 is a nonprojector

onto τ , and thus by Corollary 4, sσ
i = −δsτ

i = −εδθ (ε2 + 2εδ + 2δ2) for all i ∈
τ . Computing sσ

5 = det((I − Wσ )5; θ1), we obtain sσ
5 = ε2θ (ε2 + 2εδ + 2δ2).

Then for all j ∈ σ \ 5, we have

wσ
j =

∑
i∈σ\5

W̃ji|sσ
i | + (−1 − δ)|sσ

5 | = εθ (ε2 + 2εδ + 2δ2)(−ε − 4δ − 2δ2),

while

wσ
5 =

∑
i∈σ\5

W̃5i|sσ
i | + (−1)|sσ

5 | = εθ (ε2 + 2εδ + 2δ2)(−ε + 2εδ − 4δ − 2δ2).

Since wσ
5 �= wσ

j for j, 5 ∈ σ , we see that σ is not domination-free, and hence
σ is a forbidden motif.6

6.2 Proof of Theorem 15 (General Domination). Here we assume bi =
θ for all i ∈ [n]. For constant θ > 0, the collection of fixed point supports

6
Note that we also could have concluded that σ was forbidden by Rule 8 since it is the

union of sink with a non-surviving fixed point.
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is independent of the value of θ , and so we drop θ from the notation and
denote the set of fixed point supports simply as FP(W ).

Note that sσ
i = det((I − Wσ )i; θ1) for each i ∈ σ , and equation 2.6 implies

−sσ
k +

∑
i∈σ\{k}

Wkisσ
i = −sσ

j +
∑

i∈σ\{ j}
Wjisσ

i for all j, k ∈ [n],

where we have used the fact that bk = b j and Wkk = Wj j = 0. If we denote
W̃ = −I + W, then the terms sσ

j , sσ
k can be absorbed into the sum when j, k ∈

σ . This allows us to write

(χσ (k) − 1)sσ
k +

∑
i∈σ

W̃kisσ
i = (χσ ( j) − 1)sσ

j +
∑
i∈σ

W̃jisσ
i for all j, k ∈ [n],

(6.2)

where χσ (k) = 1 if k ∈ σ and χσ (k) = 0 if k /∈ σ . In particular, if j, k ∈ σ , the
above expression reduces to∑

i∈σ

W̃kisσ
i =

∑
i∈σ

W̃jisσ
i , for j, k ∈ σ. (6.3)

Equations 6.2 and 6.3 are true in general, irrespective of whether σ is a fixed
point support.

Now assume σ is a permitted motif, so that σ ∈ FP(Wσ ). In this case,
all the sσ

i for i ∈ σ must have the same sign, and so equations 6.2 and 6.3
continue to hold if each sσ

i is replaced by |sσ
i |. In fact, in the case of equation

6.3, the converse is also true: if equality holds after replacing sσ
i with |sσ

i |,
then σ ∈ FP(Wσ ). Using the notation wσ

j = ∑
i∈σ W̃ji|sσ

i |, as in equation 6.1,
we have the following lemma.

Lemma 13. σ ∈ FP(Wσ ) ⇔ wσ
j = wσ

k for all j, k ∈ σ . (I.e., σ ∈ FP(Wσ ) ⇔
j ∼σ k for all j, k ∈ σ .)

Proof (⇒) This direction was already established in the arguments above.
(⇐) To see the converse, suppose wσ

j = wσ
k for all j, k ∈ σ . Let α = −wσ

j =
−∑

i∈σ W̃ji|sσ
i | = ∑

i∈σ (I − W ) ji|sσ
i |. Note that α > 0, and let v = (|sσ

i |)i∈σ be
the column vector whose entries are |sσ

i | for each i ∈ σ . It follows that
(I − Wσ )v = α1σ , and so for xσ = θ

α
v , we have (I − Wσ )xσ = θ1σ . Since xσ

has strictly positive entries, it is a fixed point of the network (Wσ , θ ) with
support σ . Thus, σ ∈ FP(Wσ ). �

Lemma 13 can be restated as saying that σ ∈ FP(Wσ ) if and only if σ is
domination-free. Interestingly, the nondegeneracy condition on TLNs guar-
antees that if σ is a permitted motif, then a node outside σ can never have
the same wσ

j value as one inside σ , and so one must dominate the other.
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Lemma 14. Let σ ∈ FP(Wσ ). If j ∈ σ and k /∈ σ , then either k >σ j or j >σ k
(i.e., we cannot have j ∼σ k.)

Proof. It follows from equation 6.2 that if j ∈ σ and k /∈ σ , then

sσ
k =

∑
i∈σ

W̃kisσ
i −

∑
i∈σ

W̃jisσ
i ,

and so sgn sσ
k = sgn

(∑
i∈σ W̃kisσ

i − ∑
i∈σ W̃jisσ

i

)
. If σ ∈ FP(Wσ ), then all sσ

i for
i ∈ σ have the same sign. Replacing sσ

i with |sσ
i | yields

sgn sσ
k = ±sgn(wσ

k − wσ
j ).

By the assumption of nondegeneracy of the TLN, we know that sgn sσ
k �= 0,

and so either wσ
k > wσ

j or wσ
j > wσ

k . �
The next lemma tells us when fixed points survive the addition of a single

node.
Lemma 15. Suppose σ ∈ FP(Wσ ), and k /∈ σ . Then σ ∈ FP(Wσ∪{k}) if and only
if j >σ k for some j ∈ σ . If σ /∈ FP(Wσ∪{k}), then k >σ j for all j ∈ σ .

Proof. Let σ ∈ FP(Wσ ), k /∈ σ , and j ∈ σ . Recall from the proof of lemma 14
that sgn sσ

k = sgn
(∑

i∈σ W̃kisσ
i − ∑

i∈σ W̃jisσ
i

)
. By Theorem 2 and Corollary 2,

σ ∈ FP(Wσ∪{k}) if and only if sgn sσ
k = −sgn sσ

j . If sgn sσ
i = +1 for each i ∈ σ ,

then replacing sσ
i with |sσ

i | in the sums reveals that σ ∈ FP(Wσ∪{k}) if and
only if j >σ k. Similarly, if sgn sσ

i = −1, we also have that σ ∈ FP(Wσ∪{k}) if
and only if j >σ k. On the other hand, if σ �∈ FP(Wσ∪{k}), then we must have
k >σ j by Lemma 14. �

Combining these results with Corollary 2, we obtain the proof of Theo-
rem 15.
Proof of Theorem 15 (domination). The first statement, that σ ∈ FP(Wσ )
if and only if σ is domination-free, follows directly from Lemma 13. Next,
recall that by corollary 2, we have σ ∈ FP(W ) if and only if σ ∈ FP(Wσ ) and
σ ∈ FP(Wσ∪{k}) for all k /∈ σ . Applying Lemma 15, we can conclude that for
any permitted motif σ , we have σ ∈ FP(W ) if and only if for each k /∈ σ ,
there exists a j ∈ σ such that j >σ k. �

We end this section with a lemma that collects some key facts relat-
ing domination to fixed point supports and parallels Theorem 4 (graphical
domination). In fact, we will use this in the next section to prove Theorem 4.

Lemma 16 (domination). Let (W, θ ) be a TLN. Suppose k >σ j for some j, k ∈
[n]:

a. If j, k ∈ σ , then σ /∈ FP(Wσ ), and thus σ /∈ FP(W ).
b. If j ∈ σ , k �∈ σ , then σ /∈ FP(Wσ∪{k}), and thus σ /∈ FP(W ).
c. If j /∈ σ , k ∈ σ , and σ ∈ FP(Wσ ), then σ ∈ FP(Wσ∪{ j}).
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Proof. Part a is a direct corollary of Theorem 15, while parts b and c are
direct consequences of Lemma 15. �

6.3 Proof of Theorem 4 (Graphical Domination). Using Lemma 16, it
is now straightforward to prove Theorem 4. But first we need to show that
graphical domination (as defined in section 3.3) is indeed a special case of
the more general domination.

Lemma 17. Consider a CTLN on n nodes, and let j, k ∈ [n] and σ ⊆ [n]. Suppose
k graphically dominates j with respect to σ . Then k >σ j.

Proof. Recall that if k graphically dominates j with respect to σ , then σ ∩
{ j, k} �= ∅. Moreover, three conditions hold: (1) for each i ∈ σ \ { j, k}, if i → j,
then i → k; (2) if j ∈ σ , then j → k; and (3) if k ∈ σ , then k �→ j.

Next, recall that in a CTLN, we have W̃ji = −1 + ε if i → j, W̃ji = −1 − δ

if i �→ j, and W̃ii = −1. Condition 1 thus implies that W̃ji ≤ W̃ki for each i ∈
σ \ { j, k}. If j ∈ σ , condition 2 gives W̃j j < W̃k j, while if k ∈ σ , condition 3
implies W̃jk < W̃kk. Putting these together, we see that

wσ
j =

∑
i∈σ

W̃ji|sσ
i | <

∑
i∈σ

W̃ki|sσ
i | = wσ

k ,

where the inequality is strict because at least one of j or k is in σ , and W̃ji <

W̃ki for i = j or i = k. Since wσ
k > wσ

j , it follows from the definition that k >σ

j. �
We can now prove Theorem 4, which tells us how to use graphical dom-

ination in order to rule in and rule out various fixed point supports.

Proof of Theorem 4. First, observe using Lemma 17 that k >σ j. Now the
statements a, b, and c all follow immediately from parts a, b, and c of
Lemma 16. �

Note that the converse of Lemma 17 is not true: there could still be a dom-
ination relationship even if there is no graphical domination. For example,
appendix section A.3 shows six graphs in Figure 20 that are forbidden, and
thus are not domination-free by Theorem 15. So there must be general domi-
nation in each of these graphs, despite the absence of graphical domination.

Note also that unlike graphical domination, general domination may
be parameter dependent, even within the legal range. For example, all the
graphs in Figure 19 appendix section A.2 have parameter-dependent dom-
ination relationships, and this is reflected by the fact that FP(G) depends on
ε and δ.

6.4 Proof of Theorem 5 (Uniform In-Degree). In this section, we use
general domination to prove Theorem 5, giving conditions for when a uni-
form in-degree subset supports a fixed point. We begin by showing that
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a uniform in-degree subset always supports a fixed point in its restricted
subgraph and that fixed point has uniform firing rate values.

Lemma 18. If σ has uniform in-degree d, then σ ∈ FP(G|σ ) and the correspond-
ing fixed point x∗ is uniform, with values

x∗
i = θ

|σ | + δ(|σ | − d − 1) − εd
for each i ∈ σ.

Proof. Because G|σ has uniform in-degree, the row sums of I − Wσ are all
equal. This implies that the all-ones vector 1σ is an eigenvector of I − Wσ ,
with eigenvalue R equal to the row sum. Now consider the vector x∗ satisfy-
ing x∗

i = θ/R for each i ∈ σ , and x∗
k = 0 for each k /∈ σ . Clearly, (I − Wσ )x∗

σ =
θ1σ , and so x∗

σ is a fixed point of the network restricted to σ . Moreover,
since all vertices in G|σ have in-degree d, then each row of Wσ has d terms
with value −1 + ε and |σ | − d − 1 terms with value −1 − δ. This allows us
to compute the row sum as

R = 1 −
∑
i∈σ

W1i = |σ | + δ(|σ | − d − 1) − εd,

yielding x∗
i = θ/(|σ | + δ(|σ | − d − 1) − εd) for i ∈ σ , as desired. Note that

x∗
i > 0 for the full range of d values, so this fixed point always satisfies fixed

point condition 1. �

Next, we give the survival rule of a uniform in-degree fixed point in
terms of domination.
Lemma 19 (uniform in-degree domination). Suppose σ has uniform in-degree d,
and suppose j ∈ σ and k /∈ σ . Let dk = |{i ∈ σ | i → k}| be the number of edges k
receives from σ . Then σ ∈ FP(G|σ ) and

i. k >σ j if dk > d.
ii. j >σ k, if dk ≤ d.

Proof. By Cramer’s rule, sσ
i = det(I − Wσ )x∗

i (see Lemma 1 and equa-
tion 2.3). Thus, by Lemma 18, sσ

i = sσ
j for all i, j ∈ σ , when σ is uniform

in-degree. This implies σ ∈ FP(G|σ ) and also allows us to factor |sσ
i | out of

the sums for checking domination, so that k >σ j if and only if
∑

i∈σ W̃ki >∑
i∈σ W̃ji. Now observe that

∑
i∈σ W̃ki = dk(−1 + ε) + (|σ | − dk)(−1 − δ),

while
∑

i∈σ W̃ji = d(−1 + ε) + (|σ | − d − 1)(−1 − δ) − 1 = d(−1 + ε) + (|σ |
− d)(−1 − δ) + δ, since j ∈ σ and W̃j j = −1. In particular, if dk = d, then
we have

∑
i∈σ W̃ki <

∑
i∈σ W̃ji, so that j >σ k. It is now easy to check that

if dk > d, then k >σ j, while if dk ≤ d, then j >σ k. �

Finally, we combine these results to prove Theorem 5 and prove the sta-
bility conditions.
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Proof of Theorem 5. By Lemma 18, if σ has uniform in-degree, then it sup-
ports a fixed point in G|σ , and thus i ∼σ j for all i, j ∈ σ . By Lemma 19,
for each k /∈ σ , we have j >σ k precisely when dk ≤ d. Thus, by Theorem 15
(domination), σ supports a fixed point in G|σ∪k if and only if dk ≤ d.

For the stability conditions, recall that the fixed point is stable precisely
when all the eigenvalues of −I + Wσ have negative real part or, equivalently,
all the eigenvalues of I − Wσ have positive real part. First consider d < |σ |/2.
Observe that the uniform in-degree implies that the all-ones vector 1 is an
eigenvector of I − Wσ , with eigenvalue λ equal to the row sum:

λ = |σ | + (|σ | − d − 1)δ − dε = |σ | + (|σ | − 1)δ − d(δ + ε).

When d < |σ |/2, we have d ≤ (|σ | − 1)/2, and thus λ > |σ | whenever |σ | >

1 because ε < δ. Since the sum of the eigenvalues equals the trace, Tr(I −
Wσ ) = |σ |, we see that I − Wσ must have a negative eigenvalue. This implies
that the fixed point is unstable.

Next consider when d = |σ | − 1, so that σ is a clique. In this case,
I − Wσ = (1 − ε)11T + εIσ , and so the eigenvalues are |σ |(1 − ε) + ε and ε.
Clearly, these are positive for 0 < ε < δ

δ+1 < 1, so we can conclude that the
fixed point is stable. �

6.5 Domination and Simply-Added Splits. When σ = τ ∪ ω, where ω

is simply-added to τ , we find that domination relationships with respect to
τ are preserved with respect to σ .

Lemma 20. Let σ = τ ∪ ω, where ω is simply-added to τ . Then for any j, k ∈ τ ,

i. k >σ j ⇔ k >τ j
ii. k ∼σ j ⇔ k ∼τ j.

Furthermore, for any j ∈ τ and 	 /∈ σ :
iii. If for all i ∈ ω such that i → j, we also have i → 	; then

	 >τ j ⇒ 	 >σ j, and 	 ≥τ j ⇒ 	 ≥σ j.

iv. If for all i ∈ ω such that i → 	 we also have i → j, then

j >τ 	 ⇒ j >σ 	, and j ≥τ 	 ⇒ j ≥σ 	.

In particular, the lemma tells us that if τ /∈ FP(G|τ ) then σ /∈ FP(G).

Proof. Using Theorem 3, we see that for each i ∈ τ , |sσ
i | = |α||sτ

i |, where α =
sω

i , which is constant across i ∈ τ . In particular, for any fixed j ∈ τ , we have

wσ
j =

∑
i∈σ

W̃ji|sσ
i | =

∑
i∈τ

W̃ji|sσ
i | +

∑
i∈ω

W̃ji|sσ
i |

=
∑
i∈τ

W̃ji|α||sτ
i | +

∑
i∈ω

W̃ji|sσ
i | = |α|wτ

j +
∑
i∈ω

W̃ji|sσ
i |,
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where the last sum is identical for all j ∈ τ because ω is simply-added to τ .
This means that for any j, k ∈ τ ,

wσ
k − wσ

j = |α|(wτ
k − wτ

j ).

Thus, parts i and ii both hold.
By the same logic, for any j ∈ τ and 	 /∈ σ , we have wσ

	 = |α|wτ
	 +∑

i∈ω W̃	i|sσ
i | and thus,

wσ
	 − wσ

j = |α|(wτ
	 − wτ

j ) +
∑
i∈ω

(W̃	i − W̃ji)|sσ
i |.

In part iii, we have W̃	i ≥ W̃ji for all i ∈ ω. Thus, if 	 >τ j, so that wτ
	 >

wτ
j , then wσ

	 − wσ
j > 0 and hence 	 >σ j. Similarly, we see that 	 ≥τ j ⇒

	 ≥σ j. Finally, in part iv, we have W̃	i ≤ W̃ji for all i ∈ ω. Thus, if j >τ 	,
so that wτ

j > wτ
	 , then wσ

	 − wσ
j < 0 and thus j >σ 	. Similarly, j ≥τ 	 ⇒

j ≥σ 	. �
Lemma 20 shows that identifying a simply-added split of σ can be useful

for identifying domination relationships with respect to τ that lift to dom-
ination relationships with respect to σ . This is particularly useful in com-
posite graphs, since for any component of a composite graph, the rest of
the graph is simply-added to that component. In particular, we use Lemma
20 to prove the partial survival rules for disjoint unions and clique unions
embedded in a larger graph.

Proof of Proposition 2 (survival of disjoint union). Suppose there exists
i ∈ [N] such that σi /∈ FP(G). If σi /∈ FP(G|σi ), then by Lemma 7, σ /∈ FP(G).
Assuming σi ∈ FP(G|σi ), the fact that σi /∈ FP(G) implies there exists j ∈ σi

and 	 /∈ σi such that 	 ≥σi j (by Theorem 15). Note, however, that for all k ∈
σ \ σi, we have j >σi k because (by the disjoint union) there are no edges
from σi to k. Hence 	 /∈ σ , and it suffices by Theorem 15 to show that 	 ≥σ j
in order to conclude that σ /∈ FP(G). To do this, we will use Lemma 20 for
σ = τ ∪ ω, where τ = σi and ω = σ \ σi. Since there are no edges from ω to
σi, the condition in part iii of Lemma 20 is trivially satisfied, and thus 	 ≥σi j
implies 	 ≥σ j, as desired. �

Proof of Proposition 3 (survival of clique union). Since σ is a permit-
ted motif, for all j, 	 ∈ σ we have j ∼σ 	, by Theorem 15. By Theorem 15,
to show σ ∈ FP(G), we must show that for each k ∈ [n] \ σ , there exists a
j ∈ σ such that j >σ k. Fix k ∈ [n] \ σ . By hypothesis, there exists a σi such
that σi ∈ FP(G|σi∪k). Thus, for any j ∈ σi, we have j >σi k. We will now use
Lemma 20 to show that this domination relationship lifts to σ . Following
the notation of the lemma, let σ = τ ∪ ω for τ = σi and ω = σ \ σi, and ob-
serve that because σ is a clique union, ω is simply-added to τ . Moreover,
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Figure 17: Inferring domination from a simply-added split. (Top) Oriented
graphs C–F from Figure 20, which are forbidden without graphical domination.
(Bottom) Redrawings of the graphs in terms of components τ and ω, where ω is
simply-added to τ .

since j ∈ σi = τ receives edges from all nodes in ω, the condition in part iv
of Lemma 20 is trivially satisfied. Thus, j >σi k implies j >σ k, as desired.
We conclude that σ ∈ FP(G|σ∪k) for each k ∈ [n] \ σ , and thus σ ∈ FP(G). �

It turns out that even when τ is domination-free, it can still be useful
to have a simply-added split in order to identify domination relationships
in σ . Example 8 illustrates how one can use a simply-added split where τ

has uniform in-degree to infer domination relationships in σ from graphical
domination that occurs in some “equivalent” graph.

Example 8. Consider the graphs in Figure 17. In appendix section A.3, these
graphs are all shown to be forbidden motifs by parity arguments (these are
graphs C–F in Figure 20). Here we explore how and when simply-added
splits can be used to infer domination relationships to directly show that a
graph is forbidden.

Panel C′ in Figure 17 shows a redrawing of graph C in terms of a simply-
added split, where τ = {1, 4}, ω = {2, 3, 5}, and ω is simply-added to τ . Since
τ is an independent set, it has uniform in-degree, and thus sτ

1 = sτ
4 . Further-

more, since σ = {1, 2, 3, 4, 5} is τ ∪ ω, we have that sσ
1 = sσ

4 by Theorem 3
(simply-added). Thus, any inputs from node 1 to the rest of the graph are
equivalent to inputs from node 4 in terms of the contribution of the sσ

i val-
ues (the relevant quantity for computing wσ

j and identifying domination).
Hence, in terms of domination relationships with respect to σ , graph C is
equivalent to a graph where the 1 → 2 edge is replaced with a 4 → 2 edge.
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In this equivalent graph, we see that node 2 inside-in graphically dominates
5. Thus, in graph C, we have 2 >σ 5, and so σ (i.e., the full graph C) is a for-
bidden motif since it is not domination-free.

Since graph D differs from C only by the 5 → 3 edge, an identical argu-
ment shows that graph D is equivalent (in terms of sσ

i values) to a graph
where node 2 graphically dominates 5, and so in graph D, we have 2 >σ 5.
Thus, graph D is a forbidden motif.

Observe that graphs E and F can also be decomposed as ω simply-added
to τ , where τ has uniform in-degree, and thus the values of sσ

i for i ∈ τ are
all equal (see Figures 17E′ and 17F′). However, there is no equivalent graph
with inside-in graphical domination for either of these graphs. To see this
in graph E′, note that for each pair of nodes j, k ∈ ω with j → k and k �→
j (conditions 2 and 3 of the definition of graphical domination), we have
that node j receives more inputs from τ than node k does; thus, condition 1
can never be satisfied in any equivalent graph, and so k �>σ j for any such
pair. The same argument can be made for graph F′ to show that graphical
domination cannot be used to show the motif is forbidden. Thus, to show
that these graphs are forbidden motifs, one must explicitly compute the sσ

i
or rely on parity arguments as in appendix section A.3.

7 Conclusion

In this work, we have introduced two new characterizations for the fixed
points of competitive TLNs: first in terms of sign conditions (see Theorem 2)
and later in terms of domination (see Theorem 15). Specializing to CTLNs,
we used these tools to prove key theorems on graphical domination (see
Theorem 4) and simply-added splits (see Theorem 3), as well as to derive
survival rules for uniform in-degree motifs (see Theorem 5). These methods
then enabled us to prove a series of graph rules in section 4 that allow one
to determine elements of FP(G) by direct analysis of the graph G. Finally, in
section 5, we showed how this graphical calculus can be extended to larger
networks of simpler building blocks.

Any conclusions about a network derived from graph rules are auto-
matically parameter independent. Since some CTLNs do have parameter-
dependent permitted motifs (see appendix section A.2), we know that
graph rules cannot fully determine FP(G) in all cases. Nevertheless, it
is likely that there are many more graph rules we have yet to discover,
covering additional cases where motifs are permitted or forbidden in a
parameter-independent manner. In particular, the style of graphical analy-
sis illustrated in example 8 seems to hint at a missing graph rule. Moreover,
if Conjecture 1 is true, then there are additional building block graph rules
of the form given in Theorem 10 that apply to composite graphs with more
complicated skeletons.

To what extent do graph rules extend to more general TLNs? We can
immediately say, based on the determinant form of the sign conditions in
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Theorem 2, that for any CTLN, there must be an open neighborhood in the
(W, b) parameter space in which FP(W, b) = FP(G, ε, δ)—that is, the fixed
point supports of all TLNs in this neighborhood match those of the CTLN.
This follows from the fact that the sσ

i are all polynomials in the entries of W
and b, and thus vary continuously as a function of these parameters. In par-
ticular, for purposes of determining fixed points, the constraints on (W, b)
imposed by CTLNs are not fine-tuned, and so the inferences we make from
graph rules are robust to at least small perturbations of the network param-
eters. That said, we currently have no theoretical handle on how big these
neighborhoods are beyond the fact that they are open sets (and thus full-
dimensional).

There are also non-perturbative approaches to generalizing graph rules.
In appendix section A.4, we show how to associate a graph to any TLN
(W, θ ) having uniform input. For n = 1, 2, this graph fully characterizes the
permitted motifs, just as it does for CTLNs. However, various CTLN graph
rules break down at n = 3, as illustrated in example 9. Currently, by apply-
ing the theory of oriented matroids to hyperplane arrangements associated
with TLNs, we are developing weaker versions of the graph rules that do
extend to these more general settings.

Finally, a comment on the nonlinearity. The proofs in this letter all rely
on the precise form of the threshold-nonlinearity in equation 1.1, as well
as on the assumption that W is competitive. Based on our own computa-
tional observations, however, we expect that many qualitative aspects of
these results should continue to hold for other nonlinearities, and/or less
strict assumptions on W (and b). But these questions are beyond the scope
of this letter, and so we leave them for future work.

Appendix

A.1 Permitted and Forbidden Motifs of Size n ≤ 3. Figure 18 shows all
directed graphs of size n ≤ 3. The permitted motifs are labeled with a “p”;
all other graphs are forbidden motifs.

A.2 Parameter-Dependent FP(G) for n = 5. In section 4.3, we saw that
FP(G) is independent of parameters ε and δ when n ≤ 4; however, there are
three permitted motifs of size 4 whose survival in a larger graph is param-
eter dependent. These permitted motifs are reprinted here in Figures 19A
to 19C. The rest of the figure shows example graphs of size n = 5 whose
FP(G) = FP(G, ε, δ) depends on the choice of ε and δ. This parameter de-
pendence is a result of these graphs containing one or more permitted mo-
tifs whose survival is parameter dependent. Note that none of these n = 5
graphs is oriented and therefore is not covered by Theorem 7.

A.3 Using Parity to Detect Forbidden Motifs without Graphical Dom-
ination. Although inside-in graphical domination tells us that a motif in a
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Figure 18: All directed graphs on n ≤ 3 nodes. (Left) The four non-isomorphic
directed graphs with n ≤ 2. (Right) The 16 non-isomorphic directed graphs with
n = 3. Each node is labeled with its value of sσ

i , and its sign, for the full support
σ = {1, . . . , n}. Although the sσ

i values for the colored nodes are non-monomial
(bottom left), their signs are also constant throughout the legal parameter range.
Thus, using the sign conditions (see Theorem 2), we see that whether a graph is
a permitted or forbidden motif is parameter independent for n ≤ 3. Permitted
motifs are labeled with a “p” that lies inside a circle (if the motif is uniform
in-degree) or a square (if not). All other graphs are, by definition, forbidden.

CTLN is forbidden, the absence of graphical domination is not sufficient
to guarantee that a motif is permitted. Nevertheless, in many cases, graph
rules can still be used to determine whether such a motif is permitted or
forbidden. In particular, Rule 1 (parity) can be used to determine if a motif
is permitted or forbidden provided we know what happens for all proper
subsets.

To illustrate this idea, we consider the family of oriented graphs with no
sinks on n ≤ 5 vertices.7 Precisely six of these graphs are forbidden motifs
despite the absence of graphical domination (see Figure 20). Fortunately,
using graph rules, we can identify all permitted motifs with |σ | ≤ 4 that
can arise as proper subgraphs in this family, together with their survival
rules. Combining this with parity, we will show that the motifs in Figure 20
are all forbidden.

7
Recall that a directed graph is oriented if it has no bidirectional edges.
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Figure 19: (A–C) The size 4 permitted motifs with parameter dependent sur-
vival for the embeddings. (A1–A5) Some example graphs on five nodes with
the graph A embedding as a subgraph. As a result FP(G, ε, δ) is parameter
dependent for these graphs. Below each graph is FP(G, ε1, δ1) for (ε1, δ1) =
(0.25, 0.5) together with FP(G, ε2, δ2) for (ε2, δ2) = (0.1, 0.12). (B1–B3) Some ex-
ample graphs with the graph B embedding as a subgraph. (C1, C2) Some exam-
ple graphs with the graph C embedding as a subgraph.

Figure 20: Oriented graphs with no sinks on n = 5 that are forbidden motifs
despite the absence of inside-in graphical domination.

A.3.1 Survival rules for oriented permitted motifs with |σ | ≤ 4. Figure 21
shows the five permitted motifs with |σ | ≤ 4 that can potentially support
fixed points within an oriented graph with no sinks. Note that indepen-
dent sets of arbitrary size are also permitted motifs, but by Rule 3, an
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Figure 21: Permitted motifs of size |σ | ≤ 4 (excluding independent sets) that
can arise as subgraphs of an oriented graph with no sinks.

independent set can support a fixed point only if it is a union of sinks, and
so no independent set will ever survive in a graph with no sinks.

The first three permitted motifs in Figure 21 are all uniform in-degree 1.
Thus, the survival rule for these motifs is given by Rule 2: σ ∈ FP(G) if and
only if no external node k /∈ σ receives two or more edges from the nodes
in σ .

The fourth motif is the disjoint union of a 3-cycle with an isolated node.
Recall that a necessary condition for a disjoint union to survive is that each
of its components survives (see Proposition 2). Since the isolated node can-
not survive in a graph with no sinks, we see that this motif will never sur-
vive in our family of n = 5 graphs.

Finally, the butterfly graph is permitted by a parity argument. Since the
graph has no sinks and no bidirectional edges, there are no fixed point sup-
ports of size less than or equal to 2. The only permitted motifs of size 3 are
the two 3-cycles—123 and 234—which both survive by Rule 2. Thus, by par-
ity, the full graph must be a fixed point support. The survival rules for the
butterfly graph are summarized in the following lemma.

Lemma 21. Let σ = {1, 2, 3, 4}, and let G be any graph such that G|σ is the but-
terfly graph in Figure 21. Then σ ∈ FP(G) if and only if every k /∈ σ either receives
at most one edge from σ , or receives two edges from among nodes 1, 2, and 4.

Proof. To derive the butterfly graph’s survival rules, let σ = {1, 2, 3, 4}, and
consider all possible configurations of outgoing edges from the σ to an
added node 5. It is easy to check that if node 5 receives fewer than two
edges from σ , there will always be inside-out graphical domination, and so
σ will survive. In contrast, if node 5 receives three or more edges from σ ,
then 5 will outside-in dominate some node in σ , and so σ will not survive.

When node 5 receives exactly two edges from σ , survival is more com-
plicated and depends on which nodes 5 receives from. There are four cases:
(i) 1, 3 → 5 (equivalently 3, 4 → 5 by symmetry): 5 outside-in dominates 1,
and so σ does not survive; (ii) 2, 3 → 5: 5 outside-in dominates 3, and so
σ does not survive; (iii) 1, 4 → 5: 2 inside-out dominates 5, and so σ sur-
vives; and (iv) 1, 2 → 5 (equivalently 2, 4 → 5), in which there are no graph-
ical domination relationships, and so we explicitly compute the values
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of sσ
i and check the sign conditions (see Theorem 2). We find that

sσ
1 = sσ

4 = −δθ (ε2 + εδ + δ2), sσ
2 = −δθ (2ε2 + 2εδ + δ2),

sσ
3 = −δθ (2ε2 + 3εδ + 2δ2),

while sσ
5 = δθ (5ε3 + 6ε2δ + 5εδ2 + δ3). Thus, sgn sσ

5 = −sgn sσ
i for all i ∈ σ ,

and so σ survives. �

A.3.2 Proof That the Six Graphs in Figure 20 Are Forbidden. Recall that in an
oriented graph with no sinks, no independent set can ever survive as a fixed
point support, nor can any subgraph that is a 3-cycle with an isolated node.
We can thus restrict attention to the remaining permitted motifs shown in
Figure 21.

Figure 20A has 3-cycles 123 and 234, both surviving. The tadpole 1235
does not survive, as node 4 receives two edges from it. There are no re-
stricted subgraphs that are 4-cycles, but we see that 1234 is the butterfly
graph, and it survives by Lemma 21. Thus, FP(G) ⊇ {123, 234, 1234}, and so
the only other possible fixed point support, 12345, is ruled out by parity.
Hence graph A is a forbidden motif.

Figure 20B is identical to Figure 20A except for the addition of the 4 → 1
edge. As a result, the 3-cycle 234 no longer survives. In addition, the sub-
graph on 1234 is no longer the butterfly graph and is not a permitted motif
by inside-in domination (node 1 graphically dominates 4). Thus, FP(G) ⊇
{123}, and the only other candidate support, 12345, is ruled out by parity.
Figure 20B is thus also a forbidden motif.

Similar parity arguments based on subgraph survival can be used for
each of the remaining graphs in Figure 20. We leave the remaining graphs
as an exercise to readers.

A.4 Associating a Graph to a General Competitive TLN. We have seen
that the graph of a CTLN determines many properties of its collection of
fixed point supports. Thus, it is natural to consider associating a graph to
a general competitive TLN with constant external input θ > 0 and ask if
properties of this graph also shape the fixed point supports. Recall that for
such networks, Theorems 2 (sign conditions) and 15 (general domination)
apply, and either can be used to characterize the fixed point supports of the
network.

We associate to each network (W, θ ) a directed graph GW as follows:

GW has an edge from j → i (for i �= j) ⇔ Wi j > −1.

For ease of notation, we will write Wi j as −1 + ci j with cki < 1 (to ensure W
is competitive). In this case, j → i in GW if and only if ci j > 0. Note that GW

is a simple directed graph (no self loops). This generalizes the graph used
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in CTLNs. Indeed, if W = W (G, ε, δ) is a CTLN network with graph G, then
GW = G.

The graph GW can be used to describe certain aspects of the fixed point
supports of the network (see equation 1.1). First, we see that sinks of the
graph correspond to WTA (stable) fixed points. Recall that a vertex in a
graph is a sink if it has out-degree 0.

Lemma 22. A TLN (W, θ ) has a fixed point supported on a single neuron j if and
only if j is a sink of GW . Moreover, when { j} ∈ FP(W ), the corresponding fixed
point is stable.

Proof. We prove this by computing the values of s{ j}
j and s{ j}

k for any k �= j,
then using Theorem 2 (sign conditions) to determine when { j} supports a
fixed point. Note that s{ j}

j = det((I − W{ j}) j; θ ) = θ , and so { j} is a permit-
ted motif with positive index. Furthermore, the eigenvalue of I − W{ j} is θ ,
which is positive, and so { j} supports a stable fixed point in its restricted
subnetwork. This fixed point survives as a fixed point of (W, θ ) precisely
when sgn s{ j}

k = −sgn s{ j}
j = −1. Computing s{ j}

k , we find

s{ j}
k = det((I − W{ j,k})k; θ ) = det(I − W{ j,k}) = det

[
1 θ

1 − ck j θ

]
= θck j,

where we have written Wk j as 1 − ck j. Thus, sgn s{ j}
k = −1 if and only if

ck j < 0, which by definition of GW occurs precisely when j �→ k in GW . By
Theorem 2 (sign conditions), { j} ∈ FP(W ) precisely when this condition is
satisfied for all k �= j, that is, when j has no outgoing edges, and so j is a
sink in GW . �

We also find necessary conditions for a fixed point to be supported on
exactly two neurons; specifically, we show which subsets of size two are
permitted motifs.

Lemma 23. For a TLN (W, θ ), a pair of neurons σ = {i, j} is a permitted motif if
and only if σ is an independent set or a clique in GW . Moreover, when σ = {i, j} ∈
FP(W ), the corresponding fixed point is stable if and only if σ is a clique.

Proof. Let Wi j = 1 − ci j, Wji = 1 − c ji, and σ = {i, j}. With this notation, we
see sσ

i = det((I − W{i, j})i; θ ) = θci j and sσ
j = θc ji. By Theorem 2 (sign condi-

tions), σ is a permitted motif if and only if sgn sσ
i = sgn sσ

j , that is, sgn ci j =
sgn c ji. These signs agree precisely when (1) ci j, c ji > 0 so that i ↔ j and σ

is a clique in GW or (2) ci j, c ji < 0 and σ is an independent set.
Since |σ | = 2 and I − Wσ has positive trace, we see that the eigenvalues

of I − Wσ are positive (ensuring σ supports a stable fixed point) precisely
when det(I − Wσ ) = ci j + c ji + ci jc ji > 0. Since W is competitive, ci j, c ji < 1,
and so det(I − Wσ ) is positive precisely when ci j, c ji > 0, so that σ is a
clique. �
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Figure 22: (A) The graph GW corresponding to the network W in example 8.
(B) Plot of the real part of the eigenvalues of −I + W as a function of c, for W in
example 9. The matrix (and, hence, the corresponding full support fixed point)
is stable throughout the range 0 < c < 0.25. At c = 0, the real and complex eigen-
values have real parts −3 and 0, respectively.

Lemmas 22 and 23 show that the fixed points of size |σ | ≤ 2 of a general
competitive TLN are completely determined by the graph, matching the
case of CTLNs. We might then hope that the CTLN survival rules of these
fixed points would hold in the general case or that other graph rules would
also go through. Example 9 shows that unfortunately, this is not the case.

Example 9 (cautionary example). Consider the competitive TLN (W, θ )
with θ = 1 and

W =

⎛⎜⎝ 0 −1 + 2c −1 − 4c

−1 + 2c 0 −1 − c

−1 + 4c −1 − c 0

⎞⎟⎠
for any c with 0 < c < 0.25, to ensure W is competitive. This network has
corresponding graph G = GW with 1 ↔ 2, 1 → 3, and no other edges (see
Figure 22A). In this example, we compute FP(W ) using Lemmas 22 and 23
and Theorem 2 (sign conditions).

By Lemma 22, the only singleton fixed point support is {3} since it is the
only sink in the graph. By Lemma 23, {1, 2} and {2, 3} are the only permitted
motifs of size 2, but we must check if these survive as fixed points of (W, θ ).
For σ = {1, 2}, we have sσ

1 = sσ
2 = 2c and sσ

3 = 2c2; since sgn sσ
3 = sgn sσ

i for
i ∈ σ , we see that {1, 2} is not a fixed point support, despite being a target-
free clique in GW . In contrast, for σ = {2, 3}, we have sσ

2 = sσ
3 = −c and sσ

1 =
c2, satisfying the sign conditions of Theorem 2. Thus, {2, 3} is a fixed point
support, despite being an independent set that is not a union of sinks of
GW . This shows that both Rules 3 and 4 for CTLNs do not extend to general
TLNs.

Finally, consider σ = {1, 2, 3}. We have sσ
1 = c2, sσ

2 = 4c2, and sσ
3 = 2c2.

Since the signs all agree, σ ∈ FP(W ). Since σ has uniform in-degree d = 1,
in any CTLN, σ would also be a fixed point support, but this fixed point
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would be unstable by Theorem 5 since d <
|σ |
2 . However, for this general

TLN (W, θ ), we see that σ supports a stable fixed point for all the allowable
values of 0 < c < 0.25 (see Figure 22B).
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