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Abstract Networks of neurons in some brain areas are flexible enough to encode new
memories quickly. Using a standard firing rate model of recurrent networks, we de-
velop a theory of flexible memory networks. Our main results characterize networks
having the maximal number of flexible memory patterns, given a constraint graph
on the network’s connectivity matrix. Modulo a mild topological condition, we find
a close connection between maximally flexible networks and rank 1 matrices. The
topological condition is H1(X;Z) = 0, where X is the clique complex associated to
the network’s constraint graph; this condition is generically satisfied for large random
networks that are not overly sparse. In order to prove our main results, we develop
some matrix-theoretic tools and present them in a self-contained section independent
of the neuroscience context.
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1 Introduction

New memories in some brain areas can be encoded quickly (Rutishauser and Mame-
lak 2006). It is widely believed that memories are stored via changes in the synaptic
efficacies between neurons. Irrespective of the plasticity mechanism, or “learning
rule,” used to encode memory patterns, rapid learning is perhaps most easily accom-
plished if new patterns can be learned via only small changes in connection strengths
between neurons. It may thus be desirable for fast-learning, flexible networks to have
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architectures that enable many memory patterns to be encoded (and unencoded) by
only small perturbations of the synaptic connections. Here, by “architecture,” we
mean the pattern of synaptic strengths, or weights, assigned to directed connections
between neurons. Which network architectures allow maximal flexibility for learning
and unlearning new memories?

We study this question in the context of a standard firing rate model of recurrent
neural networks. Building on the framework of “permitted” and “forbidden” sets first
introduced in Hahnloser et al. (2003), we think of the recurrent network as a gat-
ing device that allows only a restricted set of patterns, the stored memories, to be
activated by external feed-forward input. In Theorem 1.2, we establish a correspon-
dence between the memory patterns encoded by a recurrent network and the set of
stable principal submatrices of the network’s effective connectivity matrix. We then
make precise the notion of memory patterns that are flexible in the sense that they
can be encoded (learned) and unencoded (forgotten) via only small changes to the
network weights. Our main results, Theorems 1.5, 1.7, and 1.8, characterize network
architectures with the maximal number of flexible memories.

1.1 Network Dynamics and Architecture

We consider a standard firing rate model (Dayan and Abbott 2001; Ermentrout and
Terman 2010) with heterogeneous timescales,

dxi

dt
= − 1

τi
xi + ϕ

(
n∑

j=1

Wijxj + bi

)

, for i = 1, . . . , n,

where n is the number of neurons. The real-valued function xi = xi(t) is the firing
rate of the ith neuron, bi is the external input to the ith neuron, and Wij denotes
the effective strength of the recurrent connection from the j th to the ith neuron. The
timescale τi gives the rate of recovery to rest in the absence of external or recurrent
inputs. The nonlinear function ϕ : R → R≥0 satisfies ϕ(y) = 0 whenever y ≤ 0, and
ensures that the firing rates x1, . . . , xn are nonnegative. Although the threshold ap-
pears to be zero for all neurons, heterogeneous thresholds can easily be incorporated
into the bis. Note that τi > 0, while bi and Wij can take on both positive and negative
values. The dynamics of the network can be described more compactly as

ẋ = −Dx + ϕ(Wx + b), (1)

where D
def= diag(τ1

−1, . . . , τn
−1) is the diagonal matrix of inverse time constants,

and ϕ is applied to each coordinate when the argument is a vector. Note that we do
not require that the matrix W respect Dale’s law,1 as the entries are considered to
be effective connection strengths between principal (excitatory) neurons. Negative
weights thus reflect effectively inhibitory interactions, mediated by the presence of

1Dale’s law states that every element in the same column of the connectivity matrix must have the same
sign (Dayan and Abbott 2001). This is because neurons have either purely excitatory or purely inhibitory
synapses onto other neurons.
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non-specific interneurons that do not otherwise enter into the model. We always as-
sume that the diagonal entries of the matrix −D +W are strictly negative; otherwise,
individual neurons may experience a run-away excitatory drive even in the absence
of external or recurrent inputs. We will also assume that bi is constant in time, though
it may vary across neurons. For a given choice of nonlinearity ϕ, the network and its
dynamics (1) are denoted by the pair of matrices (W,D).

It is worth noting here that we regard the model (1) as a description of fast-
timescale dynamics. A more realistic network would also include stochastic fluc-
tuations and adaptive mechanisms on a slower timescale (Abbott and Regehr 2004),
so that “fixed points” of the fast-timescale dynamics only appear for short periods of
time. Such fixed points will serve as our model for (transiently) activated memory
patterns.

To study network flexibility, we will think of the matrix of effective connection
strengths W as a sum of two components,

W = J + A,

where J corresponds to a fixed and underlying architecture, and A is a matrix of
perturbations about J . While J reflects broad patterns of connection strengths that
may be conserved across animals or across time, the matrix A captures individual
variations, and is constantly changing as a function of the animal’s learning and ex-
perience. Our main question is then the following:

Main Question (Version 1) What architectures J allow maximal flexibility for learn-
ing and unlearning new memory patterns under small perturbations A?

We will consider this as a question about the strengths, or weights, of the recur-
rent connections between neurons, rather than as a question about which neurons
are connected. The pattern of allowed connections between neurons will be treated
as a constraint. Indeed, networks with different strengths of connections, but identi-
cal connectivity patterns, may have significantly different dynamics and attractors.
Moreover, in biological neural circuits, the anatomical connectivity may be diffi-
cult to modify, but the weights of synapses are known to change on relatively short
timescales in response to learning and experience.

1.2 Memory Patterns as “Stable Sets” in Threshold-Linear Networks

Before addressing our main question about perturbations of network architectures, we
investigate the set of memory patterns corresponding to any fixed network (W,D).
The idea of stable fixed points as a model for stored memory patterns in recurrent
networks dates back at least to Hopfield (1982). Following the framework of Hahn-
loser et al. (2003), subsets of neurons that are active at stable fixed points of (1) will
serve as our model for stored memory patterns.

Recall that a fixed point x∗ is asymptotically stable if there exists an open neigh-
borhood U of x∗ such that limt→∞ x(t) = x∗ for every trajectory x(t) with the initial
condition x(0) ∈ U . If the fixed point x∗ has only the property that for all nearby
initial conditions, x(0) ∈ U , the trajectory x(t) remains very close to x∗ for all later
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times, then x∗ is a stable point of the network dynamics. Note that every asymptoti-
cally stable point is stable, but the converse is not true. For a given firing rate vector
x ∈ Rn

≥0, we call the subset of active neurons the support of x,

supp(x)
def= {i | xi > 0} ⊂ {1, . . . , n}.

Definition 1.1 (Stable, marginal, and unstable sets) Let (W,D) be a network on n

neurons with nonlinearity ϕ. A nonempty subset of neurons σ ⊂ {1, . . . , n} is a stable
set of (W,D) if there exists an asymptotically stable fixed point x∗ of the dynamics
(1) such that supp(x∗) = σ , for at least one external input vector b ∈ Rn. A marginal
set of (W,D) is a nonempty subset of neurons σ for which there exists a stable fixed
point of the dynamics (but no asymptotically stable fixed point) with support σ for at
least one external input vector b, and an unstable set of (W,D) is a non-empty subset
of neurons that is neither stable nor marginal.2

Stable sets are our model for memory patterns encoded by the network. For a fixed
external input b, there may be one, many, or no asymptotically stable fixed points.
As we range over all possible inputs, we obtain the set of stable sets of the network.
Clearly, there can be at most 2n − 1 stable sets in a network of n neurons. In cases of
interest, however, the recurrent network performs meaningful computations precisely
because only a small fraction of subsets are stable (Hahnloser et al. 2003). Note that
a pair of neurons in a stable set need not be connected (i.e., we may have Wij = 0 for
i, j in a stable set).

In general, it is very difficult to determine analytically the stable fixed points
for a high-dimensional, nonlinear dynamical system. If the nonlinearity ϕ in (1) is
threshold-linear, however, it is possible to use standard tools from linear systems of
ordinary differential equations to obtain exact results. For this reason, we now re-
strict ourselves to threshold-linear networks, which are networks (W,D) where the
nonlinearity is chosen as

ϕ(y) = [y]+ def=
{

y if y > 0,

0 if y ≤ 0.

Although sigmoids more closely match experimentally measured input-output curves
for neurons, the above threshold-nonlinearity is often a good approximation when
neurons are far from saturation (Dayan and Abbott 2001; Geffen et al. 2009). If we
assume that encoded memory patterns are realized by neurons firing sufficiently be-
low saturation, it is reasonable to model them as stable sets of the threshold-linear
dynamics:

ẋ = −Dx + [Wx + b]+. (2)

In a (nondegenerate) linear system, ẋ = (−D +W)x +b, there can be at most one
fixed point of the dynamics for a given input vector b ∈ Rn; its stability is character-

2Stable and unstable sets were previously introduced in Hahnloser et al. (2003), where they were called
“permitted” and “forbidden” sets, respectively.
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ized by the eigenvalues of the matrix −D + W . Unlike linear systems, the threshold-
linear network (2) can exhibit multiple fixed points for the same input vector b. It
turns out, however, that stable, unstable, and marginal sets of neurons in threshold-
linear networks have simple characterizations in terms of the eigenvalues of the cor-
responding principal submatrices of −D + W .

Given an n × n matrix A, and a subset σ ⊂ {1, . . . , n}, the principal subma-
trix Aσ is the square matrix obtained by restricting A to the index set σ ; i.e., if
σ = {s1, . . . , sk}, then Aσ is the k × k matrix with (Aσ )ij = Asisj . We call a square
matrix stable if all its eigenvalues have strictly negative real part. We call a matrix
unstable if at least one eigenvalue has strictly positive real part, and marginally sta-
ble if no eigenvalue has strictly positive real part and at least one eigenvalue is purely
imaginary. Marginally stable matrices are thus on the boundary between stable and
unstable matrices.

We now state our characterization of stable sets in terms of the stability of principal
submatrices.

Theorem 1.2 Let (W,D) be a threshold-linear network. A subset of neurons σ is
a stable set of (W,D) if and only if the principal submatrix (−D + W)σ is stable.
Similarly, σ is a marginal set or an unstable set of (W,D) if and only if (−D + W)σ
is marginally stable or unstable, respectively.

In the special case of symmetric threshold-linear networks, where the matrix W
is symmetric, the equivalence between stable (“permitted”) sets and stable principal
submatrices was shown in Hahnloser et al. (2003). We give the proof of Theorem 1.2
in Sect. 2.

1.3 G-Constrained Networks

There are two ways in which a zero-weight connection between two neurons may
arise. On the one hand, there may be a lack of anatomical connectivity between the
neurons. On the other hand, many synaptic connections that appear anatomically are
not functional—these are referred to as silent synapses (Kerchner and Nicoll 2008).
While the first type of zero-weight connection cannot be perturbed without major
changes to the network architecture, silent synapses may become active via small
modifications. In addressing our main question, we are therefore interested in charac-
terizing maximally flexible networks where some connections are constrained to be
zero, while the remaining weights (some of which may also be zero) can be modi-
fied by small perturbations of the network. The following definitions hold for general
networks, not just threshold-linear ones.

Let G = (V ,E) be a simple graph with vertices V = {1, . . . , n} and edges E. We
say that an n×n architecture matrix J is constrained by the graph G if Jij = 0 for all
edges (ij) /∈ E. By abuse of notation, we often use G to refer to the edge set E. Note
that all architectures on n neurons are constrained by the complete graph G = Kn. If
for (ij) ∈ G the entry Jij = 0, we say that there is a silent connection from neuron j
to neuron i. This mirrors the phenomenon of silent synapses in the brain.

We define an ε-perturbation of a network architecture J to be a matrix A whose
entries all satisfy |Aij | ≤ ε. We say that an ε-perturbation is consistent with G if the
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matrix A satisfies Aij = 0 for all (ij) /∈ G. In other words, consistent ε-perturbations
can only perturb entries that are not constrained to be zero (including silent connec-
tions).

When considering an architecture J that is constrained by a graph G, we refer to
the network as (J,D)G. For a given ϕ, we use the following notation for the set of
all G-constrained network architectures:

N (G)
def=

{
(J,D)G

}
=

{
(J,D)

∣∣ Jij = 0 for all (ij) /∈ G
}
.

Note that the set of constrained architectures is independent of the nonlinearity ϕ.

When G = Kn is the complete graph (no constraint), we will simply write N (n)
def=

N (Kn). If G1 ⊂ G2, then N (G1) ⊂ N (G2). An ε-perturbation of a network (J,D)G
will always be assumed to be consistent with G, and hence to stay within N (G).

We can now state our main question a bit more precisely.

Main Question (Version 2) For a given constraint graph G, what network archi-
tectures (J,D)G ∈ N (G) allow the maximal number of subsets of neurons that can
become both stable sets (learned/encoded) and unstable sets (forgotten/unencoded)
via arbitrarily small ε-perturbations of J ?

We call such subsets of neurons flexible memory patterns.

1.4 Flexible Memory Patterns as “Flexible Cliques”

Intuitively, a flexible memory pattern is a subset of neurons that can become both a
stable set and an unstable set via only small modifications of the network’s connection
strengths. Ideally, these modifications should be specific enough not to change the
stability of any other subsets. Moreover, we would like flexible memory patterns
to correspond to subsets of neurons that are unconstrained in their connections to
each other. In other words, these subsets of neurons should be all-to-all connected in
the sense that all mutual connections can be perturbed, although some may be zero-
weight (silent) connections. We model such memory patterns as “flexible cliques”;
a precise definition is given below.

Recall that a clique in a graph G is a subset of vertices that are all-to-all connected,
and the clique complex of G, denoted X(G), is the set of all cliques. We will say that
σ ⊂ {1, . . . , n} is a stable clique of the network (W,D)G if σ is a stable set and
σ ∈ X(G). Similarly, an unstable clique is an unstable set σ such that σ ∈ X(G), and
a marginal clique is a marginal set σ such that σ ∈ X(G). Because the stability of a
matrix forces one or more of its principal submatrices to be stable (see Lemma 3.15),
one cannot require that a perturbation that changes the stability of a marginal clique
in a threshold-linear network also preserve all other marginal cliques. For this reason,
we introduce the notions of “maximally stable” and “minimally unstable” cliques.
A maximally stable clique is a stable clique that is not properly contained in any
larger stable clique; a minimally unstable clique is an unstable clique that does not
properly contain any other unstable clique. We can now define flexible cliques.
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Definition 1.3 (Flexible clique) We call a subset of neurons σ ⊂ {1, . . . , n} a flexible
clique of a network architecture on n neurons, (J,D)G, if for every ε > 0 there exist
ε-perturbations As and Au, consistent with G, such that σ is a maximally stable
clique of (J + As,D)G and a minimally unstable clique of (J + Au,D)G.

Flexible cliques are our model for flexible memory patterns. All flexible cliques
are marginal cliques, but the converse is not true (see Sect. 4.1). This is because
the flexibility of a marginal clique depends on the relationship of this clique to other
cliques in the network. In general, it is difficult to determine whether or not a marginal
clique is flexible in a network with many marginal cliques. We are interested in pre-
cisely this case, as we look for properties of networks with the maximal number of
flexible cliques.

1.5 Statement of the Main Results

Our main results all concern threshold-linear networks only. Consequently, from
now on we assume N (n) and N (G) correspond to sets of unconstrained and G-
constrained threshold-linear networks, respectively. First, we define what we mean
by the “flexibility” and “rank” of a network.

Definition 1.4 (Network flexibility, rank, and completion) We define the flexibility
of a network as the number of flexible cliques, and denote it: flex(J,D)G. We define
the rank of a network (J,D)G to be the rank of the matrix −D + J . We say that a
G-constrained network on n neurons, (J,D)G, has a rank k completion if there exists
a network (J̄ , D̄) ∈ N (n) of rank k such that D̄ = D and J̄ij = Jij for all i = j and
all distinct pairs (ij) ∈ G.

We now further refine our main question.

Main Question (Version 3) For a given constraint graph G, what threshold-linear
networks (J,D)G ∈ N (G) attain maximum flexibility?

Note that the flexibility of a G-constrained network (J,D)G is bounded by the
total number of non-empty cliques in the corresponding clique complex X(G), and
by the fact that single neurons can not be flexible cliques because −D +J has strictly
negative diagonal. Thus,

flex(J,D)G ≤
∣∣X(G)

∣∣ − n − 1,

where n is the number of neurons. In N (n), the flexibility can be at most 2n − n − 1.
Most networks, however, have no flexible cliques.

The rank of any network (J,D)G is at least 1. For threshold-linear networks,
rank 1 networks are good candidates for attaining maximum flexibility because all
but the 1 × 1 principal submatrices are marginally stable. Indeed, we find that rank 1
networks attain the upper bound on flexibility in N (n), and a similar statement is true
about G-constrained networks.
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Theorem 1.5 All rank 1 threshold-linear networks on n neurons are maximally flex-
ible in N (n), and have flexibility 2n − n − 1. All G-constrained threshold-linear net-
works with a rank 1 completion are maximally flexible in N (G), and have flexibility
|X(G)| − n − 1.

The proof is given in Sect. 4.2.
Can any networks other than ones that are rank 1, or have rank 1 completions,

attain maximal flexibility? The following example demonstrates that a G-constrained
network can be maximally flexible without having a rank 1 completion.

Example 1.6 Let G = (V ,E) be a simple graph with vertices V = {1,2,3,4} and
edges E = {(12), (23), (34), (41)}. G is a cycle on 4 vertices, so the clique complex
X(G) has no cliques of size greater than 2. Consider the threshold-linear network
(J,D)G ∈ N (G), where

−D + J =





−1 2 0 1
1/2 −1 1 0
0 1 −1 1
1 0 1 −1



 .

Using Lemma 4.1 (see Sect. 4.1), it is easy to see that all σ ∈ X(G) such that |σ | = 2
are flexible cliques, and hence (J,D)G is maximally flexible in N (G). Despite this,
(J,D)G does not have a rank 1 completion, since there is no rank 1 matrix that agrees
with −D + J on all of its nonzero entries (cf. Example 3.8 in Sect. 3.2).

It turns out, however, that examples of this kind can be eliminated by imposing a
simple topological condition on the clique complex of the constraint graph G. Note
that a clique complex is an abstract simplicial complex, whose homology groups can
be computed using simplicial homology. The following is our main result.

Theorem 1.7 Let (J,D)G be a maximally flexible threshold-linear network in
N (G), and suppose that the clique complex X(G) satisfies H1(X(G);Z) = 0. Then
(J,D)G has a rank 1 completion. In particular, (J,D)G has no silent connections.

The vanishing of H1(X(G);Z) may at first appear to be a strong condition, but
in fact it is generically satisfied for large random networks that are not overly sparse.
For example, it was recently shown in Kahle (2009) that if G is an Erdös–Rényi
graph with edge probability p (i.e., a random graph on n vertices with independent
connection probability p between any pair of vertices), then p ≥ n−α with α < 1/3
implies that the probability of H1(X(G);Z) = 0 approaches 1 as n → ∞. For n =
104 neurons, the first homology group of the clique complex is expected to vanish for
connection probabilities as low as p = .05.

The proof of Theorem 1.7 is given in Sect. 4.3. For the complete graph Kn,
H1(X(Kn),Z) = 0, thus the following result for unconstrained networks is a corol-
lary of Theorems 1.5 and 1.7.

Theorem 1.8 A threshold-linear network is maximally flexible in N (n) if and only
if it is a rank 1 network.
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We give in Sect. 4.3 a separate proof of this theorem independent of homol-
ogy/cohomology arguments.

1.6 Discussion

In this article, we have laid out the foundations for a theory of flexible memory net-
works, that is, for recurrent networks with memory patterns that can be both encoded
(learned) and unencoded (forgotten) by arbitrarily small perturbations of the matrix
of connection strengths between neurons. Given a constraint graph G of allowed
connections, we have found, modulo a mild topological condition, that maximally
flexible networks in N (G) correspond precisely to networks (J,D)G that have a
rank 1 completion. These results may provide valuable insights for understanding
fast-learning, flexible networks in the brain.

Our results are based on an analysis of the fixed point attractors of a standard
firing rate model (2). We emphasize, however, that we regard this only as a model
of the fast-timescale dynamics of a recurrent network; in a more comprehensive
model, additional elements such as stochastic fluctuations, changing external inputs,
and adaptive variables on a slower timescale will all lead to frequent transitions be-
tween attractors of the fast-timescale equations (2). This approach has proven partic-
ularly fruitful in modeling of hippocampal networks, where “bump attractor” mod-
els on a fast timescale form integral building blocks to more comprehensive mod-
els that have been successful in describing experimental observations from simul-
taneously recorded populations of neurons (Samsonovich and McNaughton 1997;
McNaughton et al. 2006; Romani and Tsodyks 2010; Itskov et al. 2011).

Thus far we have only considered the extreme case of maximally flexible net-
works. For these networks, arbitrarily small perturbations of the synaptic weights
between neurons are sufficient to encode new memory patterns. Nevertheless, larger
perturbations will be necessary for these patterns to be robust in the presence of vari-
ous plasticity mechanisms that are engaged during ongoing spontaneous activity. For
any given learning rule and/or constraint on the rate of synaptic changes, however,
maximally flexible networks have the best chance to quickly encode (or unencode)
new memories as stable fixed points of the dynamics.

It may be possible to extend these results to other flexible networks. Do all rank
k networks have the same flexibility? What is the general relationship between the
flexibility of a network and its rank? What is the appropriate generalization of the
topological condition in Theorem 1.7 when considering higher rank completions?
We leave these questions to future work.

The remainder of this paper is organized as follows. In Sect. 2, we prove The-
orem 1.2, making the connection between fixed points of the recurrent network dy-
namics and the stability of principal submatrices. In Sect. 3, we develop some matrix-
theoretic results that are critical to proving our main theorems. This section is self-
contained, independent of the context of neural networks. In Sect. 4, we prove our
main results, Theorems 1.5, 1.7, and 1.8.
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2 Stable Sets Correspond to Stable Principal Submatrices

Recall that a threshold-linear network (W,D) has dynamics described by the system,

ẋ = −Dx + [Wx + b]+, (3)

with x ∈ Rn
≥0 the firing rate vector, D a diagonal matrix with strictly positive diagonal

entries, and −D + W an n × n matrix having strictly negative diagonal entries. For
such networks, one is able to obtain qualitative characterizations (stable, marginal,
unstable) of sets of neurons. In what follows, we consider fixed points of (3) for a
fixed input vector b ∈ Rn.

Suppose there exists a fixed point of (3) with all neurons firing, i.e., x∗ > 0. Since
Dx∗ > 0, we can drop the threshold in a small neighborhood of this fixed point,
where the system is described by the linear system ẋ = (−D +W)x +b. If the matrix
−D + W is invertible, the linear system has exactly one fixed point, (D − W)−1b,
although this fixed point may or may not be in the regime Rn

>0 where all neurons are
firing. Either x∗ = (D − W)−1b > 0, or we have a contradiction and there is no x∗.
As is well known for linear systems, the fixed point x∗ is asymptotically stable if and
only if the matrix −D + W is a stable matrix.

In addition to a possible fixed point with all neurons firing, the system (3) may also
have fixed points corresponding to proper subsets of neurons with non-zero firing
rate. Let σ = supp(x∗) ⊂ {1, . . . , n} be the subset of neurons that are firing at the
fixed point x∗, with the complement σ̄ representing the remaining (silent) neurons.
To describe these types of fixed points, we reorder the neurons and write

W =
[
Wσ̄ σ̄ Wσ̄ σ

Wσ σ̄ Wσσ

]
, D =

[
Dσ̄ 0
0 Dσ

]
, x =

(
xσ̄

xσ

)
, and b =

(
bσ̄

bσ

)
.

The system (3) becomes

ẋσ̄ = −Dσ̄ xσ̄ + [Wσ̄ σ̄ xσ̄ + Wσ̄ σ xσ + bσ̄ ]+,

ẋσ = −Dσ xσ + [Wσ σ̄ xσ̄ + Wσσ xσ + bσ ]+,

and, since x∗
σ̄ = 0, the fixed point equations for x∗ simplify to:

0 = [Wσ̄ σ x∗
σ + bσ̄ ]+,

Dσ x∗
σ = [Wσσ x∗

σ + bσ ]+.

Since Dσ x∗
σ > 0, we can drop the threshold in the second equation and obtain

(Dσ − Wσσ )x∗
σ = bσ . (4)

However, a solution x∗ of this equation only yields a valid fixed point if x∗
σ > 0 and

Wσ̄ σ x∗
σ + bσ̄ ≤ 0.

To analyze the stability of a fixed point x∗ with supp(x∗) = σ , we make the fol-
lowing change of coordinates. Let

( y
z

) def= x − x∗, with y ∈ R|σ̄ |
≥0 and z ∈ R|σ |

≥0. Then x∗

is a stable fixed point of (3) if and only if the origin is a stable fixed point of:

ẏ = −Dσ̄ y +
[
Wσ̄ σ̄ y + Wσ̄ σ z + (Wσ̄ σ x∗

σ + bσ̄ )
]
+,
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ż = −Dσ (z + x∗
σ ) +

[
Wσ σ̄ y + Wσσ z + (Wσσ x∗

σ + bσ )
]
+.

The existence of the fixed point (y = 0, z = 0) implies that Wσ̄ σ x∗
σ + bσ̄ ≤ 0 and

Wσσ x∗
σ + bσ > 0. If we further assume that Wσ̄ σ x∗

σ + bσ̄ < 0, then there exists an
open neighborhood of the origin for which the sign of each of the thresholded terms
is determined by the constant terms (those that do not involve y or z). In this neigh-
borhood, we can simplify the thresholds and, using (4), the equations take the form,

ẏ = −Dσ̄ y,

ż = −Dσ z + Wσ σ̄ y + Wσσ z.

Because the system is exactly linear in a neighborhood of the fixed point, x∗ is asymp-
totically stable if and only if the matrix

M =
[−Dσ̄ 0
Wσ σ̄ −Dσ + Wσσ

]

is stable. Similarly, x∗ is stable but not asymptotically stable if and only if M is
marginally stable, and x∗ is an unstable fixed point if and only if M is unstable.
Finally, note that the stability of M is equivalent to the stability of −Dσ + Wσσ =
(−D + W)σ .

We collect these observations into the following characterization of fixed points in
threshold-linear networks.

Proposition 2.1 Consider the system (3), for a threshold-linear network (D,W)

on n neurons with fixed input b, and let σ ⊂ {1, . . . , n} be a subset of neurons. The
following statements hold:

(i) A point x∗ with supp(x∗) = σ is a fixed point if and only if x∗
σ satisfies:

(a) (Dσ − Wσσ )x∗
σ = bσ ,

(b) x∗
σ > 0, and

(c) bσ̄ ≤ −Wσ̄ σ x∗
σ .

In particular, if det(Dσ −Wσσ ) *= 0, then there exists at most one fixed point with
support σ , and it is given by x∗

σ = (Dσ − Wσσ )−1bσ .
(ii) Suppose x∗ is a fixed point with supp(x∗) = σ . If bσ̄ < −Wσ̄ σ x∗

σ , then x∗ is
asymptotically stable if and only if the principal submatrix (−D +W)σ is stable.
Similarly, x∗ is stable but not asymptotically stable if and only if (−D + W)σ is
marginally stable, and x∗ is an unstable fixed point if and only if (−D + W)σ is
unstable.

Using this proposition, we can now prove Theorem 1.2.

Proof of Theorem 1.2 We begin with the first statement. (⇒) Let σ be a stable set of
(W,D), and choose b such that there exists an asymptotically stable fixed point x∗

of (3) with supp(x∗) = σ . By part (i) of Proposition 2.1, it is clear that we can
choose b such that bσ̄ < −Wσ̄ σ x∗

σ . It then follows from part (ii) that (−D + W)σ
is stable.
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(⇐) Now suppose that (−D + W)σ is stable. We construct b, the input vector
in (3), so that the corresponding fixed point with support σ is asymptotically stable.
Let bσ = (D−W)σ 1σ , where 1σ is the vector of all ones. Letting x∗ be the firing rate
vector with supp(x∗) = σ and x∗

σ = 1σ > 0, we choose bσ̄ to satisfy bσ̄ < −Wσ̄ σ x∗
σ .

Note that (Dσ − Wσσ )x∗
σ = bσ . For this choice of b, it thus follows from part (i)

of Proposition 2.1 that x∗ is a fixed point, and by part (ii) that x∗ is asymptotically
stable. Hence, σ is a stable set of (W,D).

Similar arguments using Proposition 2.1 can be used to show that σ is a marginal
or unstable set of (W,D) if and only if (−D + W)σ is marginally stable or unstable,
respectively. !

As a result of Theorem 1.2, we see that in order to investigate stable, unstable,
or marginal sets of neurons in threshold-linear networks we need to understand the
stability of principal submatrices.

3 Matrix-Theoretic Results

In this section, we prove results concerning real matrices with strictly negative en-
tries on the diagonal. These results will be critical for Sect. 4, where we prove our
main theorems regarding maximally flexible networks. This section is self-contained,
however, and the results can be understood independently of the context of neural net-
works.

Throughout this section, A is an n × n matrix with real coefficients and strictly
negative entries on the diagonal. The matrix EA = (εij ) is the sign matrix associated
to A; this is a matrix whose entries εij ∈ {±1,0} are the signs of the corresponding
entries of A. To the matrix A, we also associate the graph GA, which we call the
connectivity graph of A. It is the simple graph that includes each edge (ij) unless
Aij = Aji = 0. Let X(GA) be the clique complex associated to the graph GA; we
call this the clique complex associated to the matrix A. Note that a clique complex is
an abstract simplicial complex. For any simplicial complex X and abelian group G ,
we denote the associated simplicial homology and cohomology groups as Hi(X; G)

and Hi(X; G), respectively. Finally, mirroring Definition 1.4, we call an n×n matrix
Ā a completion of A if Āij = Aij for all i = j and all distinct pairs (ij) ∈ GA.

3.1 Bipartite Matrices

Bipartite matrices play an important role in Sect. 3.2.

Definition 3.1 (Bipartite matrix) We say that a real-valued, n × n matrix A is a
bipartite matrix if the index set {1, . . . , n} can be partitioned into two disjoint sets, σ

and σ̄ , such that:

1. if i ∈ σ and j ∈ σ̄ , both Aij ≥ 0 and Aji ≥ 0.
2. if i, j ∈ σ or i, j ∈ σ̄ , both Aij ≤ 0 and Aji ≤ 0.
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This definition is equivalent to the condition that there exists a permutation of the
indices {1, . . . , n} such that the sign pattern of A takes on the block-form:

EA =
(− +

+ −

)
, (5)

where “+” indicates a submatrix with all nonnegative entries, and “−” a submatrix
with all nonpositive entries. From this observation, it is easy to see that all rank 1
matrices with negative diagonal are bipartite.

Lemma 3.2 Let A be a real n × n matrix with rankA = 1 and Aii < 0 for all
i = 1, . . . , n. Then there exists a permutation of the indices such that the sign pattern
of A is of the form (5). In particular, A is a bipartite matrix.

The following result gives a sufficient condition for bipartiteness of a matrix in
terms of the associated clique complex.

Lemma 3.3 (Bipartite lemma) Let A be a real-valued n×n matrix with strictly neg-
ative diagonal, sign matrix EA = (εij ), connectivity graph GA, and clique complex
X(GA). Suppose that

(i) εijεji = 1, whenever (ij) ∈ X(GA),
(ii) εijεjkεki = −1, whenever (ijk) ∈ X(GA), and

(iii) H 1(X(GA);Z2) = 0.

Then A is a bipartite matrix.

Proof It is convenient to think of Z2 = {±1}, the multiplicative group with two ele-
ments. Consider the cochain complex, with X = X(GA),

C 0(X;Z2)
δ0−→ C 1(X;Z2)

δ1−→ C 2(X;Z2)
δ2−→ · · · δn−1−→ Cn(X;Z2)

δn−→ 0. (6)

The maps are the usual coboundary operators. For example, δ0({vi}) = {eij },
where eij = vjv

−1
i = vivj . Similarly, δ1({eij }) = {fijk}, where fijk = ejke

−1
ik eij =

eij ejkeki .
By (i), we have {εij } ∈ C 1(X;Z2), while (ii) implies that {−εij } ∈ Ker δ1 (we

need the minus sign because kernel elements map to +1). Using (iii), we conclude
that {−εij } ∈ Im δ0. Hence, there exists a vertex labeling {νi} ∈ C 0(X;Z2) such that
−εij = νiνj whenever (ij) ∈ X. Let σ = {i | νi = +1} and σ̄ = {i | νi = −1}, with
σ ∪ σ̄ = {1, . . . , n}. The sign of an edge, εij = −νiνj , can only be positive if i ∈ σ

and j ∈ σ̄ or if i ∈ σ̄ and j ∈ σ , and εij can only be negative if i, j ∈ σ or i, j ∈ σ̄ .
This proves that the matrix A is bipartite. !
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Example 3.4 To see why we need the cohomology condition in cases where there are
zero entries, consider the matrix

A =





−1 1 0 0 1
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1
1 0 0 1 −1




.

The graph GA is a cycle on 5 vertices, and A is not a bipartite matrix. Nevertheless,
A satisfies conditions (i) and (ii).

When the matrix A has no zero entries, however, this kind of example can-
not occur. The clique complex of the complete graph, X(Kn), is contractible, so
H 1(X(Kn);Z2) = 0 and we obtain the following corollary.

Corollary 3.5 Let A be a real-valued, n × n matrix with strictly negative diagonal
and sign matrix EA = (εij ) with all entries εij nonzero. Suppose that (i) εijεji = 1,
for all (ij), and (ii) εijεjkεki = −1, for all distinct triples (ijk). Then A is a bipartite
matrix.

3.2 Vanishing Principal Minors and Rank

Recall that, given an n × n matrix A and a subset σ ⊂ {1, . . . , n}, the principal sub-
matrix Aσ is the square matrix obtained by restricting A to the index set σ . The
determinant of a principal submatrix is called a principal minor.

It is well known that if the rank of A is k, then all principal minors larger than
k × k must vanish. The converse is not true. For example, consider a strictly upper-
triangular n×n matrix. It can have rank up to n− 1, yet each and every principal mi-
nor vanishes. In the case of matrices with strictly negative diagonal entries, however,
we do have a kind of converse; this is the subject of Lemma 3.7 and Proposition 3.9,
the main result in this section. We begin with a simple technical lemma that will be
used throughout.

Lemma 3.6 Let A be a real-valued n × n matrix with strictly negative diagonal
entries and clique complex X(GA). Suppose that all 2×2 and 3×3 principal minors
corresponding to cliques in X(GA) vanish. Then the matrix A has symmetric sign
matrix EA, and its entries satisfy

AiiAjj = AijAji, for (ij) ∈ X(GA), and (7)

AiiAjjAkk = AijAjkAki, for (ijk) ∈ X(GA). (8)

Proof The first set of relations (7) is obvious, and ensures that EA is symmetric and
Aij *= 0 for all (ij) ∈ X(GA). This, together with the vanishing of 3 × 3 principal
minors, yields:

2AiiAjjAkk = AijAjkAki + AkjAjiAik, for (ijk) ∈ X(GA).
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Given a triple (ijk) ∈ X(GA), denote x = AiiAjjAkk and y = AijAjkAki , and note
that y *= 0. Using again (7), we can write AkjAjiAik = x2/y. The above 3 × 3 con-
dition becomes 2xy = y2 + x2, and we conclude that x = y, which yields (8). !

We can now show that the vanishing of all 2×2 and 3×3 principal minors suffices
to guarantee that A has rank 1.

Lemma 3.7 (Rank 1) Let A be a real-valued, n × n matrix with strictly negative
diagonal entries such that all 2 × 2 and 3 × 3 principal minors vanish. Then GA is
the complete graph, A is a bipartite matrix, and rankA = 1.

Proof Since all 2 × 2 principal minors vanish, it follows that for each i *= j we have
AijAji = AiiAjj *= 0, and GA is therefore the complete graph. By Lemma 3.6, the
relations (7) and (8) are satisfied for all pairs and triples of distinct indices. Anchoring
ourselves on the first row and column, we find that any entry of the matrix can be
written as

Aij = AiiAjjA11

Aj1A1i
= AiiA1j

A1i
= Ai1A1j

A11
.

Let u = (A11,A21, . . . ,An1)
T be the first column vector of A and v = (A11,A12, . . . ,

A1n) the first row vector. Then A = (A11)
−1uv, which is manifestly rank 1. It follows

from Lemma 3.2 that A is bipartite. !

Can we generalize this result for matrices with zeroes, i.e., for matrices A such
that GA is not the complete graph? Here, we are looking for conditions that ensure
the matrix A has a rank 1 completion, where the entries with zeroes are treated as
“unknown” entries that can be completed to any value. In this case, we can require
only that all 2 × 2 and 3 × 3 principal minors in the clique complex X(GA) vanish.
The following example shows that such a requirement is insufficient to guarantee the
existence of a rank 1 completion.

Example 3.8 Consider the matrix

A =





−1 a 0 1/d

1/a −1 b 0
0 1/b −1 c

d 0 1/c −1



 .

This matrix has GA = (V ,E), where V = {1,2,3,4} and E = {(12), (23), (34),
(41)}. GA is a cycle on 4 vertices, and the clique complex X(GA) = GA since there
are no 2-dimensional faces. Note that all 2 × 2 principal minors corresponding to
2-cliques in X(GA) vanish, and there are no 3 × 3 ones to check. Does this matrix
have a rank 1 completion? Generically, the answer is “No.” In fact, it is easy to see
that a rank 1 completion exists if and only if abcd = 1.

The intuition we gain from this example is that there is a topological obstruction
to a matrix having a rank 1 completion. It is the presence of a closed but hollow cycle
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in X(GA) that prevents A from having a rank 1 completion. In fact, if we added
or removed an edge from the graph GA in Example 3.8, we would have a rank 1
completion without any further condition other than the vanishing of 2 × 2 and 3 × 3
principal minors detAσ for σ ∈ X(GA). The following proposition gives topological
conditions that guarantee the existence of a rank 1 completion. Note that a condition
ensuring that A is bipartite is needed to show that A (as opposed to only |A|) has a
rank 1 completion.

Proposition 3.9 Let A be a real-valued n × n matrix with strictly negative diago-
nal and clique complex X(GA). Let |A| denote the matrix of absolute values of A.
Suppose that detAσ = 0 for all σ ∈ X(GA) such that |σ | = 2 or 3. Then

(a) H 1(X(GA);Z2) = 0 =⇒ A is a bipartite matrix.
(b) H 1(X(GA);R) = 0 =⇒ |A| has a rank 1 completion.
(c) H 1(X(GA);R) = H 1(X(GA);Z2) = 0 =⇒ A has a rank 1 completion.

Proof Let X = X(GA). First, observe that we satisfy the conditions of Lemma 3.6,
and so we have relations (7) and (8).

(a) Let EA = (εij ), with εij ∈ {±1,0}, be the sign matrix of A. Relations (7) and (8)
imply

εijεji = 1, for (ij) ∈ X, and

εijεjkεki = −1, for (ijk) ∈ X.

Since we also have H 1(X;Z2) = 0, it follows from Lemma 3.3 that A is a bipartite
matrix.

(b) For every Aij that is nonzero, introduce the following (real) variables:

Lij := ln
( |Aij |√

AiiAjj

)
.

In these variables, the relations (7) and (8) are equivalent to antisymmetry and cocycle
conditions on the Lij :

Lij + Lji = 0, for (ij) ∈ X, and (9)

Lij + Ljk + Lki = 0, for (ijk) ∈ X. (10)

Now consider the cochain complex

C 0(X;R)
δ0−→ C 1(X;R)

δ1−→ C 2(X;R)
δ2−→ · · · δn−1−→ Cn(X;R)

δn−→ 0, (11)

where Ck(X;R) is the group of k-cochains with coefficients in R. C0(X;R) corre-
sponds to vertex-labelings, C1(X;R) is the set of edge-labelings, etc. As usual, the
coboundary operators are δk({fi0,...,ik }) = {gi0,...,ik+1}, where

gi0,...,ik+1 =
k+1∑

j=0

(−1)j fi0,...,̂ij ,...,ik+1
,

and δk+1 ◦ δk = 0. By assumption, H 1(X;R) = 0, so Im δ0 = Ker δ1.
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Let L = (Lij ), for (ij) ∈ X. Observe that (9) implies that L ∈ C 1(X;R), while
the cocycle condition (10) implies that L ∈ Ker δ1. It follows that L ∈ Im δ0, so there
exists an a ∈ Rn ∼= C 0(X;R) such that Lij = aj − ai . This implies that for each
Aij *= 0,

|Aij | =
√

AiiAjj e
Lij =

√
|Aii |e−ai

√
|Ajj |eaj .

Let u,v ∈ Rn with ui = √|Aii |e−ai and vj = √|Ajj |eaj . Since |A| and uvT agree
on all nonzero entries of |A|, the matrix |A| = uvT is a rank 1 completion of |A|.

(c) Recall from the proof of part (a) that εij is the sign of Aij , so that Aij =
εij |Aij | for each entry of A. Following the proof of Lemma 3.3, there exists a vertex
labeling {νi} ∈ C0(X;Z2), with νi ∈ {±1}, such that εij = −νiνj whenever (ij) ∈ X.
Choose u,v ∈ Rn as in the proof of part (b), so that |Aij | = uivj whenever (ij) ∈ X.
Now consider ũ, ṽ ∈ Rn where ũi = −νiui and ṽj = νj vj . It follows that Aij = ũi ṽj

whenever Aij *= 0. The matrix Ā = ũṽT is thus a rank 1 completion of A. !

Remark 3.10 Note that Lemma 3.7 follows easily from Proposition 3.9, since the
clique complex of the complete graph X(Kn) is contractible, so the conditions
H 1(X(Kn);Z2) = 0 and H 1(X(Kn);R) = 0 are trivially satisfied. In Theorem 1.7,
for simplicity we use instead the somewhat stronger condition H1(X(G);Z) = 0. If
H1(X(G);Z) = 0, then H 1(X(G);Z2) = H 1(X(G);R) = 0; this follows from the
following well-known observation.

Lemma 3.11 Let X be a simplicial complex. Assume that H1(X;Z) = 0. Then
H 1(X, G) = 0, for every abelian group G .

Proof This is a consequence of the Universal Coefficients Theorem (Hatcher 2002),
which for an abelian group G yields the short exact sequence

0 −→ Ext
(
Hq−1(X,Z), G

)
−→ Hq(X, G) −→ Hom

(
Hq(X,Z), G

)
−→ 0

for all q ≥ 1. Note that for H a free abelian group, Ext(H, G) = 0. Since H0(X,Z) is
always free, the above for q = 1 yields H 1(X, G) ∼= Hom(H1(X,Z), G) = 0. !

3.3 Stable and Marginally Stable Matrices

Recall that all flexible cliques are marginal cliques, and by Theorem 1.2 the marginal
cliques correspond to marginally stable principal submatrices. Therefore, to make the
connection to flexible cliques in Sect. 4, we need to consider what happens to a matrix
when its principal submatrices are marginally stable, which is not quite the same as
having vanishing determinant.

Recall that a matrix is marginally stable if no eigenvalue has strictly positive real
part and at least one eigenvalue is purely imaginary. In the case of symmetric matri-
ces, marginal stability implies the existence of a zero eigenvalue, and hence vanishing
determinant. This is not in general true for nonsymmetric matrices. However, 2 × 2
and 3 × 3 marginally stable matrices with negative diagonal entries do have the fol-
lowing characterization.
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Lemma 3.12

(i) Let A be a 2 × 2 real matrix with strictly negative diagonal entries. Assume that
A is marginally stable. Then det(A) = 0, and the sign matrix EA is a symmetric
matrix with all entries nonzero.

(ii) Let A be a 3 × 3 real matrix with strictly negative diagonal entries. Assume that
A is marginally stable. Then either det(A) = 0, or det(A) *= 0 and A has a 2 × 2
stable principal submatrix.

Proof (i) The matrix A must have a purely imaginary eigenvalue. Since tr(A) < 0,
this eigenvalue must be 0, and thus det(A) = 0. As a consequence, the off-diagonal
entries of the matrix A must have the same sign and are both nonzero.

(ii) Let λ1 be a purely imaginary eigenvalue of A. We have two possibilities: either
λ1 = 0 and thus det(A) = 0, or λ1 *= 0. In the second case, the conjugate λ̄1 = −λ1 is
also an eigenvalue, and since tr(A) < 0, the third eigenvalue λ3 must be negative and
so det(A) *= 0. Consider now the characteristic polynomial of A, PA(X) = −X3 +
tr(A)X2 − M2(A)X + det(A), where M2(A) denotes the sum of the principal 2 × 2
minors of A. Using the usual expression for the coefficients of PA(X) in terms of
eigenvalues of A, we find that M2(A) = λ1(−λ1) + λ1λ3 + (−λ1)λ3 = |λ1|2 > 0.
There thus exists a 2 × 2 principal submatrix of A with positive determinant and
negative trace. This submatrix is stable. !

We also have relationships between the stability of a matrix and its principal sub-
matrices. In the case of symmetric matrices, it follows from Cauchy’s interlacing
theorem that all principal submatrices of a stable matrix are stable.

Theorem 3.13 (Cauchy’s interlacing theorem) Let A be a symmetric n × n matrix,
and let B be an m × m principal submatrix of A, where m ≤ n. If the eigenvalues of
A are α1 ≤ · · · ≤ αj ≤ · · · ≤ αn, and those of B are β1 ≤ · · · ≤ βj ≤ · · · ≤ βm, then
for all j we have αj ≤ βj ≤ αn−m+j .

Corollary 3.14 Any principal submatrix of a stable symmetric matrix is stable. Any
symmetric matrix containing an unstable principal submatrix is unstable.

Even in the case of nonsymmetric matrices, there are still some constraints of this
type. For example, we have the following observation.

Lemma 3.15 Let A be an n × n matrix with strictly negative diagonal entries and
n ≥ 2. If A is stable, then there exists a 2 × 2 principal submatrix of A that is also
stable.

Proof We use the formula for the characteristic polynomial in terms of sums of prin-
cipal minors:

PA(x) = (−1)nxn + (−1)n−1M1(A)xn−1 + (−1)n−2M2(A)xn−2 + · · · + Mn(A),
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where Mk(A) is the sum of the k×k principal minors of A. (Note that M1(A) = tr(A)

and Mn(A) = det(A).) The characteristic polynomial also has the well-known for-
mula with coefficients that are symmetric polynomials in the eigenvalues; assuming
A is stable, this yields M2(A) = ∑

i<j λiλj > 0. This implies that at least one 2 × 2
principal minor is positive. Since the corresponding 2 × 2 principal submatrix has
negative trace, it must be stable. !

In order to prove our main results in Sect. 4, we will also use the following well-
known consequences of Cauchy’s interlacing theorem. Here, Ak refers to the princi-
pal submatrix obtained by taking the upper left k × k entries of A.

Lemma 3.16 (Stable symmetric matrices) Let A be a real symmetric n × n matrix.
Then A is stable iff (−1)k det(Ak) > 0 for all 1 ≤ k ≤ n.

Corollary 3.17 Let A be a real symmetric n × n matrix. Then A is stable iff
(−1)|σ | det(Aσ ) > 0 for every principal submatrix Aσ .

4 Maximally Flexible Networks

In this section, we use the matrix results from Sect. 3 in order to prove our main
results, Theorems 1.5, 1.7, and 1.8, characterizing maximally flexible networks.

4.1 Flexible vs. Marginal Cliques

Recall that all flexible cliques are marginal cliques, because they can be made both
stable and unstable via arbitrarily small perturbations of the network’s connection
strengths. The converse is not true. The following lemma gives simple, but incom-
plete, conditions for determining whether or not a marginal clique is flexible in
threshold-linear networks.

Lemma 4.1 Let σ be a marginal clique of a threshold-linear network (J,D)G.

1. If there exists τ ∈ X(G) such that either (i) τ ! σ and τ unstable, or (ii) τ " σ

and τ stable, then σ is not a flexible clique.
2. If, on the other hand, (i) for all τ ! σ , τ is a stable clique, and (ii) for all τ ∈ X(G)

such that τ " σ , τ is an unstable clique, then σ is a flexible clique.

The proof follows from observing that any marginal clique can be perturbed to
become stable or unstable by adding a multiple of the identity matrix to the corre-
sponding principal submatrix, and one can always find a small enough perturbation
so that the stability of all stable and unstable principal submatrices in the original ma-
trix is preserved. It is thus straightforward to check the flexibility of marginal cliques
if certain patterns of stable/unstable cliques are also present. This is illustrated in the
following example.
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Example 4.2 Consider the following matrices −D+J for (unconstrained) threshold-
linear networks (D,J ) ∈ N (3):

M1 =




−1 0 −2
−2 −1 0
0 −2 −1



 , M2 =




−1 −1 1
−1 −1 0
0 1 −1



 , and M3 =




−1 2 1
1 −1 0
0 −1 −1



 .

M1: {1,2,3} is a flexible clique since it is marginal and all contained cliques are
stable.

M2: {1,2} is a marginal clique but it is not flexible, since {1,2,3} is stable.
M3: {1,2,3} is a marginal clique but it is not flexible, since {1,2} is unstable.

Note that Lemma 4.1 says nothing about the situation where the cliques contained
by or containing a given marginal clique are themselves also marginal. It is much
more difficult to check for flexible cliques in a network with many marginal cliques.
We investigate precisely this case, as we look for properties of networks with the
maximal number of flexible cliques.

4.2 Proof of Theorem 1.5

We begin with an example of a network in which all the cliques with at least two
neurons are flexible. Such a network is maximally flexible, and provides a reference
point in proving that all rank 1 networks are maximally flexible in N (n). The proof
relies on the following determinant formulas.

Lemma 4.3 Let Wn(ε,α), for n ≥ 2, be the symmetric n × n matrix with entries

Wn(ε,α)ij =






−1, if i = j,

−1 + αε if {i, j} = {1,2},
−1 + ε if {i, j} *= {1,2}.

(12)

Then

detWn(ε,α) = (−1)nαεn−1(2n − 2 − (2n − 4)ε −
(
n − 2 − (n − 3)ε

)
α
)
. (13)

In particular,

detWn(ε,1) = (−1)nεn−1(n − (n − 1)ε
)
. (14)

Proof This is a straightforward determinant computation. !

We now show that the matrix with all entries −1 corresponds to a network on
n neurons that has the maximal number 2n − n − 1 of flexible cliques, and is thus
maximally flexible.

Proposition 4.4 Let (J,D) ∈ N (n) be the network with the matrix −D + J = −1,
where −1 is the n × n matrix having all entries −1. Then any subset σ ⊂ {1, . . . , n}
with at least two neurons is a flexible clique. In particular, flex(J,D) = 2n − n − 1.
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Proof Let σ be any subset with |σ | = k ≥ 2 neurons. To show that σ is flexible, it
suffices to show that there exists an ε0 > 0 so that for every 0 < ε < ε0, there exist ε-
perturbations As and Au of (J,D) under which σ becomes a maximally stable clique
and a minimally unstable clique, respectively. We show this via explicit construction
of As and Au.

Let As be the symmetric matrix with 0 entries on the diagonal, entries (As)ij = ε
for distinct i, j ∈ σ , and (As)ij = −ε if either i /∈ σ or j /∈ σ . Clearly, As is an ε-
perturbation. We need to show that σ is a maximally stable clique for (J + As,D);
i.e., σ is a stable clique of the perturbed network, and any clique τ which properly
contains σ is unstable. By Theorem 1.2, it is enough to show that the corresponding
principal submatrices of −1 + As are stable and unstable, respectively.

Recall (12), and note that the principal submatrix (−1 + As)σ = Wk(ε,1), where
k = |σ |. Using (14), we obtain

det(−1 + As)σ = (−1)kεk−1(k − (k − 1)ε
)
. (15)

Note that the same expression holds for any σ ′ ⊂ σ , with k = |σ ′|. By Corollary 3.17,
it follows that (−1 + As)σ is stable for all 0 < ε ≤ 1. To show that σ is maximally
stable, observe that any clique τ properly containing σ must also contain an order 2
clique whose corresponding principal submatrix is

( −1 −1 − ε

−1 − ε −1

)
,

which is unstable for all ε > 0. Since the matrix (−1 + As)τ is symmetric, it follows
from Corollary 3.14 that (−1 + As)τ , for any τ " σ , is unstable for all 0 < ε ≤ 1.

To generate a perturbation Au for which the clique σ is minimally unstable, we
proceed as follows. Let 0 < ε ≤ 1, and choose two neurons i1, i2 ∈ σ such that i1 =
min(σ ) and i2 = min(σ −{i1}). Let Au be the symmetric matrix with entries (Au)ij =
ε for distinct i, j ∈ σ unless {i, j} = {i1, i2}. We let the entries (Au)i1i2 = (Au)i2i1 =
αε, with α to be determined later. All other entries of Au are set to 0. To show that σ is
minimally unstable, we need to choose α so that (−1 + Au)σ is unstable while all its
proper principal submatrices are stable. Since −1 + Au is symmetric, Corollary 3.17
tells us that this is accomplished if the determinant of (−1 + Au)σ has the “wrong”
sign (−1)k+1, where k = |σ |, and all j × j principal minors of (−1 + Au)σ , with
j < k, have the “right” sign (−1)j .

Observing that (−1 + Au)σ = Wk(ε,α), we have from (13) that

det(−1 + Au)σ = (−1)kαεk−1(2k − 2 − (2k − 4)ε −
(
k − 2 − (k − 3)ε

)
α
)
. (16)

There are two types of proper principal submatrices. The first are those that corre-
spond to the cliques τ ! σ that contain both i1 and i2, with j = |τ |, and are equal to
the matrices Wj(ε,α). From (13), these have determinants

det(−1 + Au)τ = (−1)jαεj−1(2j − 2 − (2j − 4)ε −
(
j − 2 − (j − 3)ε

)
α
)
. (17)

The second type of principal submatrices correspond to cliques ν ! σ that do not
contain both i1 and i2. Letting j = |ν|, these are equal to the matrices Wj(ε,1), and
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by (14) have determinants

det(−1 + Au)ν = (−1)jεj−1(j − (j − 1)ε
)
. (18)

Using Corollary 3.17, we see that the cliques of type ν are all stable for 0 < ε ≤ 1.
It remains to choose α so that (16) has sign (−1)k+1 and (17) has sign (−1)j for all
j = 2, . . . , k − 1.

For k > 3, we choose α so that

2k − 2 − (2k − 4)ε

k − 2 − (k − 3)ε
< α < min

{
2j − 2 − (2j − 4)ε

j − 2 − (j − 3)ε

}

j=2,...,k−1
.

This is always possible, since for 0 < ε ≤ 1 the sequence on the right is decreasing;
the minimum is attained for j = k − 1 and is greater than the term on the left, cor-
responding to j = k. Since for k > 3 we also have αε < 2 k−2

k−3ε the matrix Au is a
4ε-perturbation. When k = 3, one can choose 0 < ε < 1

2 and α = 4, while in the case
k = 2 one needs simply to choose α < 0 so that σ is a minimally unstable clique. !

We now show that all the symmetric rank 1 networks are maximally flexible.

Proposition 4.5 Let (J,D) ∈ N (n) be a symmetric rank 1 network. Then (J,D) is
maximally flexible in N (n) and has flexibility 2n − n − 1.

Proof Recall that by definition (J,D) ∈ N (n) is a symmetric rank 1 network if the
matrix −D + J is a symmetric rank 1 matrix. Since the matrix −D + J has negative
entries on the diagonal, there exists a vector x ∈ Rn so that −D + J = −xxT . Let
diag(x) be the n × n diagonal matrix associated to the vector x ∈ Rn. Then

−D + J = −xxT = diag(x)(−1)diag(x),

where −1 is the n × n matrix with all entries −1 that we encountered in Proposi-
tion 4.4.

Since multiplication of a matrix on the left and right by the same diagonal matrix
does not alter the sign of any principal minor, we have for any perturbation A

det
(
−xxT + diag(x)Adiag(x)

)
σ

= det(−1 + A)σ ,

for any σ ⊂ {1, . . . , n}. Moreover, if A is a symmetric perturbation, then so is
diag(x)Adiag(x), and the stability of any principal submatrix of −1 + A or −xxT +
diag(x)Adiag(x) is determined entirely by the signs of the principal minors (Corol-
lary 3.17). We can thus obtain stable and unstable perturbations Ãs and Ãu of
−xxT for any subset σ consisting of |σ | ≥ 2 neurons by modifying the pertur-
bations As and Au in Proposition 4.4 accordingly: Ãs = diag(x)As diag(x) and
Ãu = diag(x)Au diag(x). We conclude that the network (J,D) is maximally flexi-
ble in N (n), with flexibility 2n − n − 1. !

Before proving Theorem 1.5, which extends the above results to G-constrained
nonsymmetric networks in N (G), we need to define the notion of “pruning” of a
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network. We say that a graph G̃ is a pruning of the graph G if the two graphs have
the same vertices and the edges of G̃ form a subset of the edges of G. We say that
a network (J̃ , D̃)G̃ is a pruning of (J,D)G if G̃ is a pruning of G, D̃ = D, and
J̃ij = Jij for all edges (ij) ∈ G̃. The following lemma shows that flexible cliques are
“inherited” by pruning.

Lemma 4.6 Let (J̃ ,D)G̃ be a pruning of (J,D)G. Consider a clique σ ∈ X(G̃) ⊂
X(G). If σ is a flexible clique of (J,D)G, then σ is also a flexible clique of (J̃ ,D)G̃.

Proof This follows from the Definition 1.3 of flexible cliques. If σ ∈ X(G) is a flex-
ible clique, then there exist perturbations As and Au consistent with G so that σ

is maximally stable for (J + As,D)G and minimally unstable for (J + Au,D)G.
If we also have σ ∈ X(G̃), define the perturbations Ãs and Ãu, consistent with
G̃, by setting all the entries in As and Au corresponding to the pruned edges to 0.
Since X(G̃) ⊂ X(G), the perturbations Ãs and Ãu realize σ as a flexible clique of
(J̃ ,D)G̃. !

We now have all the ingredients necessary for proving Theorem 1.5.

Proof of Theorem 1.5 We prove first that all rank 1 networks (J,D) ∈ N (n) are
maximally flexible. Since the matrix −D + J has rank 1 and negative entries on the
diagonal, there exists two vectors x, y ∈ Rn, with xiyi > 0 for all i = 1, . . . , n, so
that −D + J = −xyT . Using these two vectors, we construct the diagonal matrix
d = diag(

√
yi
xi

). Let P be the matrix obtained from −D + J by conjugation with the

matrix d , i.e., P = d(−D + J )d−1. It has entries

Pij =
√

yi

xi
(−xiyj )

√
xj

yj
= −√

xiyi
√

xjyj ,

and is therefore a rank 1 symmetric matrix. By Proposition 4.5, the network
(dJd−1, dDd−1) is a maximally flexible network in N (n). Since P and −D + J

are similar matrices, related via conjugation by a diagonal matrix, it follows that all
corresponding principal submatrices Pσ and (−D + J )σ are also similar. Hence, a
perturbation A of the network (J,D) has exactly the same stable and unstable cliques
as a perturbation dAd−1 of the network (dJd−1, dDd−1). Since (dJd−1, dDd−1)

is maximally flexible, it follows that (J,D) is also a maximally flexible network in
N (n).

Now let (J,D)G ∈ N (G) be a G-constrained network with a rank 1 completion.
We can think of the graph G as a pruning of the complete graph Kn on n vertices.
Let (J̄ ,D) ∈ N (n) be a rank 1 completion of the network (J,D)G. By the previous
arguments, the network (J̄ ,D) is maximally flexible in N (n), and has flexibility
2n − n − 1. In particular, any clique σ ∈ X(G) with |σ | ≥ 2 is a flexible clique of the
network (J̄ ,D). By Lemma 4.6, σ is also a flexible clique of (J,D)G. Since X(G)

has |X(G)|− n − 1 cliques with more than two neurons, it follows that the flexibility
of (J,D) is |X(G)| − n − 1, which is maximal. !
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4.3 Proof of Theorems 1.7 and 1.8

First, we prove our main result, Theorem 1.7.

Proof of Theorem 1.7 Let (J,D)G be a maximally flexible threshold-linear network
in N (G). This means that all the cliques σ ∈ X(G) with at least two neurons are
flexible. Since all flexible cliques are marginal cliques, Theorem 1.2 gives that the
corresponding principal submatrices of (−D + J )σ are all marginally stable. In par-
ticular, all 2 × 2 and 3 × 3 principal submatrices are marginally stable, and thus by
Lemma 3.12

det(−D + J )σ = 0, for all σ ∈ X(G) with |σ | = 2 or 3.

Applying Lemma 3.6 to −D + J , it follows that for all (ij) ∈ G, the entry Jij *= 0.
Thus, the network (J,D)G has no silent connections. By Lemma 3.11, the homology
condition H1(X(G);Z) = 0 implies that H 1(X(G);Z2) = H 1(X(G);R) = 0, and
then by Proposition 3.9 it follows that the matrix −D + J has a rank 1 completion.
At the level of networks, this translates to (J,D)G having a rank 1 completion. !

Theorem 1.8 states that for the set N (n) of unconstrained threshold-linear net-
works, the maximally flexible networks are exactly the rank 1 networks. The proof is
a direct application of Theorems 1.7 and 1.5.

Proof of Theorem 1.8 (⇒) This direction is a direct consequence of Theorem 1.7.
Let (J,D) ∈ N (n) be a maximally flexible network. Its graph is the complete graph
Kn, and thus the corresponding clique complex X(Kn) is contractible and satisfies
H1(X(Kn),Z) = 0. By Theorem 1.7 (J,D) is a rank 1 network. (⇐) This follows
from first part of Theorem 1.5. !

We also give a second proof of Theorem 1.8, without appealing to the homological
arguments used in the proof of Theorem 1.7.

Proof of Theorem 1.8 Without Homology/Cohomology (⇒) Suppose (J,D) ∈ N (n)

is a maximally flexible network. This means (J,D) must have flexibility 2n − n − 1.
In particular, all 2×2 and 3×3 principal submatrices of −D +J must be marginally
stable, and so by Lemma 3.12 all 2 × 2 and 3 × 3 principal minors must vanish. This,
together with the fact that the diagonal entries are strictly negative, implies that −D+
J satisfies the hypotheses of Lemma 3.7, whose proof does not rely on cohomology
arguments, and is thus rank 1. (⇐) This follows from first part of Theorem 1.5, which
does not use homology or cohomology arguments. !
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