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Cell Assembly Sequences Arising from Spike Threshold
Adaptation Keep Track of Time in the Hippocampus
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Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing
external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their
generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict
elapsed time (15-20 s) during wheel running with a precision of 0.5 s. In addition, we demonstrate the generation of multiple reliable,
long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the
network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions
give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a
Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal
CA3region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed

time in behaviorally relevant contexts.

Introduction

Tracking time is of fundamental importance in a wide range of
brain operations, including sensory perception and motor ac-
tions, learning, memory, planning, decision-making and lan-
guage (Gibbon et al., 1997; Buonomano and Karmarkar, 2002;
Ivry and Spencer, 2004; Mauk and Buonomano, 2004; Buhusi
and Meck, 2005). Despite the central importance of temporal
processing, its underlying neural mechanisms remain unknown.
At the systems level, two competing ideas have been put forward:
timing is generated by a central mechanism and distributed to
various brain regions (Church, 1984), or each subsystem pro-
duces its own timing (Mauk and Buonomano, 2004). With re-
gard to timing and duration, a distinction is made between
subsecond (perceptual-motor) and suprasecond (cognitively
mediated) scales (Michon, 1985; Lewis et al., 2003). At the level of
mechanisms, two models are typically distinguished; clocks and
ramping time keepers, with neuronal substrates in the cerebel-
lum, basal ganglia, prefrontal, motor, and parietal cortical re-
gions (cf. Mauk and Buonomano, 2004; Buhusi et al., 2005). The
hippocampus has also been implicated in timing (Clark and
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Isaacson, 1965; Thompson and Krupa, 1994; Young and Mc-
Naughton, 2000), although the mechanism has remained elusive.

We report here on a novel form of time-tracking mechanism,
which is manifested by evolving transiently active cell assemblies
and is accurate for periods of tens of seconds. First, we examine
the ability of evolving neuronal sequences to predict elapsed time
in a memory task. Second, we propose a simple network model
with Mexican-hat-type connectivity and adaptation of the mem-
brane potential thresholds for action potential generation that is
similar to what has been observed in rodent hippocampus
(Henze and Buzséki, 2001) and in fish (Chacron et al., 2007). The
threshold-adaptation model reproduces the key properties of the
observed sequences, suggesting that time-keeping in the hip-
pocampus may arise from the same cellular and network mech-
anisms that support spatial navigation.

Materials and Methods

The experimental data used in this paper were adopted from Pastalkova
et al. (2008), where all relevant experimental methods and protocols are
described. The animals were all male rats.

Time prediction from experimental data. Two versions of time predic-
tion models were fit from experimental data: a “rate-only” model and a
“phase-only” model. These models used firing rates or theta phases of
spikes to fit a probability distribution for population spiking activity in
0.5 s time windows. Maximum-likelihood estimation was then used on
single trials to predict the most likely time reflected by the population
activity at each time bin. In all cases, the models were fit from comple-
mentary trials, never including the trial on which time was subsequently
inferred. The time estimates corresponding to each time bin were ob-
tained independently, so that only knowledge of the current population
activity was needed to estimate elapsed time. See supplemental Text
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Figure 1.  Time prediction from sequential neural activity in a memory task. A, Average raster over 18 s for a population of

simultaneously recorded neurons during wheel runs after preceding left trials in a spontaneous alternation task. The rat was
required to make a correct choice for water reward on the basis of its previous choice. Neurons are ordered according to the time of
peak firing rate in the PSTH. B, Population raster for a single trial, using the same neuron ordering as in A. C, Time prediction for a
single trial (shown in B) using time prediction models fit from all other trials. In each time bin, elapsed time in the running wheel
isinferred either from the population firing rate vector (red) or the firing phases of active cells with respect to the theta oscillation
(purple). In each case, the prediction approximates well the true time (black). D, Average errors (in seconds) of the time prediction
for three rats (green, blue, and red) as a function of time, using the time prediction model via rate. E, A reliability measure was
computed for each trial. At each time ¢, the measure quantifies the extent to which population vectors from single trials resemble
trial-averaged population vectors at time ¢ better than trial-averaged population vectors at other times (see Materials and Meth-
ods). Both the average reliability across trials (black) and the reliability for the single trial (blue) from B are well above 0, the value
expected for completely unreliable data. Gray lines denote a SD above and below the mean for the distribution of reliabilities across
trials. F, Reliability of individual trials in the control, home cage condition. The wheel was placed next to the animal’s home cage,
and the animal ran in the wheel without memory requirement or reward contingency. Conventions as in E; the single trial (blue)
has been chosen at random.

(available at www.jneurosci.org as supplemental material) for a more
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ingredient of the model is the activity-
dependent adaptation of the “spike” thresh-
olds of individual neurons, represented by the
dynamic variables ﬁ(t) = (hy(t),. .. ,hp(1)).
The model can thus be described by a system of
2 N equations:

N

Tk = x| 2 L=k | (1)
=1 .

hi = —h + cx, (2)

where 7, = 30 ms and 7, = 2 s are membrane
and threshold-adaptation time constants, re-
spectively, ] is the matrix of synaptic weights
for the recurrent network, and I is a (time-
dependent) vector of external inputs. The con-
stant ¢ = 0.5 controls the strength of the
activity-dependent adaptation, whereas 7, de-
termines the time scale with which the thresh-
olds recover in the absence of firing.

The connectivity matrix J is constant in time
and can be written as a sum of two compo-
nents, J = J°+J" where J° has Mexican-hat-
type connectivity on a two-dimensional lattice
of neurons with periodic (torus) boundary
conditions, and J" is a matrix of heteroge-
neous weights, sampled randomly and inde-
pendently from a normal distribution with
mean zero. In simulations, we generated three
different instances of J*, resulting in three dif-
ferent connectivity matrices J 1 )2 and .

In simulations, two types of behavioral con-
ditions were distinguished: “task” and “home
cage.” In all cases, initial conditions consisted
of the same “bump” of firing rate activity
X(0) = X, in the center of the two-dimensional
lattice of neurons, and differed in the adapta-
tion variables 7i(0) = h, only. Neurons with
adapted thresholds were chosen to lie at the
left, bottom, right, or top of the initial bump of
activity, resulting in initial conditions A to D,
respectively. For task trials, the initial condi-
tions were consistent from trial to trial, and the
model was driven by temporally and spatially
unstructured noise I(t); different instances of
noise was thus the only difference between tri-
als of the same initial condition type. In the
home cage trials, the initial conditions A to D
were randomized across trials, and the model
was driven by spatially unstructured noise that
had temporal correlations on the order of 125
ms (see supplemental Text, available at www.
jneurosci.org as supplemental material, for
further information).

Layer 2 simulations. To investigate the ability
of a downstream layer to “inherit” the se-
quence generated by the threshold adaptation
model (“layer 1”), we simulated activity in a
second layer connected to the first via sparse
and random feedforward projections. The dy-
namics in this layer were governed by the same
Equations 1 and 2 in the previous layer, with

detailed description of the time prediction models.

Threshold adaptation model. We modeled network dynamics using a
standard firing rate model, with threshold nonlinearity [y], =
max( y,0). At any point in time, the vector X(£) = (x;(1),. . . ,x5(#)) rep-
resents a population vector of firing rates for each of N neurons. A key

two differences. First, the connectivity matrix J in layer 2 represented an
overall global inhibition (to ensure sparse firing) and had no spatial struc-
ture. Second, the input vector I(f) had two components: temporally and
spatially unstructured noise; and feedforward input derived from the activity
in the previous layer via random and sparse connections (10% connection
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probability between layers) (see supplemental
Text, available at www.jneurosci.org as supple-
mental material for further information).

Reliability measure. A reliability measure was
used to compare population vectors from indi-
vidual trials to the mean. First, we normalized
firing rates so that each neuron had the same av-
erage firing rate, calculated over all time bins and
all trials. Let 7,(#) be the population vector corre-
sponding to the ith trial at time #. For each fixed
time bin ), we computed a “reliability score”
R(t,) for each trial by computing the squared-
distance between the population vector v(f, ) and
the mean vector across trials (W)(t,), Wi(t,) =
¥ (t,)—=7(t,)|I>. This distance was then com-
pared with the average squared-distance between
v,(t,) and the mean population vectors (V)(f) at
N-1,2 . (0]
—,(t,)|I*, where N; is the total number of time bins.
If a trial is reliable at time #,, then W(t,)<B{(f,).
The reliability was thus defined to be

all other times, B(t,) =

— Wi(ty) + Bi(ty)

Rilt)) = 1) + Bi(1o)

with the denominator chosen so that —1 =
R;(t,) = 1. A reliability of 1 corresponds to the
“best case” scenario of v,(t,) = (")(t,), and —1
corresponds to the “worst case” scenario of
vi(ty) = W) for all t+ # ¢, and
v,(ty) F(W)(ty). If v,(t,) is closer to the mean
vector (V)(t,) than it is to the mean vectors
from other time bins (v)(#), then R;(#,) will
be positive. For random (and thus com-
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Figure2.  Thethreshold adaptation model. A, Neurons are arranged on a two-dimensional “sheet” with periodic boundary conditions,
so that the top and bottom (red) edges are identified, and the left and right (black) edges are identified. In the absence of threshold-
adaptation, the network activity quickly converges to a bump attractor (bottom left), with the center of the bump marked by the asterisk.
Inthe presence of adaptation, however, the bump of activity moves continuously around the sheet, never stabilizing. The black curve traces
the position of the center of the bump; three bump positions (1, 2, and 3) are depicted by shaded circular regions. B, Different initial
conditions in the adaptation variables lead to different trajectories for the bump of activity. Initial condition A has a bump of firing rate
activity centered at *, with adapted thresholds only in the neurons to the left (red shaded region). Initial condition B has the same initial
firing rate activity centered at *, but with adapted thresholds only for the neurons immediately below (blue shaded region). Adapted
neurons are less likely to fire, so initial condition (init cond) A causes the bump of activity to move initially to the right (red trajectory 1),
whereas initial condition B causes the bump of activity to move upward (blue trajectory 1). Due to periodic boundary conditions, the
trajectories “wrap around” the sheet; the numbersindicate the temporal ordering of the different components of each (red, blue) trajectory.
€, Snapshots of the moving bump of activity at different times (0.5, 2.5, and 5 5) following an initial condition, from a single trial simulated
using the model. The bump retains its shape, so the population activity over time can be described by tracking only the center of the bump.
Thebottom right panel shows the trajectory of the center of the bump up until 55. D, Bump trajectories for 10 s of simulated data. Each panel
corresponds to a differentinitial condition (A to D), differing only in the adapted thresholds of neurons and having the sameinitial firing rate

pletely unreliable) population vectors,
R;(t,) ~ 0. The average reliability R(t) was
computed as the trial-average of the time se-
ries vectors R;(1).

Results

Elapsed time is well estimated by the sequence of cell
assembly activation

A reliable pattern of sequential activation of neuronal activity was
observed in the CA1 region of hippocampus during the delay
period of a memory task (Pastalkova et al., 2008; cf. Gill et al.,
2010; Kraus et al., 2010; Macdonald et al., 2010). Three rats were
trained to run for ~20 s in a running wheel during the delay
period before making a choice (left or right) for the next run
through a T maze. Action potentials for pyramidal cells were
recorded together with local field potentials. The pattern of se-
quential activation of simultaneously recorded neurons for a
given trial type (Fig. 1A,B) was reliable across trials and lasted
10-20 s without repeating itself. Therefore, we hypothesized that
the population spiking activity of pyramidal neurons in CA1 at
any point in time during a trial could be used to infer elapsed
time.

To verify this hypothesis, we designed two probabilistic mod-
els for inferring elapsed time from instantaneous neural activity:
one based on the cells’ firing rates, and the other using phases of
spikes with respect to the theta oscillation (see Materials and
Methods). Both models were good predictors of elapsed time on
single trials (Fig. 1C). The average error of time estimation by the
rate model was 1-2 s in rats 2 and 3 and 2-3 s in rat 1 (Fig. 1 D).
Similar errors were observed using the phase model (supplemen-
tal Fig. 1, available at www.jneurosci.org as supplemental mate-

activity (centered at *). For each initial condition, 3 randomly selected trajectories are shown. The trajectories are reliable, despite noisy
(unstructured) input that changes from trial to trial.

rial). The accuracy of time estimation from the models increased
with the number of cells used in each animal (data not shown).
This observation suggests that by recording from a much larger
fraction of hippocampal neurons, the accuracy of time estima-
tion can be improved further. It also suggests that a greater
amount of information is available to structures downstream
from CA1 than what was available for our method of inference.
Since we obtained timing precision on a behaviorally relevant
scale, we hypothesize that the brain could use population activity
to estimate elapsed time.

To investigate how behavioral relevance might influence
timekeeping, we also recorded the activity of CAl cells during
running in a wheel placed adjacent to the home cage of the rat
(control condition). The rat could enter the wheel and run at its
leisure and was not required to keep track of elapsed time. While
the patterns of neuronal activity on individual runs displayed
some semblance of sequential activation near the beginning of
the wheel run, the overall sequences were not consistent from
trial to trial (supplemental Fig. 2, available at www.jneurosci.org
as supplemental material); as a result, the time prediction models
did not yield any statistically significant prediction of time on the
control data (data not shown).

While the reliability R(f) of sequential activity during the mem-
ory task was well above 0 (the expected value for random, unreliable
data; see Materials and Methods) (Fig. 1 E), R(¢) was not significantly
positive for the control (home cage) data (Fig. 1 F). This suggests that
the patterns of neuronal activity during wheel runs reflect timing
information only in behaviorally relevant contexts.
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Figure3. Thethreshold adaptation model produces long-lasting, temporally reliable sequences. 4, The average raster over 25 trials of
simulated data for the task A trial type (same initial conditions). Neurons are ordered according to the timing of their peak firing ratesin the
average over trials. Trials differ in the particular instance of random noise superimposed on a constant external drive to the network. B,
Same as A, but for the task B trial type (different nitial condition from A). Neuronal sequences are again present, but the sequential firing of
individual neurons is different from that in task A. The same connectivity matrix has been used in both cases. €, The task B trial average,
ordered according to the task A cell ordering. The sequential activity is no longer apparent, indicating that the sequence in Bis different from
thatin A. D, E, A single trial raster, using the same neuron ordering as in A and B, respectively. F, A single trial in the control home cage
condition, ordered according to peak firing rates in the average across home cage trials. Except at the very beginning of the run, there is no
reliable sequential activity in the single home cage trials. G, Average reliability across task A trials (solid black line) gradually declines as a
function of time. One SD below the mean is shown (gray lines). The single trial shown in Dis one of the more reliable ones (blue line). H,
Same as G, but for task B. The same network can generate multiple distinct, equally reliable sequences. /, Home cage (control) trials are not
reliable.J, K, Average (black) and single trial (blue) trajectories corresponding to task A and task B conditions. L, Average sequence reliability
over 25 trials for different strengths of input noise to the neurons. The same trace as in G is shown (black), as well as analogous reliability
traces for fivefold (red) and tenfold (blue) increases in input noise.

A possible network mechanism for sequence generation: the
threshold adaptation model

The experimentally observed sequences have several important
features that make them particularly suitable for timekeeping.
First, they are internally generated; that is, the sequences are not
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“right” trials producing different se-
quences. Fourth, the sequences are long,
on the order of 10-20 s, lasting for the
entire duration of the required delay pe-
riod. To explore how the entorhino-
hippocampal circuit might be capable of
generating these sequences, we consid-
ered a minimalistic model of a recurrent
network that we call the threshold adapta-
tion model. This model captures all of the
above properties.

We began with a firing rate model
(Materials and Methods, Eq. 1). Firing
rate models provide fairly accurate de-
scriptions of the dynamics of large recur-
rent networks when exact spike timing is
not important. In our model, the recur-
rent network structure is a superposition
of two components: ] = 7O + J' where J°
is the “correlated” component and J'tisa
component uncorrelated across neurons.
J° has connection strengths that depend
only on the distance between neurons ar-
ranged on a two-dimensional torus-like
grid (Fig. 2A) and follow a Mexican-hat
pattern of connectivity reflecting short-
range excitation and long range effective
inhibition. J* is a random matrix that
adds heterogeneity to the pattern of con-
nections. Although the synapses repre-
sented by J O are chosen to be weak relative
to J (see supplemental Text, available at
www.jneurosci.org as supplemental ma-
terial), they strongly influence network
dynamics due to their highly correlated
structure. The matrix J*** disrupts the per-
fect symmetry of the Mexican-hat con-
nectivity; this ensures that our results do
not depend on the fine-tuned symmetry
of J°, as this symmetry is unrealistic and
may produce misleading results (Zhang,
1996; Seung et al., 2000; Renart et al.,
2003).

Mexican-hat connectivity, asin J 0 and
the associated continuous attractor dy-
namics have been hypothesized as an un-
derlying network mechanism of spatial
working memory, spatial navigation and
path integration (Samsonovich and Mc-
Naughton, 1997; Tsodyks, 1999; Constan-
tinidis and Wang, 2004; McNaughton et al.,
2006; Burak and Fiete, 2009). For a wide
range of perturbed Mexican-hat connectiv-
ity matrices ] = J° + J"*, the network ac-

tivity will quickly converge to a “bump attractor” in the presence
of constant input (Seung et al., 2000; Renart et al., 2003). If the
input stays approximately constant, the bump will not move.
Therefore, the dynamics of Equation 1 alone cannot produce

brought about by changing, temporally structured environmen- self—generaFed'sequences, sin§e the bur'np only moves in re-
tal or body-derived inputs. Second, the sequences are reliable ~ sponse to significant changes in external inputs.
from trial to trial, which allows for time inference on single trials. To overcome this limitation, we added an activity-dependent

Third, the sequences are context-dependent, with “left” and  adaptation of the spike thresholds (Materials and Methods, Eq.
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2). Threshold adaptation in hippocampal pyramidal neurons was
observed experimentally (Henze and Buzséki, 2001), and evolves
on a relatively slow time scale (~1 s). In our model, threshold
adaptation has the important effect of destabilizing the “bump”
attractor states of the network. In the fast-time scale dynamics
(Eq. 1), the system still evolves to a bump attractor, but as the
firing rates of the neurons in the bump of activity increase, so do
the corresponding thresholds, and this in turn decreases each
neuron’s ability to continue firing. The threshold adaptation thus
forces the bump to move to a new location, at which point the
process repeats itself, resulting in a continuously moving bump
that never stabilizes (Fig. 24, C; see also supplemental Movie,
available at www.jneurosci.org as supplemental material). The
moving bump of activity is what produces sequential firing of the
neurons.

Cell assembly sequences generated by the
threshold-adaptation model are context-dependent,
long-lasting, and reliable

To understand how context dependence of sequences may arise
in our model, we considered bump trajectories under different
initial conditions, mimicking the left versus right trial types in the
behavioral task. Similar to the behavioral experiments, we kept
the firing rate initial conditions identical in all simulations, initi-
ating them as a bump of activity in the center of the grid of
neurons (Fig. 2C, top left). Different initial conditions thus dif-
fered only in the initial values for the threshold adaptation vari-
ables, as these depend on the recent spiking history of the
neurons. Initial conditions A to D represent neurons with
adapted thresholds to the left, bottom, right, and top of the activ-
ity bump, respectively (Fig. 2 B; see also supplemental Text, avail-
able at www.jneurosci.org as supplemental material). In each
case, the activity tends to move away from the neurons with
adapted thresholds, as it is more difficult for these to fire.
Different initial conditions thus produce different center-of-
bump trajectories. The precise contours of these trajectories are
determined by the synaptic heterogeneities /*'. Importantly, the
trajectories for the same initial condition are reliable across trials
despite being driven by noisy, temporally and spatially unstruc-
tured inputs (Fig. 2 D). Different instances of the heterogeneous
connectivity matrix Tt also produce reliable, context-dependent
bump trajectories, while the trajectories vary significantly be-
tween matrices (supplemental Fig. 3, available at www.jneurosci.
org as supplemental material).

To better assess the length and reliability of cell assembly se-
quences produced by the model, we simulated multiple task trials
for each of four initial conditions (A to D). Reliability was quan-
tified using the same reliability measure as in Figure 1, E and F
(see Materials and Methods). Sequential activity on the order of
15-20 s can be seen for different initial conditions (Fig. 3A, B),
and the sequences are quite different (Fig. 3C). As expected from
the reliability of bump trajectories (Fig. 2 D), sequential activity
on single trials closely resembled that of the average (Fig. 3D, E)
and had a high degree of reliability (Fig. 3G,H). Average and
single-trial bump trajectories also showed reliability in the task
conditions (Fig. 3],K). Note that the time scale of the adaptation
controls the speed of the moving bump. A shorter time scale
would result in a faster-moving trajectory, leading to shorter
sequences (data not shown). We also simulated a home cage
condition (see Materials and Methods) that resulted in large trial-
to-trial variability, which bore little resemblance to the average
activity across trials (Fig. 3F,I). The lack of sequential structure
in the home cage condition resulted from the lack of consistency
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Figure 4.  Sequential activity is inherited by a second layer via sparse and random connec-
tions. A, Average sequence over 25 trials of simulated data in a second layer with 1000 neurons.
Layer 2 has no recurrent excitation and receives sparse, random feedforward inputs from the
torus-like layer simulated in Figure 3. B, A single trial, with neuron ordering as in A. C, The
reliability of the sequence as a function of time follows a profile similar to what is seen in the first
layer (cf. Fig. 36G).

in initial conditions, and the temporally correlated noise (task
trials had uncorrelated noise). Finally, we investigated the reli-
ability of sequences as a function of the strength of the input noise
to each neuron. As expected, sequences generated in the presence
of fivefold and tenfold increases in input noise were less reliable,
and the reliability decreased more rapidly as a function of time
(Fig. 3L). Average and single-trial sequences in these higher noise



Itskov et al. @ Timing in the Hippocampus

conditions are shown in supplemental Figure 6 (available at
www.jneurosci.org as supplemental material). In summary, the
sequences for all task (but not home cage) initial conditions were
long-lasting and reliable, making them suitable for accurate time
estimation to tens of seconds.

Although we initially introduced heterogeneities J" to our
matrix of synaptic weights to ensure that our results did not
depend on the fine-tuned symmetry of the Mexican-hat connec-
tivity matrix J° we found that synaptic heterogeneity had the
unexpected benefit of lengthening the sequences (supplemental
Fig. 4, available at www.jneurosci.org as supplemental material).
This is because the heterogeneities “carved out” irregular bump
trajectories, allowing the bump to travel for a longer period of
time without repeating itself. To verify that our results did not
depend on the particular instance of heterogeneity we chose for
the matrix J' = J° 4 J"*, we repeated the analyses in Figure 3 and
supplemental Figure 4 (available at www.jneurosci.org as supple-
mental material) using two more instances of 7" to obtain ma-
trices J* and J° (supplemental Fig. 5, available at www.jneurosci.
org as supplemental material).

Cell assembly sequences can be inherited by a

downstream layer

We have shown that reliable and context-dependent sequences of
neuronal activation similar to what we have observed in CA1 may
arise from a recurrent network with torus-like architecture and a
weakly correlated pattern of Mexican-hat connectivity. However,
the architecture of the CA1 region, with its supersparse recurrent
excitation, does not fit with this pattern of connectivity. For this
reason, we investigated whether or not reliable sequences gener-
ated in one layer can be inherited by a downstream layer. In
contrast to the first layer, the second layer we devised had no
recurrent excitation and only a global, nonspecific recurrent in-
hibition. Layer 2 was driven by both the output of the previous
layer and noisy, temporally and spatially unstructured inputs.
The feedforward connections between the first, torus-like layer
and the second layer were random and sparse (see Materials and
Methods). Figure 4 shows that despite the lack of structure in
layer 2 the sequential activity from the first layer was perfectly
inherited by the second layer with a similar reliability profile. The
reliability remained unchanged even when the magnitude of the
noisy inputs to the second layer was increased 5- or tenfold (see
supplemental Fig. 7, available at www.jneurosci.org as supple-
mental material).

Discussion

Neural correlates of elapsed time on a suprasecond scale have
been documented in several cortical regions (Kojima and
Goldman-Rakic, 1982; Fuster, 2001; Brody et al., 2003; Janssen
and Shadlen, 2005; Lebedev et al., 2008; Mita et al., 2009). Sur-
prisingly, hippocampal circuits have not been considered as tim-
ers, despite the critical role of the hippocampus in timing
behavior (Clark and Isaacson, 1965; Young and McNaughton,
2000) and the key importance of temporal context in episodic
memory (Tulving, 1972) and navigation (McNaughton et al.,
1996).

Our experimental observations and modeling results suggest
that in the hippocampus the same cell populations that keep
information about past memories and planned travel directions
of the animal (Pastalkova et al., 2008) also provide information
about elapsed time. Elapsed time was reliably inferred from the
population firing rate vector of the recorded neurons at any time
point of the memory task. Although the time estimation error
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from the neuronal population increased over time, it did not
increase proportionally to the duration of elapsed time, in con-
trast to Weber’s law (cf. Staddon, 2005). In our network model
(threshold adaptation model), the sequences emerged as a natu-
ral byproduct of a network with a perturbed Mexican-hat con-
nectivity pattern and adaptation of the spike thresholds. The
threshold adaptation model does not involve learning of se-
quences, synfire chains, or a “hidden” feedforward network
structure (Abeles, 1991; Levy et al., 2005; Ganguli et al., 2008; Liu
and Buonomano, 2009; Fiete et al., 2010). In principle, however,
any network that allows for self-sustained, sequential activation
of neurons can potentially be a substrate for time keeping. The
adapting spike threshold mechanism was adopted because of its
simplicity and because dependence of the spike threshold on
prior spiking activity has been demonstrated experimentally
(Henze and Buzsaki, 2001). We emphasize though that other
mechanisms such as short-term synaptic depression may play a
similar role (Abbott and Regehr, 2004). Although the mechanism
for sequence generation in our model relies on connectivity pat-
terns unlikely to be present in CA1, we have shown that sequences
generated in one area with this kind of architecture (potentially in
the entorhinal cortex or CA3) can be inherited by another area via
sparse, random connections.

The model we have described here may be specific to the hip-
pocampal system, where time keeping is needed on the scale of
tens of seconds, and is different from the timing mechanisms in
sensory and motor systems. Since evolving neuronal assemblies,
or sequences, have been observed in other systems (Luczak et al.,
2007; Fujisawa et al., 2008; Long and Fee, 2008; Johnson et al.,
2010), it is possible that our modeling results apply to them as
well. In general, our findings support the view that each neuronal
system generates its own timing, providing temporal frames for
its operations (Buonomano and Karmarkar, 2002). In summary,
we found that a simple network mechanism can generate long-
lasting, reliable sequences that may be used for timekeeping in the
hippocampus.
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