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7.1 INTRODUCTION

7.1.1 Biological Motivation: Neurons With Receptive Fields

A major challenge in neuroscience is to understand how the brain encodes such
an enormous amount of information about the outside world. By observing the
behavior of neurons in response to various stimuli, we can hypothesize about the
function of groups of neurons, and try to create a dictionary which can predict
how the brain will respond to different stimuli. However, to understand how the
brain uses the neural response to stimuli to create its own picture of the outside
world, we must consider how the firing of a population of neurons intrinsically
encodes information about the space of possible stimuli.

One specific example of a population of neurons which provides an internal
representation of an external structure is that of place cells, discovered by
O’Keefe and Dostrovsky in the early 1970s [1]. Place cells are neurons which
code for a particular region of an animal’s (2D) spatial environment. In this
example, the stimulus space is the set of possible locations in the environment.
Each place cell is associated with a particular region of the environment (a place
field); when the animal is within that region, the associated cell fires. Fig. 7.1
shows the activity of three different place cells as an animal passes through their
respective place fields.

From an external perspective, determining the place field associated with
a particular place cell is simply a matter of recording the activity of that cell
while simultaneously observing the animal as it moves about its environment.
However, for the animal itself to obtain useful information from the firing of
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FIG. 7.1 Three place cells (represented by the triangular “neurons”), and the firing times of each
one as an animal passes through their respective place fields (represented by shaded gray regions).
(Figure first published in C. Curto, What can topology tells us about the neural code?, Bull. AMS
54 (1) (2017) 63–78, © 2017 American Mathematical Society.)

a place cell without the bird’s eye view of the researcher, there would have to
be some spatial information intrinsic to the firing of these cells. Considered
individually, these cells give very little information about the shape of the
animal’s environment. However, by considering the collective behavior of the
neurons, considerably more information can be determined [2].

Place cells are not the only neurons whose firing behavior can be associated
with regions of stimulus. Other cells with such receptive fields, as they are
called, are not uncommon; some examples include cells which code for angle of
a visual stimulus, or 3D place fields in bats [3, 4]. With each of these examples,
there is a space of stimulus in some dimension—one dimension for angles, and
three dimensions for bat place fields. Given a set of any of these cells, we
could record their firing behavior for various stimuli, obtaining what is called
a (combinatorial) neural code.

A neural code C on n neurons is simply a subset of {0, 1}n assumed to
represent the behavior of the neurons in the set {1, . . . , n} = [n]. We associate
each codeword c ∈ C to its support, representing the set of neurons which the
codeword indicates were firing.

Definition 7.1. Let c ∈ {0, 1}n. The support of c is the set supp(c) = {i ∈
[n] | ci = 1}. Likewise, we can associate the entire code C to the collection
of subsets of neurons observed in the code: supp(C) = {σ ⊂ [n] | σ =
supp(c) for some c ∈ C}.

The presence of the codeword c in C indicates that, at some point, the neurons
in supp(c) were firing, while the other neurons were silent. Thus, each individual
codeword indicates a set of neurons which were observed to respond a common
stimulus; the entire code can be seen as providing a relatively complete picture
of which combinations of neurons (and thus receptive fields) are possible within
this particular set of neurons and receptive fields.
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FIG. 7.2 A collection U = {U1, U2, U3, U4} of four receptive fields in R2.

Given knowledge of the receptive fields (and assuming that a broad range of
stimuli in the space is experienced), we can predict the neural code associated
with these receptive fields by considering the possible combinations of receptive
fields a stimulus could come from.

Definition 7.2. Let X be a stimulus space. Given a collection of receptive
fields U = {U1, . . . , Un} with Ui ⊂ X the receptive field for neuron i, we define
the associated code C(U) as follows:

C(U)
def=

⎧
⎨

⎩c ∈ {0, 1}n |

⎛

⎝
⋂

i∈supp(c)

Ui

⎞

⎠
∖ ⎛

⎝
⋃

i/∈supp(c)

Ui

⎞

⎠ ̸= ∅

⎫
⎬

⎭ .

That is, C(U) encodes the set of nonempty regions formed by the sets in U . If
C = C(U) for some collection of sets U , we say U is a realization of C in the
space X.

Example 7.1. Consider the collection of receptive fields U ={U1, U2, U3, U4}
in R2 as represented in Fig. 7.2.

The code associated with this collection of sets is

C(U) = {0000, 1000, 0100, 0010, 1100, 0110, 0101, 1101, 0111};
and we can say that U is a realization of this code. Note that other realizations
of the same code may exist.

To obtain the code associated with a known arrangement U of n receptive
fields, we must simply determine which of the possible 2n regions actually
occur, and thus which combinations of neurons are possible. However, in a
neural data context where the receptive fields are usually not known to us, we
are more interested in the reverse question: given a set of neural data recorded
in response to a certain type of stimulus, what can we say about the receptive
fields, the relationships between them, and the structure of the space of stimuli
they represent? We frame this question as follows:
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Question 1. Given a neural code C ⊂ {0, 1}n, can we find a realization for it
in a particular stimulus space X? If so, how can we find such a realization, and
what can it tell us about the stimulus space X?

The next few sections will describe one approach to answering this question,
using algebraic structures to encapsulate the information given by the code and
extract relevant combinatorial features. These methods can be applied to any
combinatorial code, not only to neural codes. However, in order to interpret
this information to obtain meaningful results in the neural context, it will be
necessary to make additional assumptions about the receptive fields Ui. We now
briefly describe why this is so.

If no restrictions (e.g., convex, connected, etc.) of any kind are placed on
the receptive fields Ui, then we can find a realization of any code, in nearly any
space. In particular, there is no particular dimensional or structural information
about the space associated with the code.

Exercise 7.1. Show that any arbitrary code C has a realization U in R .

Such generic realizations are not satisfying for a neural code, as the receptive
fields involved in the realization bear no resemblance to those seen in the
neuroscience context and thus give no insight about the structure of the stimulus
space. In Exercise 7.1, we see that without any assumptions on the receptive
fields we could conclude every stimulus space is structurally equivalent to R .
However, by making a few reasonable assumptions about the nature of the
receptive fields, we can drastically change the amount we can learn about the
stimulus space from a neural code. Our main assumption will be to assume that
the receptive fields Ui are convex; Section 7.4 gives more information about the
results which can be obtained when we make this assumption. These results
will rely heavily upon the information the code implies about the relationships
between the receptive fields themselves.

7.1.2 Receptive Field Relationships

The neural code captures relationships between the firing behavior of different
neurons, and thus captures ideas about the interactions between their receptive
fields. For example, if there is a codeword c ∈ C where i, j ∈ supp(c) (so ci =
cj = 1), we would note that at some point, neurons i and j are both firing. Thus
their receptive fields overlap, or equivalently, Ui ∩ Uj is nonempty. However, if
no such codeword appears, then we must assume that Ui ∩ Uj = ∅. Similarly,
we might assume that Ui ⊂ Uj if we observe no codewords where neuron i is
firing and neuron j is not. In general, a relationship of the form

⋂

i∈σ

Ui ⊂
⋃

j∈τ

Uj
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is referred to as a receptive field (RF) relationship, where we use the conventions
that

⋂
i∈∅ Ui = X, the entire stimulus space, and

⋃
j∈∅ Uj = ∅.

Example 7.2. Consider the code C = {000, 100, 010, 011}. Since there is
no codeword where all three neurons fire together, we note the RF relationship
U1 ∩ U2 ∩ U3 = ∅ must hold in any realization of C. We also note that there is
no codeword where both neuron 1 and neuron 2 fire, so the RF relationship U1 ∩
U2 = ∅ holds. Moreover, the former RF relationship we found is a consequence
of the latter. Similarly, we note that neuron 3 fires only when neuron 2 is also
firing, so U3 ⊂ U2 in any realization of C.

Exercise 7.2. Extract as many receptive field relationships as you can from
the following code:

C = {0000, 0001, 0011, 0111, 1001}.
Are any of these RF relationships consequences of others on the list?

Importantly, the RF relationships extracted from a code show relationships
which must hold in any realization of the code C; they are features of the code,
rather than of any one particular realization U .

Exercise 7.3. Let C be the code from Exercise 7.2. Draw two different
realizations of C in R2. Verify that the set of RF relationships you found in
that exercise hold for both realizations.

While RF relationships are associated directly with a code C, there are some
RF relationships which will hold for any code C, as the following exercise
shows.

Exercise 7.4. Let C be an arbitrary code. Show that if σ and τ are subsets of
[n] such that σ ∩ τ ̸= ∅, then any receptive field relationship of the form

⋂

i∈σ

Ui ⊂
⋃

j∈τ

Uj

must be true in any realization U of C.

We now give a preview of how RF relationships can be used to infer
structure.

Example 7.3. Consider the code C = {000, 010, 001, 110, 101}. We observe
that in this code, neuron 1 never fires without one of neuron 2 or neuron 3 firing,
so in any realization U of C, we must have U1 ⊂ (U2 ∪ U3). However, we
also see that neurons 2 and 3 never fire at the same time, so in any realization,
U2 ∩ U3 = ∅. Thus, U1 is contained within two completely disjoint sets.
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If we make no assumptions about the properties of the receptive fields Ui,
then we have merely made observations about the code itself which must hold
in any realization. If, however, we make some assumptions about properties of
the receptive fields, then we can determine much more interesting properties of
possible realizations. For example, we may find that a realization exhibiting RF
relationships is impossible.

Exercise 7.5. Show that if that our sets Ui must be convex and open, then
there is no realization of the code C = {000, 010, 001, 110, 101} in R2 (or,
indeed, in Rd for any d).

This exercise exhibits one example of a topological obstruction, a feature
which indicates that this code cannot have a realization consisting of convex
open sets. Section 7.4 goes into more detail about such obstructions.

For small examples, as in Exercise 7.2, we can list all the receptive field
relationships by hand. However, for larger codes, such a list will not be feasible.
Nor is it clear that a full list is necessary, since some of these relationships are
redundant, or are true for every code, and thus convey no important information
about the particular code in question. Thus, we need a method to efficiently
extract the important RF relationships from a code.

For this, we will turn to algebraic geometry. We motivate its use by consider-
ing the example of the simplicial complex, a related combinatorial/topological
object which has a well-known algebraic encoding.

7.1.3 The Simplicial Complex of a Code

As we have noted, a code C represents a collection supp(C) of subsets of [n]. A
simplicial complex is also a collection of subsets of [n], but with an additional
property.

Definition 7.3. An abstract simplicial complex ∆ on [n] is a collection ∆ of
subsets of [n], such that whenever σ ∈ ∆ and τ ⊂ σ , we have τ ∈ ∆ also.

For a particular code C, supp(C) may not be a simplicial complex. However,
we can associate a simplicial complex to any code as follows.

Definition 7.4. Define the simplicial complex of the code C ⊂ {0, 1}n as

∆(C)
def= {σ ⊂ [n] | σ ⊂ supp(c) for some c ∈ C}.

Exercise 7.6. Confirm that for any code C, the set ∆(C) as defined earlier is
actually a simplicial complex.



Analysis of Combinatorial Neural Codes: An Algebraic Approach Chapter | 7 219

Exercise 7.7. Let C be the code from Example 7.1. Compute the simplicial
complex ∆(C).

Exercise 7.8. Show that the following three codes have the same simplicial
complex; that is, that ∆(C1) = ∆(C2) = ∆(C3).

● C1 = {0000, 1000, 1100, 1101, 1110}
● C2 = {0000, 1000, 0100, 1100, 1010, 0110, 1110, 1101}
● C3 = {0000, 1000, 0100, 1010, 0110, 1110, 1101}

As we see in Exercise 7.8, distinct codes may have the same simplicial
complex, as long as any set of neurons which fires together in one code also
fires together in the other. This co-firing information would be captured in
a realization by noting that the respective receptive fields overlap. We now
introduce the nerve, a set which encodes the set of nonempty intersections of
any potential realization.

Definition 7.5. Let U = {U1, . . . , Un} be a collection of sets in Rd. The
nerve of U is

N (U) =
{

σ ⊂ [n] |
⋂

i∈σ

Ui ̸= ∅
}

.

The following two exercises illustrate the relationship between the simplicial
complex of a code C and the nerve of a realization U of C.

Exercise 7.9. Let U = {U1, U2, U3, U4} be the collection of sets from
Example 7.1. Compute the nerve N (U), and show that it is the same as the
simplicial complex ∆(C) computed in Exercise 7.7.

Exercise 7.10. Show that for any code C ⊂ {0, 1}n and any realization U of
C, we have

∆(C) = N (U).

We will now discuss an algebraic method for encoding a simplicial complex,
and as such, a brief note about algebra is in order. In the rest of this chapter,
k[x1, . . . , xn] will denote the ring of polynomials in the variables x1, . . . , xn with
coefficients in the field k. An ideal is a nonempty subset I of k[x1, . . . , xn] that
is closed under addition (if a, b ∈ I then a + b ∈ I) and under multiplication
by elements in k[x1, . . . , xn] (if a ∈ I and f ∈ k[x1, . . . , xn], then fa ∈ I). We
will also often refer to an ideal generated by a set A, which we will denote
I = ⟨A⟩; this is the set of elements which can be written as finite combinations
of elements in I. For more on these definitions, see for example [5, 6].
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Simplicial complexes can be encoded algebraically through the Stanley-
Reisner ideal. For a set σ ⊂ [n], denote xσ = ∏

i∈σ xi. The Stanley-Reisner
ideal over the field k for the simplicial complex ∆ on [n] is defined as

I∆c
def= ⟨xσ | σ /∈ ∆⟩ ⊂ k[x1, . . . , xn].

For a more thorough treatment of the Stanley-Reisner ideal, see [7] or [8,
Chapter 6]. As the Stanley-Reisner ideal encodes simplicial complexes, it can
be used to capture the simplicial complex of a code and as Exercise 7.10 shows,
it therefore implies certain intersection information for receptive fields.

Example 7.4. Let C be the code from Example 7.1. The Stanley-Reisner
ideal of ∆(C) is I∆(C) = ⟨x1x3⟩. This captures the fact that {1, 3} /∈ ∆(C),
as C does not exhibit any codewords where neurons 1 and 3 both fire. In any
realization of C, we would see the RF relationship U1 ∩ U3 = ∅.

The simplicial complex and the nerve capture information about RF re-
lationships of the form

⋂
i∈σ Ui = ∅. However, neither structure captures

the information about relationships which show containment; that is, RF
relationships of the form

⋂
i∈σ Ui ⊂ ⋃

j∈τ Uj.
Since the simplicial complex information is insufficient to understand a

code, we will now introduce an algebraic structure similar to the Stanley-Reisner
ideal which encodes all RF relationships of a code. This will be the neural ideal.

7.2 THE NEURAL IDEAL

Except where otherwise noted, the material in Sections 2 and 3 comes from [9],
where the idea of the neural ideal was introduced. As we consider only binary
codes, we will work over the field of two elements, F2 = {0, 1} and in particular,
over the polynomial ring F2[x1, . . . , xn].

Definition 7.6. Suppose I is an ideal of a polynomial ring k[x1, . . . , xn]. The
variety of I, denoted V(I), is defined to be the set of common zeros of the
elements of I; that is,

V(I) = {v ∈ kn | f (v) = 0 for all f ∈ I}.

For an ideal I ⊂ F2[x1, . . . , xn], the variety V(I) is a subset of Fn
2. The neural

ideal for a code C is designed to be an ideal whose variety is precisely C. Before
introducing the neural ideal, we consider an important related ideal called the
Boolean ideal.

Exercise 7.11. Show that the set of polynomials

B = {f ∈ F2[x1, . . . , xn] | f (v) = 0 for all v ∈ Fn
2}

forms an ideal, and furthermore that V(B) = Fn
2. B is called the Boolean ideal.
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Remark 7.1. Since we will be working over F2 for the remainder of the
chapter, we note that 1 = − 1 in F2, and thus that 1 + xi = 1 − xi. We usually
choose to use the latter notation.

Exercise 7.12. Show that B = ⟨xi(1− xi) | i ∈ [n]⟩; that is, that B is generated
by the set of Boolean polynomials xi(1 − xi).

The next few examples and exercises provide additional practice with ideals
and varieties in F2[x1, . . . , xn].

Example 7.5. Consider the ideal I = ⟨f1, f2, f3⟩ ⊂ F2[x1, x2, x3, x4] where
f1 = (1 − x1)x2, f2 = x1(1 − x3), and f3 = x3x4. This ideal contains polynomials
such as h = x1x3x4 (since h = x1f3), g = x1x2x3 − x2 (since g = 1f1 + x2f2),
and w = x3

3x4 (since w = x2
3f3).

The variety of this ideal is the set of binary strings that satisfy the system of
equations

(x1 − 1)x2 = 0, x1(x3 − 1) = 0, x3x4 = 0.

An example of such a binary string is 0001. To find all the elements of the
variety we can proceed as follows: Since xi ∈ F2, the first equation implies that
x1 = 1 or x2 = 0. In the case x1 = 1, the other equations become x3 = 1 and
x4 = 0. This gives the elements 1010 and 1110. In the case x1 = 0, then x2 = 0
and x3x4 = 0, so this gives the elements 0000, 0001, and 0010. This shows that
the variety of the ideal is V = {1010, 1110, 0000, 0001, 0010}. This variety can
also be said to have elements of the form 1*10, 000*, 00*0, where the asterisk
means that any value is allowed.

Exercise 7.13. Consider the ideal I = ⟨x1(1 − x3), x3x4⟩ ⊂ F2[x1, x2, x3, x4].
Compute all of the elements in the variety of I and compare with the variety
found in Example 7.5.

Exercise 7.14. Consider the ideal I = ⟨x1(1 − x2), x2(1 − x3), x1(1 − x3)⟩.
Show that x1(1 − x3) ∈ ⟨x1(1 − x2), x2(1 − x3)⟩ and use this to show that
I = ⟨x1(1 − x2), x2(1 − x3)⟩. Compute all of the elements in the variety of I.

7.2.1 Definition of the Neural Ideal

We now define our main object of study, the neural ideal of a code, which
we will associate to the code a collection of polynomials. As we will see,
these polynomials can be used to extract information about the RF relationships
associated with C. Recall that since F2 = {0, 1}, a code C can be thought of as a
subset of Fn

2.
Let v ∈ Fn

2. The characteristic polynomial of v is the polynomial ρv ∈
F2[x1, . . . , xn] defined by



222 Algebraic and Combinatorial Computational Biology

ρv =
∏

i∈supp(v)

xi
∏

j/∈supp(v)

(1 − xj).

Exercise 7.15. Show that ρv(c) =
{

1 v = c
0 v ̸= c.

We define two ideals associated with each neural code.

Definition 7.7. Let C ⊂ Fn
2. The vanishing ideal of C is defined as

IC = {f ∈ F2[x1, . . . , xn] | f (c) = 0 for all c ∈ C}.
Informally, IC is the set of polynomials in F2[x1, . . . , xn] which vanish on the

entire code.
The neural ideal of the code is the ideal

JC = ⟨ρv | v ∈ Fn
2\C⟩.

That is, JC is the ideal generated by the characteristic polynomials of
noncodewords.

While JC and IC are defined quite differently, they capture similar informa-
tion. The following exercises illustrate the relationship between the neural ideal
JC and the vanishing ideal IC .

Exercise 7.16. Show that every element of JC will vanish on the entire code,
that is, show that JC ⊂ IC .

Exercise 7.17. Show that

IC = JC + B.

Exercise 7.17 shows that the polynomials in IC and JC differ only by a
polynomial in B that vanishes on every vector in Fn

2.

Exercise 7.18. Prove that both IC and JC have the same variety, C, that is,

V(IC) = V(JC) = C.

We now give a specific example of the ideal JC for a code C, and note how
the relationship between JC and IC can be used to learn about the RF structure
of the code.

Example 7.6. Consider the code C = {000, 010, 110, 011}. Then,

JC = ⟨ρv | v ∈ {001, 100, 101, 111}⟩
= ⟨(1 − x1)(1 − x2)x3, x1(1 − x2)(1 − x3), x1(1 − x2)x3, x1x2x3⟩.
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This ideal has four generators, but one can reduce the number of generators
needed as follows: Since the sum of the last two generators is x1x3, it is in JC .
Similarly, by adding the first and third generators, we can see that (1 − x2)x3 ∈
JC , and by adding the second and third we obtain that x1(1− x2) ∈ JC . It follows
that JC = ⟨x1x3, (1 − x2)x3, x1(1 − x2)⟩ (see Exercise 7.19).

Beyond describing which codewords are not in C, the polynomials in JC tell
us further information about the code. For example, we know the polynomial
x1x3 ∈ JC . Since JC ⊂ IC , this means that for any c ∈ C, we have c1c3 = 0, and
thus the first and third neurons never fire in the same codeword. This leads us to
conclude that the RF relationship U1 ∩ U3 = ∅ must hold for C.

This example illustrates how we might find RF relationships from the
polynomials in JC , and the following section will elaborate on this idea. This
example also shows that while our definition for the neural ideal provides
a specific set of generators, it is often possible to use a different, shorter
list of polynomials as generators for JC . The following exercises illustrate
this idea.

Exercise 7.19. Let C be as in Example 7.6, and let K = ⟨x1x3, (1 −
x2)x3, x1(1 − x2)⟩. Show that JC = K and that V(K) = V(JC) = C.

Exercise 7.20. Show that the ideals J = ⟨x1(1 − x2)x3, x1x2x3⟩ and K =
⟨x1x3⟩ are equal. Show that there is a unique code C ⊂ F3

2 such that J = JC .

Exercise 7.21. Suppose JC = ⟨x1(1 − x2), x1x2, (1 − x1)(1 − x2), (1 − x1)x2⟩.
Show that JC = ⟨1⟩. What would the associated code C ⊂ F2

2 be in this case?

Exercise 7.22. Consider the code C = {000, 111, 011, 001}. Compute JC and
show that x1(1 − x3) is in JC .

Exercise 7.23. Consider the code C = {000, 100, 110, 010, 011, 001, 101}.
Compute JC .

Exercise 7.24. Consider the code C = {000, 100, 110, 010, 011, 001}. Com-
pute JC , and compare this result with the previous exercise.

7.2.2 The Neural Ideal and Receptive Field Relationships

Since the variety of both ideals IC and JC is precisely the code C, information
about the elements of the ideals JC and IC can be translated into information
about the code itself. In particular, we can often conclude RF relationships hold
by showing that certain polynomials exist in IC . Example 7.6 gave one example;
the following exercise considers another.
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Exercise 7.25. Suppose C ⊂ Fn
2 is a code and x1(1 − x2) ∈ JC . Show that

the RF relationship U1 ⊂ U2 must hold for C.

We now formalize this connection between the polynomials in the ideal IC
and the RF relationships associated with C. Throughout this and the following
sections, we will use the convention that Uσ = ⋂

i∈σ Ui and xσ = ∏
i∈σ xi.

Theorem 7.1 (Lemma 4.2 from [9]). Let C ⊂ Fn
2 be a neural code, and let

U = {U1, . . . , Un} be any collection of sets in a stimulus space X such that
C = C(U). Then, for any sets σ , τ ⊂ [n],

xσ

∏

i∈τ

(1 − xi) ∈ IC ⇔ Uσ ⊂
⋃

i∈τ

Ui.

Exercise 7.26. Use Exercises 7.12 and 7.17 to prove that if σ ∩ τ ̸= ∅, then
xσ

∏
i∈τ (1 − xi) ∈ IC . Apply Theorem 7.1 to give a new proof of Exercise 7.4.

The previous exercise shows that when σ ∩ τ ̸= ∅, Theorem 7.1 is a
consequence of the Boolean relationships implied by B and provides trivial
information about receptive fields, and in particular, information which is
not dependent on the actual code C. Thus, we look to JC to obtain the RF
relationships specific to the code.

Proposition 7.1. If σ ∩ τ = ∅, we have

xσ

∏

i∈τ

(1 − xi) ∈ JC ⇔ Uσ ⊂
⋃

i∈τ

Ui.

Assuming that σ ∩ τ = ∅, there are three major types1 of relationships we
observe, depending on whether σ or τ or neither is empty.

Monomial: (σ ̸= ∅, τ = ∅): xσ ∈ JC ⇔
⋂

i∈σ

Ui = ∅

Mixed monomial: (σ ̸= ∅, τ ̸= ∅): xσ

∏

j∈τ

(1 − xj) ∈ JC ⇔ Uσ ⊂
⋃

j∈τ

Uj

Negative monomial: (σ = ∅, τ ̸= ∅):
∏

j∈τ

(1 − xj) ∈ JC ⇔ X ⊂
⋃

j∈τ

Uj

We use the convention that
⋂

i∈∅ Ui = X, the entire stimulus space, and that
x∅ = 1.

1. In previous work, such as [9], these have been referred to as Type 1, 2, and 3 relationships.
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We usually assume that our codes contain the all-zero codeword 0, repre-
senting an instance when none of the neurons were firing. In this case, we find
that negative monomial relationships are impossible.

Exercise 7.27. Show that if 0 ∈ C then it is impossible to have any negative
monomials in JC .

The monomial relationships give the same information as the Stanley-
Reisner ideal; namely, they describe the simplicial complex of the code.

Exercise 7.28. Show that if C1, C2 ⊂ Fn
2 are two codes such that JC1 and JC2

contain the same set of monomials, then ∆(C1) = ∆(C2).

We now give some examples and exercises using Theorem 7.1 and its
consequence Proposition 7.1 to find the nontrivial RF relationships associated
with a code by using its neural ideal.

Example 7.7. Consider the neural ideal J = ⟨x1x2x3, x1(1 − x2)x3⟩;
Exercise 7.20 shows that J = JC for C = {000, 100, 010, 001, 110, 011}. The
generator x1x3(1 − x2) encodes the information that the intersection of the
receptive fields of neuron 1 and neuron 3 is contained in the receptive field of
neuron 2 (i.e., U1 ∩ U3 ⊆ U2). Similarly, the generator x1x2x3 encodes that
U1 ∩ U2 ∩ U3 = ∅. These two pieces of information imply that U1 ∩ U3
is contained in both U2 and its complement; thus, U1 ∩ U3 = ∅. Since this
information is encoded by the polynomial x1x3, it follows that x1x3 ∈ J.
Indeed, x1x3 is the sum of the two generators of J, and Exercise 7.20 shows
that J = ⟨x1x3⟩.

Example 7.8. Consider the neural ideal J = ⟨x1(1 − x2), x2(1 − x3)⟩ ⊂
F2[x1, x2, x3]⟩. The generator x1(1 − x2) encodes the information that U1 ⊆U2
and x2(1 − x3) encodes U2 ⊆U3. This implies that U1 ⊆U3, so the polynomial
x1(1 − x3) is in J (see Exercise 7.14).

Exercise 7.29. Identify the RF relationships of the code with ideal JC =
⟨x1x2x3, (1 − x1)x2x3, (1 − x1)x2(1 − x3), (1 − x1)(1 − x2)x3⟩. Then, use basic
set theory to show that the same RF relationships can be determined from the
generators of the ideal K = ⟨(1 − x1)x3, (1 − x1)x2, x2x3⟩. Does JC = K?

Exercise 7.30. Identify the RF relationships of the code with ideal JC =
⟨x1x2x3, (1 − x1)(1 − x2)x3, x1(1 − x2)x3⟩. Then, use basic set theory to show
that the same information can be determined from the generators of the ideal
K = ⟨(1 − x2)x3, x1x3⟩. Does JC = K?
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7.3 THE CANONICAL FORM

As the preceding examples and exercises emphasize, it is often the case that
the receptive field relationships we discover from polynomials in IC or JC give
redundant information. In Example 7.7 and Exercise 7.20, once we know that
x1x3 is in JC and thus have the RF relationship U1∩U3 = ∅, we can infer through
basic set theory that U1 ∩ U2 ∩ U3 = ∅. Thus, the polynomial x1x2x3 ∈ JC
provides redundant information about the receptive fields. This polynomial is
also in a sense algebraically redundant, since once we know x1x3 ∈ JC , then we
know that x1x2x3 ∈ JC , as it is a multiple of x1x3.

We now introduce a set of polynomials which captures the important RF re-
lationship information, while excluding as much as possible those polynomials
which give redundant information.

Definition 7.8. A pseudo-monomial is a polynomial of the form xσ
∏

j∈τ (1−
xj), where σ ∩ τ = ∅.

Observe that for any v ∈ Fn
2, the characteristic polynomial ρv is a pseudo-

monomial, but that the Boolean polynomial xi(1− xi) is not a pseudo-monomial.
Monomials, mixed monomials, and negative monomials are all examples of
pseudo-monomials.

Definition 7.9. Let J ⊂ F2[x1, . . . , xn] be an ideal. A pseudo-monomial f ∈
J is minimal in J if there is no pseudo-monomial g ∈ J with deg(g) < deg(f )
such that f = gh for some h ∈ F2[x1, . . . , xn].

Definition 7.10. Let C ⊂ Fn
2 be a code, and let JC be the associated neural

ideal. The canonical form of JC , denoted CF(JC), is the set of all minimal
pseudo-monomials in JC .

Example 7.9. Let C be as in Example 7.7, so JC = ⟨x1(1 − x2)x3, x1x2x3⟩.
The canonical form is CF(JC) = {x1x3}, and as we have seen, JC = ⟨x1x3⟩.

Exercise 7.31. Show that the canonical form for the neural ideal generates
the neural ideal, that is, that

JC = ⟨CF(JC)⟩.

The canonical form collects all of the minimal pseudo-monomials in JC ;
as such, the term “minimal” comes with a warning. There are many cases
in which the set of all minimal pseudo-monomials is not the smallest pos-
sible set of pseudo-monomials which generate the ideal, as in the following
example.
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Example 7.10. Consider the code C = {000, 111, 011, 001}. Then JC =
⟨(1− x1)x2(1− x3), x1(1− x2)(1− x3), x1(1− x2)x3, x1x2(1− x3)⟩. The canonical
form is CF(JC) = {x1(1 − x2), x2(1 − x3), x1(1 − x3)}, but note that JC =
⟨x1(1 − x2), x2(1 − x3)⟩ (see Exercise 7.14). Thus, the canonical form does not
provide the smallest possible set of pseudo-monomial generators.

Exercise 7.32. Draw a realization of the code with ideal JC = ⟨x1x2x3, (1 −
x1)x2x3, (1 − x1)x2(1 − x3), (1 − x1)(1 − x2)x3⟩. Extract the RF relationships
from the canonical form CF(JC) = {x3(1 − x1), x2(1 − x1), x2x3} and note that
these are sufficient to draw a realization (see Exercise 7.29).

Exercise 7.33. Draw a realization of the code with ideal JC =
⟨x1x2x3, x1(1 − x2)x3, (1 − x1)(1 − x2)x3⟩. Extract the RF relationships from the
canonical form CF(JC) = ⟨(1 − x2)x3, x1x3⟩, and note that these are sufficient
to draw the realization (see Exercise 7.30).

As these exercises illustrate, the canonical form gives a simpler set of
information than the original presentation of JC , but still implies all of the
same RF relationships. Thus, rather than using JC as originally presented, we
usually compute only the canonical form for JC . The next sections will show
two methods for finding the canonical form of a code.

7.3.1 Computing the Canonical Form

Computing the canonical form for the neural ideal code C can be done iteratively
by codeword. Writing down the canonical form for the ideal consisting of no
codewords is simple; thereafter, we add the codewords one at a time, updating
the canonical form at each step.

Here, we describe an algorithm which takes the canonical form for a given
code C ⊂ {0, 1}n, and a codeword c ∈ {0, 1}n, and outputs the canonical form
for C∪{c}. It is generally assumed that c /∈ C since otherwise the canonical form
will not change; however, the success of the algorithm does not depend on this
assumption. This algorithm can then be iterated to build the canonical form for
a code.

Algorithm 7.1

Input: The canonical form CF(JC) for a code C ⊂ {0, 1}n, and a word c ∈ {0, 1}n.
Output: The canonical form CF(JC∪{c}).
Step 0: Initialize empty lists L, M, and N.
Step 1: For f∈ CF(JC), if f(c) = 0, add f to L; otherwise, add f to M.

Repeat for all polynomials f∈ CF(JC).
Step 2: For each polynomial g ∈ M and each 1 ≤ i ≤ n, if
(i) neither xi nor (1 − xi) divide g, and
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(ii) (xi − ci)g is not a multiple of some polynomial in L,
then add (xi − ci)g to N. Repeat for all polynomials g ∈ M and 1 ≤ i ≤ n.
Step 3: Output L ∪ N.

A brief explanation of the algorithm: the polynomials in the original
canonical form CF(JC) will either vanish on the new codeword c, or they
will not. In Step 1, we sort the polynomials by this feature. If the polynomial f
does vanish on c, then f will remain in the new canonical form (add f to L); if
not, we add f to the list M to potentially adjust f so that it will vanish on c. In
Step 2, we perform this adjustment to each f , multiplying by a linear term which
will certainly vanish on c; namely, (xi − ci). If the result of this multiplication is
not a pseudo-monomial, or if it is a multiple of some pseudo-monomial in L and
therefore redundant, then we will not retain it; otherwise, we add it to the list
of new pseudo-monomials to add to CF(JC) (list N). To ensure that we obtain
the entire new canonical form and not only a subset, it is necessary to consider
all such linear terms (xi − ci) and add all the valid possible adjustments to the
new canonical form. Finally, we output the collection of the old polynomials
which are still valid (list L) and the newly-created polynomials (list N) as the
new canonical form.

A proof that this process will result in the correct canonical form for the new
code can be found in [10].

Example 7.11. Let C = {000, 100, 010}. Observe that in this code we have
the RF relationships U3 = ∅ since neuron 3 never fires, and U1 ∩ U2 = ∅
since neurons 1 and 2 never fire together. The canonical form of JC is CF(JC) =
{x1x2, x3}.

We will compute CF(C′), where C′ = C ∪ {110}, inputting CF(C) =
{x1x2, x3} and c = 110 into Algorithm 7.1:

Step 0: Set L = M = N = ∅.
Step 1 for x3, x1x2: Since f = x3 satisfies f (110) = 0, add x3 to L. Since
f = x1x2 does not satisfy f (110) = 0, add x1x2 to M. Then, M = {x1x2} and
L = {x3}.
Step 2 for x1x2 and i = 1, 2, 3: It is not true that neither x1 nor 1 − x1 divide
x1x2. So N does not change.

It is not true that neither x2 nor 1 − x2 divide x1x2. So N does not change.
It is true that neither x3 nor 1 − x3 divide x1x2. However, (x3 − 0)x1x2 is

a multiple of a polynomial in L. So N does not change.

Step 3: The output is L ∪ N = {x3}. This ends Algorithm 7.1.

Thus, we find that CF(C′) = {x3}. This result makes sense, since our new
code C′ = {000, 100, 010, 110} is characterized by the RF relationship U3 = ∅.

Exercise 7.34. Let C′ = {000, 100, 010, 110} as in Example 7.11. Define
C′′ = C′ ∪ {011}. Use Algorithm 7.1 to show that CF(C′′) = {x1x3, x3(1 − x2)}.
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Algorithm 7.1 shows how to adjust a given canonical form to include one
new codeword; computing the canonical form for a given code C is simply an
iteration of this process. We note that the canonical form for the empty code
C0 = ∅ is CF(JC0) = {1}. Then, we order our code C, and add in the codewords
one at a time, using Algorithm 7.1 each time to compute the new canonical
form. Once all codewords have been added, the result is the canonical form for
the complete code C. Algorithm 7.2 describes this process.

Algorithm 7.2

Input: A code C ⊂ {0, 1}n.
Output: The canonical form CF(JC).
Step 0: Arbitrarily order the codewords of C (so C = {c1, c2, . . . , cd}).
Step 1: Define the code C0 = ∅. The canonical form of C0 is CF(JC0 ) = {1}. Set
j = 1.
Step 2: Define Cj = Cj− 1 ∪ {cj}. Input CF(JCi− 1 ) and cj into Algorithm 7.1; the
output will be CF(JCj ). If j = d, output CF(JCd )) = CF(JC). Otherwise, set j = j + 1
and repeat Step 2.

Exercise 7.35. Using the iterative process described in Algorithm 7.2 and
C = {000, 100, 010} as in Example 7.11, show that CF(JC) = {x3, x1x2}. Then,
reorder the codewords in a new way, recompute CF(JC), and show that the result
is the same.

7.3.2 Alternative Computation Method: The Primary
Decomposition

One well-known way to break down an ideal into manageable computational
pieces is by finding its primary decomposition. This strategy has been leveraged
with considerable success for the Stanley-Reisner ideal; see Ref. [8, Chapter 6]
for a description. A primary decomposition of the neural ideal is

JC = p1 ∩ · · · ∩ pr,

where each ideal pi is a primary ideal. We will not go into much detail about
primary decompositions here, but we note that the primary decomposition of
the neural ideal provides an alternative method to compute the canonical form,
as well as providing combinatorial information about the code in its own right.

The primary decomposition gives information about the code which is
complementary to that provided by the canonical form. Each ideal in the primary
decomposition gives an interval in the Boolean lattice Fn

2 covered by the code;
on the other hand, the polynomials in the canonical form can be interpreted
to describe intervals of non-codewords in the Boolean lattice. The primary
ideals used in the decomposition described earlier can be written as ideals with
linear generators; recombining these linear generators in their various possible
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combinations gives us the canonical form. This algorithm and the Boolean
lattice interpretation are described in detail in [9].

Example 7.12. Consider the code C = {000, 100, 010, 001, 101}. The neural
ideal for this code is

JC = ⟨(1 − x1)x2x3, x1x2(1 − x3), x1x2x3⟩.
The canonical form of JC is CF(JC) = {x1x2, x2x3}, where the pseudo-
monomials correspond to the intervals {110, 111} and {011, 111} among the
noncodewords. A primary decomposition of JC is JC = ⟨x1, x3⟩ ∩ ⟨x2⟩,
where ⟨x1, x3⟩ has as its variety the Boolean lattice interval {000, 010} of
codewords, and ⟨x2⟩ has the interval {000, 100, 001, 101} as its variety. Note that
polynomials obtained by taking one generator from each ideal in the primary
decomposition result in precisely the generators of the canonical form.

7.3.3 Sage Code for Computations

As we have shown, it is possible to compute the canonical form by hand, but for
large examples it quickly becomes tedious. Fortunately, the iterative algorithm
we have described has been coded for computation in SageMath [11]. To use this
code, first download the packages for neural computations from https://github.
com/e6-1/NeuralIdeals. If necessary, rename the folder NeuralIdeals-master
as NeuralIdeals. The following example will describe how to use the code to
compute the canonical form and extract the RF relationships. For a more detailed
guide, see [10].

Once the packages have downloaded, run the following to compile and load
them.

load("NeuralIdeals/iterative_canonical.spyx")
load("NeuralIdeals/neuralcode.py")
load("NeuralIdeals/examples.py")

The code above should give the message

Compiling ./NeuralIdeals/iterative_canonical.spyx...

Example 7.13. We will use the Sage code to compute the canonical form
for the neural code C = {100, 010, 001, 101, 011, 111, 000}.

To define the neural code, run the following:

neuralCode = NeuralCode([’100’,’010’,’001’,’101’,’
011’,’111’,’000’])

To compute the canonical form, run CF=neuralCode.canonical() and CF to
see the result. This will give the following output.

Ideal (x0*x1*x2+x0*x1) of Multivariate Polynomial Ring in
x0, x1, x2 over Finite Field of size 2
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To have an output with factored generators, we run CF=neuralCode.
factored_canonical() and CF to see the result. The output is [(x2 + 1) * x1
* x0].

Furthermore, we can find the receptive field structure by running the
following.

RF=neuralCode.canonical_RF_structure()

RF This prints the output, which in this case will be:

Intersection of U_[’1’, ’0’] is a subset of Union of
U_[’2’]

Thus, we obtain the following receptive field structure: (U0 ∩ U1) ⊆U2. A
possible receptive field in R2 is shown (on the left) in Fig. 7.3.

Note that we can also obtain a one-dimensional realization using the
intervals U0 = (0, 3), U1 = (2, 5), and U2 = (1, 4).

Example 7.14. We will compute the canonical form of C ={1010, 1110, 0000,
0001, 0010} and attempt to draw a convex realization. We proceed as in the
previous example.

neuralCode = NeuralCode([’1010’,’1110’,’0000’,’0001’,’
0010’])
CF=neuralCode.factored_canonical()
CF

This will give the output

[x1*(x0+1),(x2+1)*x0,(x2+1)*x1,x3*x0,x3*x1,x3*x2]

To obtain the receptive field structure we use neuralCode.canonical_
RF_structure() and obtain

Intersection of U_[’1’] is a subset of Union of U_[’0’]
Intersection of U_[’0’] is a subset of Union of U_[’2’]
Intersection of U_[’1’] is a subset of Union of U_[’2’]
Intersection of U_[’3’, ’0’] is empty
Intersection of U_[’3’, ’1’] is empty
Intersection of U_[’3’, ’2’] is empty

Thus, we obtain the following neural field structure: U1 ⊆ U0 ⊆ U2 and
U3 ∩ U0 = U3 ∩ U1 = U3 ∩ U2 = ∅. A possible receptive field in R2 is shown
(on the right) in Fig. 7.3.

Note that we can also obtain a one-dimensional realization using the
intervals U0 = (1, 4), U1 = (2, 3), U2 = (0, 5), and U3 = (6, 7).

Exercise 7.36. For the following codes, use Sage to compute the canonical
form of C. Use the RF relationships you obtain to draw a realization of C, using
convex sets if possible.



232 Algebraic and Combinatorial Computational Biology

U0

U0

U1

U1

U2

U2 U3

FIG. 7.3 A realization of the code in Example 7.13 (left), and one of the code in Example 7.14
(right).

1. C = {000, 010, 110, 011}
2. C = {000, 100, 110, 010, 011, 001, 101}
3. C = {000, 100, 110, 010, 011, 001}
4. C = {000, 111, 011, 001}
5. C = {000, 100, 010, 101, 011}
6. C = {0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110, 0011, 0001}
7. C = {0000, 1000, 1100, 0100, 0110, 0010, 0011, 0001}
8. C = {0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110, 0001, 1001, 0101,

1101, 0011, 1011, 0111}
9. C = {0000, 1000, 0100, 1010, 0110, 0010, 0011}

Note: Some of the computations for this book chapter were done using the
Ohio Supercomputer Center [12].

7.4 APPLICATIONS: USING THE NEURAL IDEAL

7.4.1 Convex Realizability

One of the main questions motivating the construction of the neural ideal is to
determine which codes have realizations using convex sets, and which do not.
Many types of neurons with receptive fields, including both 2D and 3D place
cells, have natural convex receptive fields. Structural features of the code are
known which either guarantee or prohibit the existence of a realization with
convex sets, and the neural ideal and canonical form can often be used to detect
these features. We will refer to a code which has a realization using open convex
receptive fields in Rd for some d as a convex code.

As Exercise 7.8 shows, the simplicial complex alone is insufficient to
characterize a code. In addition to the fact that different codes may have the
same simplicial complex, codes with the same simplicial complex may have
very different properties with respect to convex realizability.

Exercise 7.37. Let C1, C2, and C3 be the three codes from Exercise 7.8. Show
that C1 has a realization with convex open sets in R , that C2 does not have such a
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realization, but can be realized with convex open sets in R2, and that C3 cannot
be realized with convex open sets in Rd for any dimension d.

As seen in Exercise 7.37 and previously in Exercise 7.5, there exist codes
which are not convex. The obstructions to convexity in these exercises are
topological in nature, and are specific examples of a broad class of obstructions
known as local obstructions, defined in [13, 14]. These obstructions follow from
an application of the Nerve lemma.

Lemma 7.1 (Nerve Lemma). If the sets U = {U1 . . . , Un} are convex, then
the homotopy type of

⋃n
i=1 Ui is equal to the homotopy type of the nerve N (U).

In particular,
⋃n

i=1 Ui and N(U) have exactly the same homology groups.

The Nerve lemma is a consequence of [15, Corollary 4G.3]. Local obstruc-
tions arise in instances where features of the code dictate that any realization of
the code using convex sets would violate the Nerve lemma; thus, a code which
can be realized with convex sets must have no local obstructions.

Determining if a code C has local obstructions to convexity can be reduced
to the question of determining whether C contains a particular minimal code, as
Theorem 7.2 will show. However, we first require a definition.

Definition 7.11. Let ∆ be a simplicial complex. For any σ ∈ ∆, the link of
σ in ∆ is

Lkσ (∆)
def= {ω ∈ ∆ | σ ∩ ω = ∅ and σ ∪ ω ∈ ∆}.

Example 7.15. Consider the simplicial complex

∆ = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3}}.
Then, Lk{1}(∆)={∅, {2}, {3}, {4}, {2, 3}}, whereas Lk{2}(∆)={∅, {1}, {3}, {1, 3}}
and Lk{1,3}(∆) = {∅, {2}} (See Fig. 7.4).

1 4

2 3 2 3

4

FIG. 7.4 The simplicial complex ∆ from Example 7.15 (at left) and the link Lk{1}(∆) (at right).
Here, Lk{1}(∆) is disconnected, and thus not contractible.
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The necessary condition for a code to have no local obstructions will involve
determining whether links are contractible. Informally, a topological space
(such as a simplicial complex) is contractible if it is connected and has no
“holes”; more formally, a space is contractible if it is homotopy-equivalent to
a single point. In the previous example, Lk{1}(∆) is disconnected, and thus is
not contractible, but the other two links are both contractible.

Theorem 7.2 (Theorem 1.3 from [13]). For each simplicial complex ∆,
there is a unique minimal code Cmin(∆) with the following properties:

1. the simplicial complex of Cmin(∆) is ∆, and
2. any code C satisfying ∆(C) = ∆ has no local obstructions if and only if

C ⊇ Cmin(∆).

Determining this minimal code depends only on the simplicial complex
∆(C):

Cmin(∆) = {σ ∈ ∆ | Lkσ (∆) is noncontractible} ∪ {∅}.

Exercise 7.38. Recall code C = C3 from Exercises 7.8 and 7.37. With ∆ =
∆(C) as computed in that exercise, show that Lk{1,2}(∆) is not contractible.
Conclude that 1100 ∈ Cmin, and that since C does not contain 1100, it cannot be
convex.

Exercise 7.39. Recall C = {000, 010, 001, 110, 101}, the code from Exer-
cise 7.5. Find ∆(C). Then, identify a set σ such that Lkσ (∆) is not contractible,
and the associated codeword c with supp(c) = σ is not in C. Conclude that C is
not convex.

While it can be difficult in general to detect these local obstructions from
the canonical form, it is sometimes possible. Exercise 7.38 exhibits a simple
example of such a situation.

Example 7.16. The code C3 from Exercises 7.8 and 7.38 has canonical form

CF(JC3) = {x3x4, x1x2(1− x3)(1− x4), x3(1− x1)(1− x2), x4(1− x2), x4(1− x1)}.
The first two polynomials together tell us that (U1 ∩ U2) ⊂ (U3 ∪ U4) and
U3 ∩ U4 = ∅. This gives us a clue that we may have an obstruction using
σ = {1, 2}, since in any convex realization, U1 ∩ U2 should also be convex and
thus connected. However, we just found that it is contained in the union of two
disjoint sets, so it cannot be connected.

We can show that examples such as this one provide a pattern for similar
local obstructions.
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Exercise 7.40. Suppose C ⊂ Fn
2. Show that if there is some set σ ⊂ [n] such

that both of the following conditions hold:

1. xσ (1 − xi)(1 − xj) ∈ CF(JC)

2. xσ xixj ∈ JC

then C is not convex, as we can use σ to find a local obstruction.

Demonstrating that a code has a local obstruction proves immediately that
the code cannot be convex. However, the converse does not hold; there are codes
which have no local obstructions but still have no open convex realization, as in
the following example.

Example 7.17 (Lienkaemper et al. [16]). The following code on five neurons
has no local obstructions, but has no open convex realization:

C ={00000, 00100, 00010, 10100, 10010, 01100, 00110, 00011, 11100, 10110,

10011, 01111}.
The obstruction to convexity in this case is more geometric in its flavor—one can
use convexity show that the straight line which connects points in two different
regions has only a limited set of possible regions it can pass through, and only
in certain orders, and this can be shown to be impossible in all cases.

Thus, local obstructions can only prove nonconvexity; we cannot assume that
a code without local obstructions is necessarily convex. That said, several large
classes of codes are known to have convex realizations. We will now show some
examples of these classes, and give algebraic signatures from the canonical form
which can tell us immediately if a code fits into one of these classes. The first
such class is simplicial complexes.

Theorem 7.3 (Curto et al. [13]). If C is a simplicial complex, then C has a
convex realization.

Proposition 7.2. Let C be a neural code. Then C is a simplicial complex if
and only if CF(JC) consists only of monomials.

Exercise 7.41. Prove Proposition 7.2.

Theorem 7.3 and Proposition 7.2 combined show that by computing the
canonical form CF(JC), we can immediately detect if C is a simplicial complex,
and if so, conclude that C is convex. However, it is quite specific to require
that a code be a simplicial complex, and many codes which are quite clearly
realizable (including any code where one receptive field is covered by others, as
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in Example 7.1) are not simplicial complexes. Fortunately, there is a relaxation
of the simplicial complex condition which is also known to be convex.

Definition 7.12. A code C is intersection-complete if for any c, d ∈ C, there
is a codeword v ∈ C such that supp(v) = supp(c) ∩ supp(d).

Exercise 7.42. Show that codes which are simplicial complexes are
intersection-complete. Give an example to show that the converse does not
hold.

The larger class of intersection-complete codes is also known to be convex
realizable.

Theorem 7.4 (Cruz et al. [17]). If C is intersection-complete, then C has a
convex realization.

Intersection-complete codes are more general than simplicial complex
codes, but we can use the canonical form to detect them as well, as the following
result indicates.

Theorem 7.5 (Curto et al. [18]). A code C containing the all-zero word 0
is intersection-complete if and only if CF(JC) consists only of monomials, and
mixed monomials of the form

∏

i∈σ

xi(1 − xj).

From the previous two results, we see that codes whose canonical forms are
entirely monomial (as with simplicial complexes) or allow only the most basic
mixed monomials (intersection-complete codes) are convex. This might lead us
to suspect that having mostly monomial-like relationships is somehow necessary
for convexity. However, this is not the case, as codes with no monomials at all
in their canonical form are also convex.

Theorem 7.6 (Curto et al. [13]). If C is a neural code and CF(JC) contains
no monomials, then C has a convex realization.

Furthermore, codes with no monomial relationships are also known to have
convex realizations in very low dimensions (1 or 2); see Fig. 7.5 and related
discussion. This property also has a simple characterization in terms of the
canonical form, as seen in the following exercise.

Exercise 7.43. Show that CF(JC) contains no monomials if and only if C
contains the codeword 1 = 111 . . . 1.



Analysis of Combinatorial Neural Codes: An Algebraic Approach Chapter | 7 237

000

101 111

110

100

001

FIG. 7.5 Constructing a 2D realization of C = {000, 100, 001, 101, 110, 111}. The codeword 111
is placed at the center of a polygon inscribed within a circle; the remaining codewords are assigned
to the spaces created around the edges. We then take Ui to be the union of the regions labeled by
codewords with neuron i firing.

7.4.2 Dimension

The question of realizability in general can tell us which codes can be repre-
sented with convex receptive fields in some dimension. However, the question
of which dimension is appropriate is equally difficult, but still quite important
from a biological perspective, as the set of neurons may be associated to a space
of stimulus with a particular dimension. In our motivating example of place
fields, the stimulus space is 2D. However, other famous examples of neurons
with receptive fields include neurons in visual cortex which code for the 1D
angle of a stimulus [3], and the more recently discovered example of 3D place
fields in bats [4]. The dimension is one of the most basic features of the stimulus
space which a code should capture.

We will provide some partial answers to the question of in which dimension
a code can be realized with convex receptive fields; recall from Exercise 7.1 that
without any assumptions on the receptive fields, all codes can be realized in R .
Mathematically, the question of the lowest dimension where a code is convex-
realizable requires a different approach than the question of realizability. Many
of the constructions which provide realizations for the classes of realizable
codes seen in the previous section are in very high dimension, and in particular,
may not be minimal [13].

Definition 7.13. The dimension of a code C is the minimum d ∈ N such that
C has a convex open realization in Rd. If C is not realizable in any dimension,
we say d = ∞.

As a basic example, consider the codes containing the codeword 1, as
described in Theorem 7.6. The proof that all such codes are realizable is
constructive, and shows how to realize such codes in two dimensions. Hence,
any code containing the codeword 1 has dimension d = 1 or 2. Fig. 7.5 shows
an example of the construction for a simple code.

Obtaining some basic lower bounds on the dimension of a convex realization
can be done using the simplicial complex information in the code via the Nerve
lemma. A simplicial complex ∆ is said to be d-representable if there exists a
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collection of convex sets U = {U1, . . . , Un} in Rd such that ∆ = N (U). Thus,
for any code C, the dimension of C is at least as high as the minimal d such that
∆(C) is d-representable [18].

Some of this basic dimensional information can be extracted very quickly
using well-known theorems from convex geometry, such as Helly’s theorem.

Theorem 7.7 (Helly’s Theorem). Suppose U1, . . . , Uk ⊂ Rd are convex sets
with d < k. If the intersection of every d + 1 of these sets is nonempty, then the
full intersection

⋂k
i=1 Ui is nonempty.

Since monomial relationships capture intersection information, we can
obtain dimension bounds from the canonical form via Helly’s theorem.

Exercise 7.44. Apply Helly’s theorem to prove that if C is a code and CF(JC)

contains a monomial of degree ≥ d, then C cannot be realized in any dimension
less than d.

All of the results outlined here rely on information about ∆(C) to obtain
dimension bounds. However, when considering dimension, the simplicial com-
plex does not tell the whole story. In Exercises 7.8 and 7.37, we saw three
codes C1, C2, and C3, all with the same simplicial complex, where d(C1) = 1,
d(C2) = 2, and d(C3) = ∞. Using specifics of the canonical form beyond the
monomial/simplicial complex information to compute dimension is still a very
open problem.

7.5 CONCLUDING REMARKS

We conclude by giving a description of the ongoing work in this area, highlight-
ing those areas where little is known, in the hopes that the reader will consider
taking on these challenges.

In the previous section, we saw partial answers to questions about when a
code has a convex realization, and in what dimension such a realization might
be possible. In each of these situations, we used the algebraic structure of the
neural ideal to recognize the RF relationships which informed us how to apply
the result. Further work extracting algebraic signatures of convexity continues
[18]. However, many related questions about convexity and dimension remain
unanswered. Even for known results, it is not immediately clear how to apply
the algebraic characterization, as in the following example.

A code C is max intersection-complete if for any collection of facets
(maximal sets) ρi ∈ ∆(C), we have

⋂k
i=1 ρi ∈ C.

Theorem 7.8 (Cruz et al. [17]). If C is max intersection-complete, then C is
convex.
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Max intersection-complete is a weakening of the condition that C be
intersection-complete. However, unlike intersection-complete codes, an alge-
braic signature of max intersection-complete codes in JC is not known.

Similarly, although nonlocal obstructions to convexity have been found
(such as those in [16]), it is not known how to detect those obstructions
algebraically. The search for other types of obstructions to (or guarantees of)
convexity, whether detectable through the neural ideal or not, is still ongoing.

The question of the dimension of a code is likewise still very much open.
We have shown that the combinatorial information encoded in the simplicial
complex can be used to find a weak upper bound on the dimension, and that
Helly’s theorem can give us a weak lower bound. Results related to Helly’s
theorem can be used to find other lower bounds, and in the very specific case
of a code containing the all-1s word, we can bound the dimension by 2 [13].
All of this information is based on the information about ∆(C), however. While
this means it can be detected algebraically from the monomial relations, we have
also seen that this information by no means sufficient to characterize dimension.
In recent work, Zhang and Rosen have characterized the codes of dimension
1 [19], but no such characterization is known for higher dimensions, and no
algebraic signature of this characterization is known.

Even in those cases where the code is known to have a convex realization in
a low dimension, it is not always clear how to actually construct a realization.
In specific cases, a realization can be constructed using the theory of Euler
diagrams [20], but the more general question of how to algorithmically construct
a convex realization is still open.

Finally, while the results highlighted in this chapter have focused on using
the neural ideal under the assumption of convexity, we could also consider
loosening this assumption. For example, some recent work has considered the
question of dimension of codes under the assumption of connectedness [21]. The
machinery of the neural ideal and canonical form is not specific to convexity, and
can be used in any context where RF relationships provide useful information.
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