
19.6 COMBINATORIAL NEURAL CODES

Neural codes are the brain’s way of representing, transmitting, and storing information
about the world. Combinatorial neural codes are based on binary patterns of neural
activity, as opposed to the precise timing or rate of neural activity. The structure of a
combinatorial code may reflect important aspects of the represented stimuli or network
architecture. Combinatorial codes can be analyzed using an algebraic object called the
neural ring.

19.6.1 BASIC CONCEPTS

From simultaneous recordings of neurons in the brain we can infer which subsets of
neurons tend to fire together. This information is captured by a combinatorial code.

Definitions:

The set of neurons is denoted by [n] = {1, . . . , n}.

An action potential, or spike, is an electrical event in a single neuron. This is the
fundamental unit of neural activity. We say that a neuron “fires” action potentials, or
spikes.

A spike train is a sequence of spike times for a single neuron. This captures the electrical
activity of the neuron over time.

A codeword is a string of 0s and 1s, with a 1 for each active neuron and a 0 denoting
silence; equivalently, it is a subset σ ⊆ [n] of (active) neurons firing together. For
example, if n = 6 the subset σ = {145} ⊆ [6] is also denoted 100110.

A combinatorial neural code is a collection of codewords C ⊆ 2[n]. In other words, it
is a binary code of length n, where each binary digit is interpreted as the “on” or “off”
state of a neuron.

A maximal codeword is a codeword that is maximal in the code under inclusion. If
σ ∈ C is maximal, then there is no τ ∈ C such that τ ) σ.

An abstract simplicial complex ∆ ⊆ 2[n] is a collection of subsets of [n] that is closed
under inclusion (see §15.6.1). That is, if σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆. A facet of ∆ is
an element of ∆ that is maximal under inclusion.

The simplicial complex of a code, ∆(C), is the smallest abstract simplicial complex
on [n] that contains all elements of C:

∆(C) = {σ ⊆ [n] | σ ⊆ τ for some τ ∈ C}.

Facts:

1. Spikes (action potentials) are all-or-none electrical events. It thus suffices to keep
track only of the spike times, as in a spike train.

2. Most combinatorial neural codes appear ill-suited for error correction [CuEtal13a].

3. Simplicial complexes are heavily-studied objects in topology and algebraic combina-
torics.
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4. Each facet of ∆(C) corresponds to a maximal codeword of C.

5. The simplicial complex ∆(C) is useful for analyzing a code, but discards important
information. All codes with the same maximal codewords have the same simplicial
complex.

6. Manin [Ma15] provides an historical overview contrasting neural codes with error-
correcting codes and cryptography.

Example:

1. Combinatorial codes can be obtained from neural data by temporally binning the
spikes into patterns of 0s and 1s. The following figure depicts a set of binned spike trains
and the resulting codewords. The set of unique codewords is the code C. The simplicial
complex ∆(C) has facets corresponding to the two maximal codewords, 1110 and 1101.
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19.6.2 THE CODE OF A COVER

An important type of combinatorial neural code is one defined by an arrangement of
open sets in Euclidean space. The open sets correspond to receptive fields.

Definitions:

A stimulus space X is a parametric space of stimuli. The stimuli could be sensory,
such as visual, auditory, or olfactory signals, or higher-level, such as an animal’s position
in space. Typically, a stimulus space is modeled as a subset of Euclidean space, X ⊆ Rd.

A receptive field is a subset Ui ⊆ X of the stimulus space corresponding to a single
neuron i. The stimuli in Ui induce neuron i to fire.

A subset V ⊆ Rn is convex if, given any pair of points x, y ∈ V , the point z = tx+(1−t)y
is contained in V for any t ∈ [0, 1].

Convex receptive fields are convex subsets Ui ⊆ X .

A collection of open sets U = {U1, . . . , Un} is an open cover of their union
⋃n

i=1 Ui.

U is a good cover if every nonempty intersection
⋂

i∈σ Ui is contractible (that is, if it
can be continuously shrunk to a point).
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The nerve of an open cover U is the simplicial complex

N (U) = {σ ⊆ [n] |
⋂

i∈σ

Ui 6= ∅}.

Given an open cover U , the code of the cover is the combinatorial neural code

C(U) = {σ ⊆ [n] |
⋂

i∈σ

Ui \
⋃

j∈[n]\σ

Uj 6= ∅}.

Facts:

1. Neurons in many brain areas, such as sensory cortices and the hippocampus, have
activity patterns that can be characterized by receptive fields.

2. Receptive fields are computed experimentally by correlating neural responses to in-
dependently measured external stimuli.

3. Intersections of convex sets are always convex, and all convex sets are contractible.
Thus, any open cover consisting of convex sets is a good cover.

4. Each codeword in C(U) corresponds to a region that is defined by the intersections
of the open sets in U [CuEtal13b].

5. If U is an open cover, then C(U) ⊆ N (U) and ∆(C(U)) = N (U). The nerve of the
cover can thus be recovered from the code by completing it to a simplicial complex, but
the code contains additional information about U that is not captured by the nerve alone.

6. Nerve lemma: If U is a good cover, then the covered space Y =
⋃n

i=1 Ui is homotopy-
equivalent to N (U). In particular, Y and N (U) have exactly the same homology groups.

7. Helly’s theorem: Consider k convex subsets U1, . . . , Uk ⊆ Rd, for d < k. If the
intersection of every d+1 of these sets is nonempty, then the full intersection

⋂k

i=1 Ui is
also nonempty.

8. In addition to Helly’s theorem and the Nerve lemma, there is a great deal known
about N (U) for collections of convex sets in Rd. In particular, the f -vectors of such
simplicial complexes have been completely characterized by G. Kalai [Ka84], [Ka86].

9. The Nerve lemma has been exploited in the context of two-dimensional place field
codes to show that topological features of an animal’s environment could be inferred
from neural codes representing position in the hippocampus [CuIt08].

Example:

1. The following figure, adapted from [CuEtal15], depicts an open cover consisting of
four convex sets (A) as well as the corresponding code (B). The nerve of the cover (C)
is identical to the simplicial complex ∆(C).
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19.6.3 THE NEURAL RING AND IDEAL

The structure of a combinatorial code can be analyzed using the neural ring and ideal.
These are algebraic objects that keep track of the combinatorics of the code, much as the
Stanley-Reisner ring and ideal encode a simplicial complex [MiSt05]. For more details,
see [CuEtal13b].

Definitions:

F2 is the field with two elements {0, 1}. We can regard a codeword on n neurons as an
element of Fn

2 and a combinatorial neural code as a subset C ⊆ Fn
2 .

F2[x1, . . . , xn] is a polynomial ring with coefficients in F2.

The ideal IC is the set of polynomials that vanish on all codewords in C:

IC = I(C) = {f ∈ F2[x1, . . . , xn] | f(c) = 0 for all c ∈ C}.

The neural ring RC is the quotient ring

RC = F2[x1, . . . , xn]/IC .

A pseudo-monomial is a polynomial f ∈ F2[x1, . . . , xn] that can be written as

f =
∏

i∈σ

xi

∏

j∈τ

(1− xj),

where σ, τ ⊆ [n] satisfy σ ∩ τ = ∅.

For any binary string v ∈ Fn
2 , the indicator function

χv =
∏

{i|vi=1}

xi

∏

{j|vj=0}

(1− xj)

is a pseudo-monomial with the property that χv(v) = 1 and χv(c) = 0 for any c 6= v.

The neural ideal JC is generated by the indicator functions of all non-codewords:

JC = 〈χν | ν ∈ Fn
2 \ C〉.

A pseudo-monomial f ∈ JC is called minimal if there does not exist another pseudo-
monomial g ∈ JC with deg(g) < deg(f) such that f = hg for some h ∈ F2[x1, . . . , xn].

The canonical form of JC is the set of all minimal pseudo-monomials:

CF(JC) = {f ∈ JC | f is a minimal pseudo-monomial}.

Facts:

1. A polynomial f ∈ F2[x1, . . . , xn] can be evaluated on a binary string of length n
(such as a codeword) by simply replacing each indeterminate xi with the 0/1 value of
the ith position in the string. For example, if f = x1x3(1 − x2) ∈ F2[x1, . . . , x4], then
f(1011) = 1 and f(1100) = 0.

2. Irrespective of C, the ideal IC always contains the relations B = 〈x2
1−x1, . . . , x

2
n−xn〉,

due to the binary nature of codewords.

3. The ideals IC and JC carry all the combinatorial information about the code C. They
are closely related: IC = JC + B.

4



4. Fundamental lemma: Let C ⊆ {0, 1}n be a neural code, and let U = {U1, . . . , Un} be
any collection of open sets (not necessarily convex) such that C = C(U). Then, for any
pair of subsets σ, τ ⊆ [n],

∏

i∈σ

xi

∏

j∈τ

(1 − xj) ∈ IC ⇔
⋂

i∈σ

Ui ⊆
⋃

j∈τ

Uj .

5. The canonical form is a special basis, similar to a Grobner basis but tailored to
a different purpose. From the canonical form one can read off minimal relationships
between receptive fields.

6. The canonical form CF(JC) can be computed algorithmically, starting from the code
C. In [CuEtal13b, Section 4.5], one such algorithm is described that uses the primary
decomposition of pseudo-monomial ideals. This algorithm has since been improved
[CuYo15], and software for computing CF(JC) is publicly available at

• https://github.com/nebneuron/neural-ideal

Examples:

1. The code C(U) shown in panel (B) of §19.6.2, Example 1 has ten codewords and six
non-codewords: 0100, 1001, 0101, 1101, 1011, and 1111. The neural ideal is

JC = 〈x2(1− x1)(1− x3)(1 − x4), x1x4(1− x2)(1− x3), x2x4(1− x1)(1 − x3),

x1x2x4(1− x3), x1x3x4(1− x2), x1x2x3x4〉.

The canonical form is

CF(JC) = {x1x4, x2(1− x1)(1− x3), x2x4(1− x3)}.

Using the fundamental lemma, we can read off the following receptive field relationships:
U1 ∩ U4 = ∅, U2 ⊆ U1 ∪ U3, and U2 ∩ U4 ⊆ U3. This is consistent with the original
arrangement of open sets shown in panel (A) of §19.6.2, Example 1.

2. The code C = {111, 011, 001, 000} on three neurons has the canonical form CF(JC) =
{x1(1−x2), x1(1−x3), x2(1−x3)}. This indicates that U1 ⊆ U2, U1 ⊆ U3, and U2 ⊆ U3.

19.6.4 CONVEX CODES

Definitions:

Let C be a combinatorial neural code on n neurons.

If there exists an open cover U = {U1, . . . , Un} such that C = C(U) and each Ui is a
convex open subset of Rd, then C is a convex code.

The minimum embedding dimension d(C) of a convex code is the minimum dimen-
sion such that C admits a convex representation.

A code C = C(U) has a local obstruction if there exists a nonempty intersection
Uσ =

⋂

i∈σ Ui such that Uσ ⊆
⋃

i∈τ Ui, but the nerve of the cover {Ui ∩ Uσ}i∈τ is not

contractible.
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Facts:

1. Convex codes have been observed in several brain areas. Orientation-selective neu-
rons in the visual cortex [BeBaSo95] have convex receptive fields that reflect a neuron’s
preference for a particular angle. Hippocampal place cells [McEtal06], [OKDo71] are
neurons that have spatial receptive fields, called place fields, that are typically convex.

2. If C has a local obstruction, then C is not a convex code.

3. All codes on n ≤ 2 neurons are convex.

4. For n ≤ 3 there are six non-convex codes (up to permutation-equivalence, and
including the all-zeros word). They are {000, 010, 001, 110, 101}, {000, 010, 110, 101},
{000, 110, 101}, {000, 100, 010, 110, 101, 011}, {000, 100, 110, 101, 011}, {000, 110, 101, 011}.

Examples:

1. The code C = C(U) shown in panel (B) of §19.6.2, Example 1 is convex by construc-
tion. Panel (A) shows a two-dimensional convex realization. The minimum embedding
dimension for this code is d(C) = 2.

2. Consider the code Ĉ = C \ {0110}, where C is the code in Example 1. Code Ĉ
differs from C by only one codeword and has the same simplicial complex ∆(Ĉ) = ∆(C).
However, Ĉ is not a convex code. It has a local obstruction because U2 ∩ U3 ⊆ U1 ∪ U4,
yet the nerve of the cover of Uσ = U2 ∩U3 by U1 ∩ Uσ and U4 ∩Uσ is disconnected, and
thus not contractible.

3. The codes C1 = {111, 011, 001} and C2 = {111, 101, 011, 110, 100, 010} are both con-
vex and have the same simplicial complex, but possess different embedding dimensions:
d(C1) = 1, while d(C2) = 2.

Open Questions:

1. How do we determine, in general, whether or not a code is convex?

2. Are there other obstructions to convexity beyond local obstructions?

3. If a code is convex, what is the minimum embedding dimension?

19.6.5 FEEDFORWARD AND HYPERPLANE CODES

Hyperplane codes are an important class of combinatorial codes. These are codes that
arise as an output of a one-layer feedforward neural network, and they are sometimes
referred to as feedforward codes.

Definitions:

A hyperplane code is a convex code, where the underlying open convex cover U =
{Ui}ni=1 can be obtained as Ui = X ∩H+

i , where X ⊆ Rm is an open convex set and the

H+
i = {y ∈ Rm |

m
∑

a=1

wiaya − θi > 0} (1)

are open half-spaces.

A one-layer feedforward neural network is a network with input and output layers
connected as shown in the following figure.
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The network inputs nonnegative numbers ya ≥ 0 and outputs nonnegative numbers
xi ≥ 0 according to the rule

xi(y) = φ

(

m
∑

a=1

wiaya − θi

)

, i ∈ [n]. (2)

Here θi ∈ R are the neuronal thresholds, wia ∈ R are the effective strengths of the
feedforward connections, and the transfer function φ : R → R>0 satisfies the condition
φ(t) = 0 if t ≤ 0 and φ(t) > 0 if t > 0.

A feedforward code is a hyperplane code, where the underlying convex set X can be
chosen to be the positive orthant Rm

+ . This class of codes arises as the output of a one-
layer feedforward neural network (2), where positivity of each row of (2) corresponds to
the halfspace H+

i in (1). Specifically the code of the network (2) is

C(w, θ) =
{

σ ⊆ [n] | ∃y ∈ Rm
+ such that xi(y) > 0 ⇔ i ∈ σ

}

.

Facts:

1. Hyperplane codes (and thus feedforward codes) are convex.

2. Not every convex code is a hyperplane code. Perhaps the smallest example is the code
C = {∅, 2, 3, 4, 12, 13, 14, 123, 124}, which can be easily seen to possess a 2-dimensional
convex realization. However, it can be proved to be not realizable as a hyperplane code.

3. Theorem [GiIt14]: For every simplicial complex K with n vertices, there exists a
feedforward network (w, θ) described by (2) so that K is the simplicial complex of the
appropriate feedforward code K = ∆(C (w, θ)).

Example:

1. The following figure, adapted from [GiIt14], displays a feedforward code for a network
with two neurons in the input layer, corresponding to the axes y1 and y2, and three
neurons in the output layer, corresponding to the (oriented) hyperplanes H1, H2, and
H3. For each output neuron xi, the inputs y = (y1, y2) that yield xi(y) > 0 lie in the
positive halfspace H+

i . The resulting code C consists of combinations of output neurons
that can be simultaneously activated by at least one choice of nonnegative inputs.
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2

3

C = {∅, {1}, {2}, {3}, {1, 2}}

= {000, 100, 010, 001, 110}
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