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Abstract Neural codes are binary codes that are used for information processing
and representation in the brain. In previous work, we have shown how an algebraic
structure, called the neural ring, can be used to efficiently encode geometric and
combinatorial properties of a neural code (Curto et al., Bull Math Biol 75(9), 2013).
In this work, we consider maps between neural codes and the associated homomor-
phisms of their neural rings. In order to ensure that these maps are meaningful and
preserve relevant structure, we find that we need additional constraints on the ring
homomorphisms. This motivates us to define neural ring homomorphisms. Our main
results characterize all code maps corresponding to neural ring homomorphisms as
compositions of five elementary code maps. As an application, we find that neural
ring homomorphisms behave nicely with respect to convexity. In particular, if C
and D are convex codes, the existence of a surjective code map C → D with
a corresponding neural ring homomorphism implies that the minimal embedding
dimensions satisfy d(D) ≤ d(C).

1 Introduction

A major challenge of mathematical neuroscience is to determine how the brain
processes and stores information. By recording the spiking from a population of
neurons, we obtain insights into their coding properties. A neural code on n neurons
is a subset C ⊂ {0, 1}n, with each binary vector in C representing an on-off pattern of
neural activity. This type of neural code is referred to in the neuroscience literature
as a combinatorial neural code [15, 16] as it contains only the combinatorial
information of which neurons fire together, ignoring precise spike times and firing
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Fig. 1 An arrangement of five receptive fields U1, . . . , U5 in a stimulus space. Here,
Ui represents the receptive field of neuron i. The full code for the arrangement is:
C = {00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100, 10010, 01100, 00110, 10110}

rates. These codes can be analyzed to determine important features of the neural
data, using tools from coding theory [7] and topology [3, 6].

A particularly interesting kind of neural code arises when neurons have receptive
fields. These neurons are selective to a particular type of stimulus; for example, place
cells respond to the animal’s spatial location [14], and orientation-tuned neurons in
visual cortex respond to the orientation of an object in the visual field [11]. The
neuron’s receptive field is the specific subset of the stimulus space to which that
neuron is particularly sensitive, and within which the neuron exhibits a high firing
rate. If all receptive fields for a set of neurons are known, one can infer the expected
neural code by considering the overlap regions formed by the receptive fields.
Figure 1 shows an arrangement of receptive fields, and gives the corresponding
neural code.

An arrangement of receptive fields whose regions correspond precisely to the
neural code C is called a realization of C. If the receptive fields can be chosen to
be convex, then C is a convex neural code. Many neural codes are observed to be
convex [3, 17]. In this case, we can leverage results from the extensive literature
on arrangements of convex sets, such as Helly’s theorem [9], to give bounds on the
dimension of the space of stimuli (see [8] for some examples). Note that the code in
Fig. 1 is convex, even though the realization depicted there is not; we leave it as an
exercise for the reader to draw a convex realization of this code.

In previous work [8], we introduced the neural ideal and the corresponding neural
ring, algebraic objects associated to a neural code that capture its combinatorial
properties. Thus far, work involving the neural ring has been primarily concerned
with using the algebraic framework to extract structural information about the code
[5, 8] and to determine which codes have convex realizations [4]. However, a neural
code C is not an isolated object, but rather a member of a family of codes. We
define a code map from a code C to another code D to be any well-defined function
q : C → D. A code map may preserve important structural properties of a
code, or it may completely ignore them and just send codewords to codewords
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in an arbitrary manner. We are interested in a set of ‘nice’ code maps that reflect
meaningful relationships between the corresponding neural codes. Our primary
motivating examples of ‘nice’ maps are those which leave the structure of a code
essentially intact:

1. Permutation: If C and D are identical codes up to a re-ordering of the neurons,
then the permutation map q : C → D is ‘nice,’ as it perfectly preserves the
combinatorial structure.

2. Adding or removing trivial neurons: A code C can be trivially changed by
appending an extra neuron that has uniform behavior in all codewords – i.e.,
always silent or always firing. Similarly, a code that has a neuron which is always
“on” or always “off” is structurally equivalent to the code obtained by removing
this trivial neuron, and the corresponding maps are ‘nice.’

One way to obtain a code with trivial neurons is via localization. For
example, consider the code in Fig. 1, restricted to the codewords whose
regions are all contained inside U1. This code has five codewords: C′ =
{10000, 11000, 10100, 10010, 10110}. There is a natural map q : C′ →
D that drops neurons 1 and 5, which are both trivial, to obtain D =
{000, 100, 010, 001, 011}, which is structurally equivalent to C′. Not all code
maps respect the structure of the corresponding codes, however. For example, there
is no guarantee that an arbitrary code map C′ → D will reflect the fact that these
codes are structurally equivalent.

In this article, we consider how maps between neural codes relate to neural rings,
as first defined in [8]. Our main questions are, simply:

Questions What types of maps between neural rings should be considered ‘nice’?
How should we define neural ring homomorphisms? What other code maps
correspond to nice maps between the associated neural rings?

These questions are analogous to studying the relationship between maps on
algebraic varieties and their associated rings [1]. However, as we will see in the next
section, the standard notions of ring homomorphism and isomorphism are much
too weak to capture any meaningful structure in the related codes. Recent work
[12] considered which ring homomorphisms preserve neural ideals as a set, and
described corresponding transformations to codes through that lens. In this article,
we will define a special class of maps, called neural ring homomorphisms, that
capture the structure of the nice code maps described above, and also guide us
to discover additional code maps which should be considered ‘nice.’ Our main
result, Theorem 3.4, characterizes all code maps that correspond to neural ring
homomorphisms and isomorphisms as compositions of five elementary code maps
(including the two ‘nice’ types above). As an application, Theorem 4.3 shows that
any surjective code map with a corresponding neural ring homomorphism preserves
convexity and can only lower the minimal embedding dimension.

The organization of this paper is as follows. In Sect. 2, we review the neural ring
of a code and describe the relevant pullback map, which gives a correspondence
between code maps and ring homomorphisms. This allows us to see why the usual
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ring homomorphisms between neural rings are insufficiently restrictive. In Sect. 3
we define neural ring homomorphisms, a special class of maps that preserve code
structure, and state Theorem 3.4. In Sect. 3.1 we take a closer look at the new
elementary code maps that emerged in Theorem 3.4, and we prove the theorem.
Finally, in Sect. 4, we state and prove Theorem 4.3, showing that surjective code
maps corresponding to neural ring homomorphisms are particularly well-behaved
with respect to convexity.

2 Neural Rings and the Pullback Map

First, we briefly review the definition of a neural code and its associated neural ring,
as previously defined in [8]. We then present the pullback map, which naturally
relates maps between codes to homomorphisms of neural rings.

Definition 2.1 A neural code on n neurons is a set of binary firing patterns of length
n. Given neural codes C ⊂ {0, 1}n and D ⊂ {0, 1}m, on n and m neurons, a code
map is any function q : C → D.

For any neural code C ⊂ {0, 1}n, we define the associated ideal IC ⊂
F2[x1, . . . , xn] as follows:

IC
def= {f ∈ F2[x1, . . . , xn] | f (c) = 0 for all c ∈ C}.

The neural ring RC is then defined to be RC = F2[x1, . . . , xn]/IC.

Note that the neural ring RC is precisely the ring of functions C → {0, 1},
denoted F

C
2 . Since the ideal IC consists of polynomials that vanish on C, we can

make use of the ideal-variety correspondence to obtain an immediate relationship
between code maps and ring homomorphisms by using the pullback map. Given a
code map q : C → D, each f ∈ RD is a function f : D → {0, 1}, and therefore
we may “pull back” f by q to a function f ◦ q : C → {0, 1}, which is an element of
RC. Hence, for any q : C → D, we may define the pullback map q∗ : RD → RC,
where q∗(f ) = f ◦ q, as illustrated below:

C

q∗f=f ◦q

q D
f

{0, 1}

It is easy to check that for any code map q : C → D, the pullback q∗ : RD → RC
is a ring homomorphism. In fact, the pullback provides a bijection between code
maps and ring homomorphisms, as the following proposition states.
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Proposition 2.2 There is a 1–1 correspondence between code maps q : C → D
and ring homomorphisms φ : RD → RC, given by the pullback map. That is, given
a code map q : C → D, its pullback q∗ : RD → RC is a ring homomorphism;
conversely, given a ring homomorphism φ : RD → RC, there is a unique code map
qφ : C → D such that q∗

φ = φ.

Proposition 2.2 is a special case of [1, Proposition 8, p. 234]. Note that both this
proposition and the next can be easily understood from a category-theoretic perspec-
tive. Specifically, the pullback map construction provides a natural contravariant
functor from the category of binary codes (with code maps as morphisms) to the
category of rings and ring homomorphisms. This functor sends each code C to the
corresponding neural ring RC, and each code map q to the corresponding pullback
q∗. However, to illustrate precisely how all the objects interact, and for the benefit of
readers unfamiliar with category theory language, we include our own elementary
proof of this proposition in Sect. 2.1. In particular, we show how to go backwards
from ring homomorphisms to code maps, so that the reader can see explicitly how
to construct qφ from φ.

Unfortunately, Proposition 2.2 makes it clear that ring homomorphisms RD →
RC need not preserve the structure of the associated codes, as any code map has
a corresponding ring homomorphism. The next proposition tells us that even ring
isomorphisms are quite weak: any pair of codes with the same number of codewords
admits an isomorphism between the corresponding neural rings.

Proposition 2.3 A ring homomorphism φ : RD → RC is an isomorphism if and
only if the corresponding code map qφ : C → D is a bijection.

Propositions 2.2 and 2.3 highlight the main difficulty with using ring homomor-
phism and isomorphism alone: the neural rings are rings of functions from C to
{0, 1}, and the abstract structure of such a ring depends solely on the number of
codewords, |C|. Considering such rings abstractly, independent of their presentation,
reflects no additional structure—not even the code length (the number of neurons, n)
matters. In particular, we cannot track the behavior of the variables xi that represent
individual neurons. This raises the question: what algebraic constraints can be put on
homomorphisms between neural rings in order to capture a meaningfully restricted
class of code maps?

2.1 The Pullback Correspondence: A Closer Look

Before moving on to defining a more restricted class of homomorphisms, we
introduce some notation to take a closer look at neural rings, and how the
correspondence between code maps and homomorphisms occurs. Using this, we
provide concrete and elementary proofs of Propositions 2.2 and 2.3.

Elements of neural rings may be denoted in different ways. First, they can be
written as polynomials, where it is understood that the polynomial is a representative
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of its equivalence class mod IC. Alternatively, using the vector space structure, an
element of RC can be written as a function C → {0, 1} defined completely by the
codewords that support it. We will make use of the latter idea frequently, so it is
helpful to identify a canonical basis of characteristic functions {ρc | c ∈ C}, where

ρc(v) =
{

1 if v = c,

0 otherwise.

In polynomial notation,

ρc =
∏
ci=1

xi

∏
cj =0

(1 − xj ),

where ci represents the ith component of codeword c. The characteristic functions
ρc form a basis for RC as an F2-vector space, and they have several useful
properties:

• Each element f of RC can be represented as the formal sum of basis elements
for the codewords in its support: f =

∑
{c∈C|f (c)=1}

ρc.

• In particular, we can write xi =
∑

{c∈C | ci=1}
ρc. So, if ci = cj for all c ∈ C, then

xi = xj . Likewise, if ci = 1 for all c ∈ C, we have xi = 1.
• The product of two basis elements is 0 unless they are identical:

ρcρd =
{

ρc if c = d,

0 otherwise
.

• If 1C is the identity of RC, then 1C =
∑
c∈C

ρc.

Once we have a homomorphism φ : RD → RC, we necessarily have a map
which sends basis elements of RD to sums of basis elements in RC. We will now
show how this illustrates the corresponding code map. First, a technical lemma.

Lemma 2.4 For any ring homomorphism φ : RD → RC, and any element c ∈ C,
there is a unique d ∈ D such that φ(ρd)(c) = 1.

Proof To prove existence, note that
∑

c∈C ρc = 1C = φ(1D) = φ(
∑

d∈D ρd) =∑
d∈D φ(ρd). For each c ∈ C, 1 = ρc(c) = (∑

c′∈C ρc′
)
(c) = (∑

d∈D φ(ρd)
)
(c),

and thus φ(ρd)(c) = 1 for at least one d ∈ D. To prove uniqueness, suppose
there exist distinct d, d ′ ∈ D such that φ(ρd)(c) = φ(ρd ′)(c) = 1. Then as φ is
a ring homomorphism, we would have 1 = (φ(ρd)φ(ρd ′))(c) = φ(ρdρd ′)(c) =
φ(0)(c) = 0, but this is a contradiction. Thus such a d must be unique. 	


This result allows us to describe the unique code map corresponding to any ring
homomorphism.
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Definition 2.5 Given a ring homomorphism φ : RD → RC, we define the
associated code map qφ : C → D as follows:

qφ(c) = dc

where dc is the unique element of D such that φ(ρdc )(c) = 1, guaranteed by
Lemma 2.4.

Using this definition, we are able to prove Proposition 2.2.

Proof (Proposition 2.2) It is easy to check that the pullback q∗ is a ring homomor-
phism; we now prove that any homomorphism can be obtained as the pullback of
a code map. Given a ring homomorphism φ : RD → RC, define qφ as above. We
must show that the q∗

φ = φ, and moreover that qφ is the only code map with this
property.

The fact that q∗
φ = φ holds essentially by construction: let f ∈ RD, so f =∑

f (d)=1 ρd . Then, for any c ∈ C,

q∗
φ(f )(c) = f (qφ(c)) =

∑
f (d)=1

ρd(qφ(c)) =
∑

f (d)=1

ρd(dc) =
{

1 if f (dc) = 1
0 if f (dc) = 0

whereas, remembering from above that there is exactly one d ∈ D such that
φ(ρd)(c) = 1 and that this d may or may not be in the support of f , we have

φ(f )(c) =
∑

f (d)=1

φ(ρd)(c) =
{

1 if dc ∈ f −1(1)

0 if dc /∈ f −1(1)
=

{
1 if f (dc) = 1
0 if f (dc) = 0

.

Thus, φ = q∗
φ .

Finally, to see that qφ is the only code map with this property, suppose we have a
different map q �= qφ . Then there is some c ∈ C with q(c) �= qφ(c); let dc = qφ(c),
so q(c) �= dc. Then φ(ρdc )(c) = 1 by definition, but q∗(ρdc )(c) = ρdc (q(c)) = 0 as
q(c) �= dc. So q∗ does not agree with φ and hence φ is not the pullback of q, so qφ

is the unique code map with pullback φ. 	

The following example illustrates the connection between a homomorphism φ

and the corresponding code map qφ .

Example 2.6 Let C = {110, 111, 010, 001} and D = {00, 10, 11}. Let φ : RD →
RC be defined by φ(ρ11) = ρ110+ρ111+ρ010, φ(ρ00) = ρ001, and φ(ρ10) = 0. Then
the corresponding code map qφ will have qφ(110) = qφ(111) = qφ(010) = 11, and
qφ(001) = 00. Note that there is no element c ∈ C with qφ(c) = 10 so qφ is not
surjective.

Finally, we provide a proof of Proposition 2.3.
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Proof (Proposition 2.3) Note that RC ∼= F
|C|
2 and RD ∼= F

|D|
2 , and F

|C|
2

∼= F
|D|
2 if

and only if |C| = |D|. Suppose φ is an isomorphism; then we must have |C| = |D|.
If qφ is not injective, then there is some d ∈ D such that φ(ρd)(c) = 0 for all
c ∈ C. But then φ(ρd) = 0, which is a contradiction since φ is an isomorphism
so φ−1(0) = {0}. Thus qφ is injective, and since |C| = |D|, this means qφ is a
bijection.

On the other hand, suppose qφ : C → D is a bijection. Then |C| = |D|, so
RC ∼= RD, and as both are finite, |RC| = |RD|. Consider an arbitrary element
f ∈ RC. For each c ∈ f −1(1), there is a unique d ∈ D so φ(ρd) = c; furthermore
as qφ is a bijection, all these d are distinct. Then

φ
( ∑

d=qφ(c),

c∈f −1(1)

ρd

) =
∑

d=qφ(c)

c∈f −1(1)

φ(ρd) =
∑

c∈f −1(1)

ρc = f.

Hence φ is surjective, and since |RC| = |RD|, φ is also bijective and hence an
isomorphism. 	


3 Neural Ring Homomorphisms

In order to define a restricted class of ring homomorphisms that preserve certain
structural similarities of codes, we consider how our motivating maps (permutation
and adding or removing trivial neurons) preserve structure. In each case, note that
the code maps act by preserving the activity of each neuron: we do not combine
the activity of neurons to make new ones, or create new neurons that differ in a
nontrivial way from those we already have. Following this idea, we restrict to a class
of maps that respect the elements of the neural ring corresponding to individual
neurons: the variables xi . Here we use the standard notation [n] to denote the set
{1, . . . , n}.
Definition 3.1 Let C ⊂ {0, 1}n and D ⊂ {0, 1}m be neural codes, and let RC =
F2[y1, . . . , yn]/IC and RD = F2[x1, . . . , xm]/ID be the corresponding neural rings.
A ring homomorphism φ : RD → RC is a neural ring homomorphism if φ(xj ) ∈
{yi | i ∈ [n]} ∪ {0, 1} for all j ∈ [m]. We say that a neural ring homomorphism φ is
a neural ring isomorphism if it is a ring isomorphism and its inverse is also a neural
ring homomorphism.

It is important to remember that when we refer to the ‘variables’ of RD,
we actually mean the equivalence class of the variables under the quotient ring
structure. Thus, it is possible in some cases to have xi = xj , or xi = 0, depending
on whether these variables give the same function on all codewords. We now provide
some examples to illustrate neural ring homomorphisms.
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Example 3.2 Here we consider three different code maps: one that corresponds to a
neural ring isomorphism, one that corresponds to a neural ring homomorphism but
not to a neural ring isomorphism, and one that does not correspond to a neural ring
homomorphism at all.

1. Let D = {0000, 1000, 0001, 1001, 0010, 1010, 0011}, and let
C = {0000, 0001, 0010, 0011, 0100, 0101, 0110}.

Define φ : RD → RC as follows:

φ(ρ0000) = ρ0000, φ(ρ1000) = ρ0001

φ(ρ0001) = ρ0010, φ(ρ1001) = ρ0011

φ(ρ0010) = ρ0100, φ(ρ1010) = ρ0101

φ(ρ0011) = ρ0110,

Note that φ(x1) = φ(ρ1000 + ρ1010) = ρ0001 + ρ0101 = y4, and φ(x2) =
φ(0) = 0 = y1. By similar calculations, we have φ(x3) = y2, and φ(x4) = y3.
Thus, φ is a neural ring homomorphism; in fact, since φ is a ring isomorphism
and its inverse is a neural ring homomorphism sending φ−1(y1) = 0 = x2,
φ−1(y2) = x3, φ−1(y3) = x4, and φ−1(y4) = x1, φ is a neural ring isomorphism.

2. Let D = {000, 110} and C = {00, 01, 10}. Define φ : RD → RC by φ(ρ000) =
ρ00 + ρ10 ad φ(ρ110) = ρ01. In RD, x1 = x2 = ρ110, and x3 = 0. In RC, we
have y1 = ρ10 and y2 = ρ01. Under this map, we find φ(x1) = φ(x2) = y1 and
φ(x3) = 0, so φ is a neural ring homomorphism. However, it is not a neural ring
isomorphism, as it is not a ring isomorphism.

3. Let D = {00, 10} and C = {00, 10, 01}. Define the ring homomorphism φ :
RD → RC as follows: φ(ρ00) = ρ00, φ(ρ10) = ρ10 + ρ01. In RD, x1 = ρ10.
However, φ(x1) = ρ10 + ρ01, which is not equal to either y1 = ρ10, y2 = ρ01,
1 = ρ00 + ρ10 + ρ01, or 0. Thus, φ is not a neural ring homomorphism.

It is straightforward to see that the composition of neural ring homomorphisms
is again a neural ring homomorphism.

Lemma 3.3 If φ : RD → RC and ψ : RE → RD are neural ring homomorphisms,
then their composition φ ◦ ψ is also a neural ring homomorphism. If φ and ψ are
both neural ring isomorphisms, then their composition φ ◦ ψ is also a neural ring
isomorphism.

As we have seen in Example 3.2, both permutations and appending a trivial
neuron correspond to neural ring isomorphisms. The following theorem introduces
three other types of elementary code maps, which also yield neural ring homomor-
phisms. All of these code maps are meaningful in a neural context, and preserve
the behavior of individual neurons. And, as seen in Theorem 3.4, it turns out that
all neural ring homomorphisms correspond to code maps that are compositions of
these five elementary types of maps. The proof is given in Sect. 3.1.
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Theorem 3.4 A map φ : RD → RC is a neural ring homomorphism if and only if
qφ is a composition of the following elementary code maps:

1. Permutation
2. Adding a trivial neuron (or deleting a trivial neuron)
3. Duplication of a neuron (or deleting a neuron that is a duplicate of another)
4. Neuron projection (deleting a not necessarily trivial neuron)
5. Inclusion (of one code into another)

Moreover, φ is a neural ring isomorphism if and only if qφ is a composition of maps
(1)–(3).

The ability to decompose any ‘nice’ code map into a composition of these five
elementary maps has immediate consequences for answering questions about neural
codes. For example, one of the questions that motivated the definition of the neural
ring and neural ideal was that of determining which neural codes are convex. In
Sect. 4, we look at how each of these maps affect convexity.

The following example provides a sense of what these different operations mean.

Example 3.5 In Fig. 2 we show a code C, and the resulting codes C1, . . . ,C5 after
applying the following elementary code maps:

1. the cyclic permutation (1234) (C1),
2. adding a trivial always-on neuron (C2),
3. duplication of neuron 4 (C3),
4. deleting neuron 4 (projecting onto neurons 1–3) (C4)
5. an inclusion map into a larger code (C5).

The effects of these code maps on a realization of C are shown on in Fig. 2. The
succeeding columns in the table below give the image of C under each of the five
code maps.

3.1 Proof of Theorem 3.4

To prove Theorem 3.4, we will first focus on the structure of neural ring homo-
morphisms. As neural ring homomorphisms strictly control the possible images of
variables, they can be described succinctly by an index ‘key’ vector that captures the
information necessary to determine the map. Since the index for the first variable
will use the symbol ‘1’, we will where necessary denote the multiplicative identity
1 of the ring with the symbol u to distinguish the two. Throughout, we will use the
notation ci to indicate the ith component of a codeword c.
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Fig. 2 A code C and its image under five elementary code maps. (Top) The effect of each
codeword on a realization of C. (Bottom) A table showing how each codeword of C is transformed
by each map. In each case, the code map sends a codeword c ∈ C to the codeword in its row

Definition 3.6 Let φ : RD → RC be a neural ring homomorphism, where C and
D are codes on n and m neurons, respectively. The key vector of φ is the vector
V ∈ {1, . . . , n, 0, u}m such that

Vj =
⎧⎨
⎩

i if φ(xj ) = yi

0 if φ(xj ) = 0
u if φ(xj ) = 1

.

This key vector completely describes a neural ring homomorphism, since once
the image of each variable is determined the rest of the homomorphism is given by
the usual properties of homomorphism. In cases where we have yi = yk for some
i, k, then only one representative of the equivalence class need appear in V .
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Because of the close correspondence of code maps and ring homomorphisms,
the key vector also completely determines the associated code map. The following
lemma gives the explicit relationship.

Lemma 3.7 Let φ : RD → RC be a neural ring homomorphism with key vector V .
Then the corresponding code map qφ : C → D is given by qφ(c) = d, where

dj =
⎧⎨
⎩

ci if Vj = i

0 if Vj = 0
1 if Vj = u

.

Furthermore, any code map that aligns with a key vector must be associated to a
neural ring homomorphism.

Lemma 3.8 Let C and D be codes on n and m neurons, respectively. Suppose q :
C → D is a code map and V ∈ {1, . . . , n, 0, u}m such that q is described by V ;

that is, for all c ∈ C, q(c) = d where dj =
⎧⎨
⎩

ci if Vj = i

0 if Vj = 0
1 if Vj = u

. Then the associated

ring homomorphism φq is a neural ring homomorphism with key vector V .

Proof Let q be as described above, and φq the associated ring homomorphism. We

will show that for j ∈ [m], we have φq(xj ) =
⎧⎨
⎩

xi if Vj = i

0 if Vj = 0
1 if Vj = 1

and thus that φq is

a neural ring homomorphism with key vector V . We will examine the three options
for Vj separately.

First, suppose Vj = i ∈ [n]. Then for all c ∈ C, we have q(c)j = ci , and
thus that xj (q(c)) = ci . Hence, xj ◦ q = yi , since both functions act the same on
all codewords c ∈ C. But by definition of the pullback map, φ(xj ) = xj ◦ q, so
φ(xj ) = yi . Next, suppose Vj = 0. Then for all c ∈ C we have q(c)j = 0 and
thus that xj (q(c)) = 0. Hence, xj ◦ q = 0, since both functions act the same on
all codewords c ∈ C. But by definition of the pullback map, φ(xj ) = xj ◦ q, so
φ(xj ) = 0 in this case.

Finally, suppose Vj = u. Then for all c ∈ C we have q(c)j = 1 and thus that
xj (q(c)) = 1. Hence, xj ◦q = 1, since both functions act the same on all codewords
c ∈ C. But by definition of the pullback map, φ(xj ) = xj ◦ q, so φ(xj ) = 1 in this
case. 	

Remark 3.9 It is important to note here that the key vector for a particular code
map may not be unique. In Example 3.2 (1), we saw an example of a permutation
code map that could be described by key vector (4, 1, 2, 3). However, as φ(x2) =
y1 = 0, we could replace this key vector with (4, 0, 2, 3) and describe the same
homomorphism. In cases like these, either choice is valid. However, this does not
mean that the corresponding homomorphism is not unique.
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Now that we have shown that neural ring homomorphisms (and their correspond-
ing code maps) are precisely those determined by key vectors, we need only show
the following:

• All five code maps listed have key vectors.
• Any code map with a key vector can be written as a composition of these five

maps.
• The first three code maps correspond precisely to neural ring isomorphisms.

To see that all five elementary code maps in Theorem 3.4 have key vectors, we
simply exhibit the key vector for each. In the process, we will show that the first
three maps correspond to neural ring isomorphisms. To describe these code maps,
we will consider an arbitrary word c ∈ C, written as c = c1c2 · · · cn, and describe
the image q(c) ∈ D. Throughout, C is a code on n neurons and D is a code on m

neurons.

1. Permutation maps: If the code map q : C → D is a permutation map, then
n = m, q(C) = D, and each codeword is permuted by the same permutation σ .
That is, for each c ∈ C, we know q(c) = cσ(1)cσ(2) · · · cσ(n). In this case, the key
vector is given by Vj = σ(j). As permutation yields a bijection on codewords,
and the inverse permutation also has a key vector, permutation maps correspond
to neural ring isomorphisms.

2. Adding a trivial neuron to the end of each codeword: in this case, m = n + 1 and
q(C) = D. Consider first the case of adding a trivial neuron that is never firing to
the end of each codeword, so that q : C → D is described by q(c) = c1c2 · · · cn0,
and q(C) = D. The key vector is given by Vj = j for j ∈ [n] and Vn+1 = 0.
Similarly, if we add a neuron that is always firing, so q(c) = c1 · · · cn1, then
Vj = j for j ∈ [n] and Vn+1 = u. Such a map will be a bijection; moreover, the
reverse map (where we delete the trivial neuron at the end of each word) also has
a key vector: Wi = i for all i ∈ [n]. Thus, this map (and its inverse) correspond
to neural ring isomorphisms.

3. Adding a duplicate neuron to the end of each codeword: in this case, m = n + 1
and q(C) = D. If the new neuron n + 1 duplicates neuron i, then the code map
is given by q(c) = c1 · · · cnci , and the key vector is given by Vj = j for j ∈ [n]
and Vn+1 = i. Such a map will be a bijection on codewords, and moreover, the
inverse code map corresponds to the key vector where Wi = i for all i ∈ [n], and
so its inverse corresponds to a neural ring homomorphism. Thus, this map and
its inverse correspond to neural ring isomorphisms.

4. Projection (deleting the last neuron): in this case, m = n− 1 and q(C) = D. The
code map is given by q(c) = c1 · · · cn−1 and we have the key vector Vj = j for
j ∈ [n − 1].
This map corresponds to a neural ring isomorphism precisely when the deleted
neuron is either trivial, or a duplicate of another neuron. If neither of these hold,
then there are two possibilities: either the code map is not a bijection, in which
case the corresponding ring homomorphism is not an isomorphism, or the code
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map is a bijection, but the inverse will not be a neural ring homomorphism, as
φ−1(yn+1) /∈ {x1, . . . , xm, 0, 1}.

5. Inclusion: in this case, m = n, and we have q(c) = c for all c ∈ C. However, we
do not demand q(C) = D. Since in this case each codeword maps to itself, we
can use the key vector Vj = j for j ∈ [n].
Finally, we prove the main substance of Theorem 3.4, which is that any code map

corresponding to a neural ring homomorphism can be written as a composition of
the five listed maps, and furthermore that any isomorphism requires only the first
three.

Proof (Theorem 3.4) Let C and D be codes on n and m neurons, respectively, and
let φ : RD → RC be a neural ring homomorphism with corresponding code map q.
Our overall steps will be as follows:

1. Append the image q(c) to the end of each codeword c using a series of maps that
duplicate neurons or add trivial neurons, as necessary.

2. Use a permutation map to move the image codeword q(c) to the beginning, and
the original codeword c to the end.

3. Use a series of projection maps to delete the codeword c from the end, resulting
in only q(c).

4. Use an inclusion map to include q(C) into D if q(C) � D.

First we define some intermediate codes: let C0 = C. For j = 1, . . . , m, let

Cj = {(c1, . . . , cn, d1, . . . , dj ) | c ∈ C, d = q(c)} ⊂ {0, 1}n+j .

For i = 1, . . . , n, let

Cm+i = {(d1, . . . , dm, c1, . . . , cn−i+1) | c ∈ C, d = q(c)} ⊂ {0, 1}m+n−i+1.

Finally, define Cm+n+1 = q(C) ⊂ D.
Now, for j = 1, . . . , m, let the code map qj : Cj−1 → Cj be defined for v =

(c1, . . . , cn, d1, . . . , dj−1) ∈ Cj−1 by qj (v) = (c1, . . . , cn, d1, . . . , dj ) ∈ Cj . Since
φ is a neural ring homomorphism, the associated code map q has a corresponding
key vector V ; note that qj is described by the key vector Wj = (1, . . . , n + j −
1, Vj ), so qj is either repeating a neuron, or adding a trivial neuron, depending on
whether Vj = i, or one of u, 0.

Next, take the permutation map given by σ = (n + 1, . . . , n + m, 1, . . . , n),
so all the newly added neurons are at the beginning and all the original neurons
are at the end. That is, define qσ : Cm → Cm+1 so if v = (v1, . . . , vn+m), then
qσ (v) = (vn+1, . . . , vn+m, v1, . . . , vn).

We then delete the neurons m + 1 through n + m one by one in n code
maps. That is, for i = 1, . . . , n define qm+i : Cm+i → Cm+i+1 by qm+i (v) =
(v1, . . . , vm+n−i ).

Lastly, if q(C) � D, then add one last inclusion code map qa : q(C) ↪→ D to
add the remaining codewords of D.
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Thus, given c = (c1, . . . , cn) with q(c) = d = (d1, . . . , dm), the first m steps
give us qm ◦ · · · ◦ q1(c) = (c1, . . . , cn, d1, . . . , dm) = x. The permutation then
gives us qσ (x) = (d1, . . . , dm, c1, . . . , cn) = y, and then we compose qm+n ◦ · · · ◦
qm+1(y) = (d1, . . . , dn) = d = q(c). Finally, if q(C) � D, we do our inclusion
map, but as qa(d) = d, the overall composition is a map C → D taking c to
qφ(c) = d as desired. At each step, the map we use is from our approved list.

Finally, to show that code maps corresponding to neural ring isomorphisms only
use maps (1)–(3), note that in the case that φ is a neural ring isomorphism, it is in
particular an isomorphism, so the corresponding code map qφ is a bijection and thus
qφ(C) = D; no inclusion map is necessary in the last step of the process described
above. We have also noted above that projection maps correspond to neural ring
isomorphisms only when the deleted neuron is either trivial or a duplicate of another.
Thus, only maps (1)–(3) are necessary to describe all neural ring isomorphisms. 	


4 Neural Ring Homomorphisms and Convexity

One of the questions which has motivated a deeper understanding of the neural ring
is that of determining which neural codes are convex.

Definition 4.1 A neural code C on n neurons is convex in dimension d if there is
a collection U = {U1, . . . , Un} of convex open sets in R

d such that C = {c ∈
{0, 1}n |

(⋂
ci=1 Ui

)
\
(⋃

cj =0 Uj

)
�= ∅}. If additionally no such collection exists

in R
d−1, then d is known as the minimal embedding dimension of the code, denoted

d(C). If there is no dimension d where C is convex, then C is a non-convex code; in
this case we use the convention d(C) = ∞.

Example 4.2 In Example 3.5 (illustrated in Fig. 2), we showed the results of
applying five elementary code maps to the code C. In that case, code C and its
images C1−C3 are convex codes of dimension 2 and code C4 is convex of dimension
1. On the other hand, C5 cannot be realized with convex sets in any dimension, as
U1 ∩ U2 and U1 ∩ U3 necessarily form a disconnection of U1.

In general, determining whether or not a code has a convex realization is a
difficult question. Some partial results exist that give guarantees of convexity
or of non-convexity, or that bound the embedding dimension (see for example
[2, 4, 5, 8, 10, 13]). One way to extend such results is to show that once a code is
known to have certain properties related to convexity, we can generate other codes
from it via code maps that would preserve these properties. The following theorem
shows that if a surjective code map is ‘nice’ (i.e., has a corresponding neural ring
homomorphism), then it preserves convexity and the embedding dimension can only
decrease.

Theorem 4.3 Let C be a code containing the all-zeros codeword and q : C → D
a surjective code map corresponding to a neural ring homomorphism. Then if C is
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convex, D is also convex with d(D) ≤ d(C); it follows that if D is not convex, then
C is not convex.

Corollary 4.4 Let C be a code containing the all zeros codeword, and q : C → D
a code map corresponding to a neural ring isomorphism. Then C and D are either
both convex, with d(C) = d(D), or both not convex.

The proof of this theorem and its corollary relies on Theorem 3.4, and in
particular uses the decomposition of these code maps to reduce the convexity
question to code maps of just the five elementary types. As Theorem 4.3 addresses
all neural ring homomorphisms that correspond to surjective code maps, it covers
any such maps that are composed of permutation, duplication, deletion, or adding
on trivial neurons.

Note that the theorem would not necessarily hold for arbitrary surjective code
maps that do not correspond to a neural ring homomorphism. It would be a simple
matter to create a bijection between a non-convex and a convex code with the same
number of codewords, which would correspond to a ring isomorphism, but would
not preserve convexity.

The only non-surjective elementary code map corresponding to a neural ring
homomorphism is inclusion, and this theorem cannot generally be extended to
inclusion maps. Because the inclusion map can be used to include codes into
arbitrary larger ones of the same length, it is possible to change convexity and
dimension in arbitrary ways. The following examples show how to include convex
codes in non-convex codes and vice versa, as well as ways to change the realization
dimension by an arbitrary amount.

Example 4.5 Note that in Examples (1) and (3) below, we rely on results and
constructions detailed in other work, especially [4].

1. Non-convex codes can be included into convex codes. If C is any non-convex
code, then we can include C into the larger code �(C), the simplicial complex of
C, which is necessarily convex. For more details, see for example [4, 10].

2. Convex codes (of arbitrary dimension) can also be included into non-convex
codes. Let C1 be a convex code on n neurons, and C2 a non-convex code on
m neurons. Define the code C to be the code C1 with m always-zero neurons
appended to the end of each codeword; note that C is still convex, by the
arguments above. Similarly, define the code C′ to be the code C2 with n always-
zero neurons appended to the beginning of each codeword. The code C′ is still
not convex, again by the previous theorem. Define the code D to be the code
C ∪ C′, and note that as the first n neurons never interact with the last m, this
code is not convex, but we can include C into D.

3. Even when we include one convex code into another convex code, examples
exist that change the dimension arbitrarily far in either direction. Let n > 2 be
arbitrarily large. Then, C = {0, 1}n\{11 . . . 1} (the code on n neurons with the
all-ones codeword removed) is convex of dimension n−1. We can include C into
the code D = {0, 1}n, which is convex of dimension 2, reducing the dimension
by n − 3. We can also increase the dimension as far as we wish, for example
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by including the simple one-dimensional code {00 . . . 0, 10 . . . 0} into the code
C = {0, 1}n\{11 . . . 1}, which was convex of dimension n − 1, increasing the
dimension by n − 2. For a further discussion of the dimension and convexity of
these codes, see [4].

We now give the proof of Theorem 4.3 and Corollary 4.4.

Proof (Theorem 4.3) If C is a surjective code map corresponding to a neural ring
homomorphism, then it can be written as a composition of just the first four maps
described by Theorem 3.4, following the process outlined in the proof. Thus, to
prove both theorem and corollary, it suffices to show that if a code C′ is obtained
from C via a projection map, then d(C′) ≤ d(C), and that if C′ is obtained from C via
one of the first three maps, then d(C′) = d(C). In general, if a convex realization of
C can be transformed, in the same dimension, into a convex realization for C′, then
we have shown both that C′ is convex whenever C is, and also that d(C′) ≤ d(C).

Permutation Maps If C′ is obtained from C via a permutation map, then any
convex realization U of C is also a realization of C′ by permuting the labels on
the sets accordingly. Likewise, any realization U′ of C′ is a realization of C, by
permuting the labels inversely. Thus, C is convex if and only if C′ is also convex,
and in addition d(C′) = d(C).

Adding/Deleting a Trivial Neuron If C′ is obtained from C by adding a trivial
always-zero neuron n + 1, then a realization U of C can be transformed into a
realization of C′ by adding a set Un+1 = ∅. Likewise, a convex realization U′ of
C′ can be transformed into a convex realization of C by removing the set Un+1,
which is necessarily empty as neuron n + 1 never fires. For the second case, if C′ is
obtained from C by adding a trivial always-one neuron n+1, then we can transform
a realization U of C into a realization of C′ by adding the set Un+1 that is made
up of the entire ambient space X in which the realization is set. This ambient space
may be assumed to be convex, as C contains the all-zeros codeword. Likewise, a
realization of C′ can be transformed to that for C by removing the set Un+1. Thus,
for such maps, C is convex if and only if C′ is convex and, in addition, d(C) = d(C′).

Adding/Deleting a Duplicate Neuron If C′ is obtained from C by duplicating
neuron i to a new neuron n + 1, then any convex realization U of C can be
transformed into a convex realization of C′ by adding a set Un+1 that is identical
to the set Ui . Likewise, any convex realization U′ of C′ can also realize C, by
removing the set Un+1 that must be identical to Ui . Since C is obtained from C′
by deleting a duplicate neuron, this argument also works for deleting a duplicate
neuron. Hence, under such maps, C is convex if and only if C′ is convex, and in
addition, d(C) = d(C′).

Projection (Deletion) Maps If C′ is obtained from C by deleting neuron n, then a
convex realization U of C can be transformed into a realization of C′ by removing
the set Un from the realization. Thus, if C is convex, then C′ must also be convex,
and in particular, d(C′) ≤ d(C). 	
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