
Friday, January 8, 2016, 1:00 PM to 5:00 PM
Room 4C-3 Washington State Convention Center

Joint Mathematics Meetings, Seattle, WA

CURRENT EVENTS BULLETIN

Organized by David Eisenbud,

Mathematical Sciences Research Institute

A M E R I C A N  M A T H E M A T I C A L  S O C I E T Y

1:00 PM Carina Curto, Pennsylvania State University

What can topology tell us about the neural code?
Surprising new applications of what used to be thought of as 
“pure” mathematics. 

2:00 PM Yuval Peres, Microsoft Research and  
University of California, Berkeley, and  
Lionel Levine, Cornell University

3:00 PM  Timothy Gowers, Cambridge University

4:00 PM Amie Wilkinson, University of Chicago

Laplacian growth, sandpiles and scaling limits
Striking large-scale structure arising from simple cellular 
automata. 

Probabilistic combinatorics and the recent work of 
Peter Keevash
The major existence conjecture for combinatorial designs has been 
proven! 

What are Lyapunov exponents, and why are they 
interesting?
A basic tool in understanding the predictability of physical 
systems, explained.



Introduction to the Current Events Bulletin 
 
Will the Riemann Hypothesis be proved this week?  What is the Geometric Langlands 
Conjecture about?  How could you best exploit a stream of data flowing by too fast to 
capture? I think we mathematicians are provoked to ask such questions by our sense 
that underneath the vastness of mathematics is a fundamental unity allowing us to 
look into many different corners -- though we couldn't possibly work in all of them.  I 
love the idea of having an expert explain such things to me in a brief, accessible way.  
And I, like most of us, love common-room gossip. 
 
The Current Events Bulletin Session at the Joint Mathematics Meetings, begun in 
2003, is an event where the speakers do not report on their own work, but survey 
some of the most interesting current developments in mathematics, pure and applied.  
The wonderful tradition of the Bourbaki Seminar is an inspiration, but we aim for more 
accessible treatments and a wider range of subjects.  I've been the organizer of these 
sessions since they started, but a varying, broadly constituted advisory committee 
helps select the topics and speakers.  Excellence in exposition is a prime 
consideration. 
 
A written exposition greatly increases the number of people who can enjoy the 
product of the sessions, so speakers are asked to do the hard work of producing such 
articles.  These are made into a booklet distributed at the meeting.  Speakers are 
then invited to submit papers based on them to the Bulletin of the AMS, and this has 
led to many fine publications. 
 
I hope you'll enjoy the papers produced from these sessions, but there's nothing like 
being at the talks -- don't miss them! 
 

David Eisenbud, Organizer 
Mathematical Sciences Research Institute 

de@msri.org 
 

 
 

Color graphics: Any graphics created in color will be rendered in grayscale for the 
printed version. Color graphics will be available in the online version of the 2016 

Current Events Bulletin. 
 

For PDF files of talks given in prior years, see 
http://www.ams.org/ams/current-events-bulletin.html. 

The list of speakers/titles from prior years may be found at the end of this booklet. 
 

http://www.ams.org/ams/current-events-bulletin.html




WHAT CAN TOPOLOGY TELL US ABOUT THE

NEURAL CODE?

CARINA CURTO

Abstract. Neuroscience is undergoing a period of rapid experimental
progress and expansion. New mathematical tools, previously unknown
in the neuroscience community, are now being used to tackle fundamen-
tal questions and analyze emerging data sets. Consistent with this trend,
the last decade has seen an uptick in the use of topological ideas and
methods in neuroscience. In this talk I will survey recent applications
of topology in neuroscience, and explain why topology is an especially
natural tool for understanding neural codes.

1. Introduction

Applications of topology to scientific domains outside of pure mathemat-
ics are becoming increasingly common. Neuroscience, a field undergoing a
golden age of progress in its own right, is no exception. The first reason for
this is perhaps obvious – at least to anyone familiar with topological data
analysis. Like other areas of biology, neuroscience is generating a lot of new
data, and some of these data can be better understood with the help of
topological methods. A second reason is that a significant portion of neuro-
science research involves studying networks, and networks are particularly
amenable to topological tools. Although my talk will touch on a variety of
such applications, most of my attention will be devoted to a third reason –
namely, that many interesting problems in neuroscience contain topological
questions in disguise. This is especially true when it comes to understand-
ing neural codes, and questions such as: how do the collective activities of
neurons represent information about the outside world?

I will begin this talk with some well-known examples of neural codes,
and then use them to illustrate how topological ideas naturally arise in this
context. Next, I’ll take a brief detour to describe other uses of topology
in neuroscience. Finally, I will return to neural codes and explain why
topological methods are helpful for studying their intrinsic properties. Taken
together, these developments suggest that topology is not only useful for
analyzing neuroscience data, but may also play a fundamental role in the
theory of how the brain works.
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2. Neurons: nodes in a network or autonomous sensors?

It has been known for more than a century, since the time of Golgi and
Ramon y Cajal, that the neurons in our brains are connected to each other
in vast, intricate networks. Neurons are electrically active cells. They com-
municate with each other by firing action potentials (spikes) – tiny messages
that are only received by neighboring (synaptically-connected) neurons in
the network. Suppose we were eavesdropping on a single neuron, carefully
recording its electrical activity at each point in time. What governs the
neuron’s behavior? The obvious answer: it’s the network, of course! If we
could monitor the activity of all the other neurons, and we knew exactly the
pattern of connections between them, and were blessed with an excellent
model describing all relevant dynamics, then (maybe?) we would be able
to predict when our neuron will fire. If this seems hopeless now, imagine
how unpredictable the activity of a single neuron in a large cortical network
must have seemed in the 1950s, when Hodgkin and Huxley had just fin-
ished working out the complex nonlinear dynamics of action potentials for
a simple, isolated cell [30].

And yet, around 1959, a miracle happened. It started when Hubel and
Wiesel inserted a microelectrode into the primary visual cortex of an anes-
thetized cat, and eavesdropped on a single neuron. They could neither
monitor nor control the activity of any other neurons in the network – they
could only listen to one neuron at a time. What they could control was
the visual stimulus. In an attempt to get the neuron to fire, they projected
black and white patterns on a screen in front of the open-eyed cat. Remark-
ably, they found that the neuron they were listening to fired rapidly when
the screen showed a black bar at a certain angle – say, 45◦. Other neurons
responded to different angles. It was as though each neuron was a sensor
for a particular feature of the visual scene. Its activity could be predicted
without knowing anything about the network, but by simply looking outside
the cat’s brain – at the stimulus on the screen.

Hubel and Wiesel had discovered orientation-tuned neurons [19], whose
collective activity comprises a neural code for angles in the visual field (see
Figure 1B). Although they inhabit a large, densely-connected cortical net-
work, these neurons do not behave as unpredictable units governed by com-
plicated dynamics. Instead, they appear to be responding directly to stimuli
in the outside world. Their activity has meaning.

A decade later, O’Keefe made a similar discovery, this time involving
neurons in a different area of the brain – the hippocampus. Unlike the
visual cortex, there is no obvious sensory pathway to the hippocampus. This
made it all the more mysterious when O’Keefe reported that his neurons
were responding selectively to different locations in the animal’s physical
environment [26]. These neurons, dubbed place cells, act as position sensors
in space. When an animal is exploring a particular environment, a place
cell increases its firing rate as the animal passes through its corresponding
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Figure 1. The neural network and neural coding pictures. (A)
Pyramidal neurons (triangles) are embedded in a recurrent network
together with inhibitory interneurons (circles). (B) An orientation-
tuned neuron in primary visual cortex with a preferred angle of 45◦.
The neuron fires many spikes in response to a bar at a 45◦ angle in
the animal’s visual field, but few spikes in response to a horizon-
tal bar. (C) Place cells in the hippocampus fire when the animal
passes through the corresponding place field. The activity of three
different neurons is shown (top), while the animal traces a trajec-
tory starting at the top left corner of its environment (bottom).
Each neuron’s activity is highest when the animal passes through
the corresponding place field (shaded disc).

place field – that is, the localized region to which the neuron preferentially
responds (see Figure 1C).

Like Hubel and Wiesel, who received a Nobel prize for their work in 1981
[1], O’Keefe’s discovery of place cells had an enormous impact in neuro-
science. In 2014, he shared the Nobel prize with Edvard and May-Britt
Moser [5], former postdocs of his who went on to discover an even stranger
class of neurons that encode position, in a neighboring area of hippocampus
called the entorhinal cortex. These neurons, called grid cells, display peri-
odic place fields that are arranged in a hexagonal lattice. We’ll come back
to grid cells in the next section.

So, are neurons nodes in a network? or autonomous sensors of the outside
world? Both pictures are valid, and yet they lead to very different models
of neural behavior. Neural network theory deals with the first picture, and
seeks to understand how the activity of neurons emerges from properties of
the network. In contrast, neural coding theory often treats the network as a
black box, focusing instead on the relationship between neural activity and
external stimuli. Many of the most interesting problems in neuroscience are
about understanding the neural code. This includes, but is not limited to,
figuring out the basic principles by which neural activity represents sensory
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inputs to the eyes, nose, ears, whiskers, and tongue. Because of the discov-
eries of Hubel and Wiesel, O’Keefe, and many others, we often know more
about the coding properties of single neurons than we do about the networks
to which they belong. But many open questions remain. And topology, as
it turns out, is a natural tool for understanding the neural code.

3. Topology of hippocampal place cell codes

The term hippocampal place cell code refers to the neural code used by
place cells in the hippocampus to encode the animal’s position in space.
Most of the research about place cells, including O’Keefe’s original discov-
ery, has been performed in rodents (typically rats), and the experiments
typically involve an animal moving around in a restricted environment (see
Figure 1C). It was immediately understood that a population of place cells,
each having a different place field, could collectivity encode the animal’s
position in space [27], even though for a long time electrophysiologists could
only monitor one neuron at a time. When simultaneous recordings of place
cells became possible, it was shown via statistical inference (using previously
measured place fields) that the animal’s position could indeed be inferred
from population place cell activity [3]. Figure 2 shows four place fields
corresponding to simultaneously recorded place cells in area CA1 of rat hip-
pocampus.

place �eld of neuron #1 place �eld of neuron #2 place �eld of neuron #3 place �eld of neuron #4

Figure 2. Place fields for four place cells, recorded while a rat
explored a 2-dimensional square box environment. Place fields
were computed from data provided by the Pastalkova lab.

The role of topology in place cell codes begins with a simple observation,
which is perhaps obvious to anyone familiar with both place fields in neuro-
science and elementary topology. First, let’s recall the standard definitions
of an open cover and a good cover.

Definition 3.1. Let X be a topological space. A collection of open sets,
U = {U1, . . . , Un}, is an open cover of X if X =

⋃n
i=1 Ui. We say that U is

a good cover if every non-empty intersection
⋂
i∈σ Ui, for σ ⊆ {1, . . . , n}, is

contractible.

Next, observe that a collection of place fields in a particular environment
looks strikingly like an open cover, with each Ui corresponding a place field.
Figure 3 displays three different environments, typical of what is used in hip-
pocampal experiments with rodents, together with schematic arrangements
of place fields in each.
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Figure 3. Three environments for a rat: (A) A square box envi-
ronment, also known as an “open field”; (B) an environment with a
hole or obstacle in the center; and (C) a maze with two arms. Each
environment displays a collection of place fields (shaded discs) that
fully cover the underlying space.

Moreover, since place fields are approximately convex (see Figure 2) it is
not unreasonable to assume that they form a good cover of the underlying
space. This means the Nerve Lemma applies. Recall the notion of the nerve1

of a cover:

N (U)
def
= {σ ⊂ [n] |

⋂
i∈σ

Ui 6= ∅},

where [n] = {1, . . . , n}. Clearly, if σ ∈ N (U) and τ ⊂ σ, then τ ∈ N (U).
This property shows that N (U) is an abstract simplicial complex on the
vertex set [n] – that is, it is a set of subsets of [n] that is closed under
taking further subsets. If X is a sufficiently “nice” topological space, then
the following well-known lemma holds.

Lemma 3.2 (Nerve Lemma). Let U be a good cover of X. Then N (U)
is homotopy-equivalent to X. In particular, N (U) and X have exactly the
same homology groups.

It is important to note that the Nerve Lemma fails if the good cover
assumption does not hold. Figure 4A depicts a good cover of an annulus
by three open sets. The corresponding nerve (right) exhibits the topology
of a circle, which is indeed homotopy-equivalent to the covered space. In
Figure 4B, however, the cover is not good, because the intersection U1 ∩ U2

consists of two disconnected components, and is thus not contractible. Here
the nerve (right) is homotopy-equivalent to a point, in contradiction to the
topology of the covered annulus.

The wonderful thing about the Nerve Lemma, when interpreted in the
context of hippocampal place cells, is that N (U) can be inferred from the
activity of place cells alone – without actually knowing the place fields {Ui}.
This is because the concurrent activity of a group of place cells, indexed

1Note that the name “nerve” here predated any connection to neuroscience!



6 CARINA CURTO

U1

U3U2

1

2 3

U1

U2

1

2

A B

Figure 4. Good and bad covers. (A) A good cover U =
{U1, U2, U3} of an annulus (left), and the corresponding nerve
N (U) (right). (B) A “bad” cover of the annulus (left), and
the corresponding nerve (right). Only the nerve of the good
cover accurately reflects the topology of the annulus.

by σ ⊂ [n], indicates that the corresponding place fields have a non-empty
intersection:

⋂
i∈σ Ui 6= ∅. In other words, if we were eavesdropping on

the activity of a population of place cells as the animal fully explored its
environment, then by finding which subsets of neurons co-fire (see Figure 5)
we could in principle estimate N (U), even if the place fields themselves were
unknown. Lemma 3.2 tells us that the homology of the simplicial complex
N (U) precisely matches the homology of the environment X. The place cell
code thus naturally reflects the topology of the represented space.2
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Figure 5. By binning spike trains for a population of
simultaneously-recorded neurons, one can infer subsets of neurons
that co-fire. If these neurons were place cells, then the first code-
word 1110 indicates that U1∩U2∩U3 6= ∅, while the third codeword
0101 tells us U2 ∩ U4 6= ∅.

These and related observations have led some researchers to speculate
that the hippocampal place cell code is fundamentally topological in nature

2In particular, place cell activity from the environment in Figure 3B could be used to
detect the non-trivial first homology group of the underlying space, and thus distinguish
this environment from that of Figure 3A or 3C.
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[12, 6], while others (including this author) have argued that considerable
geometric information is also present and can be extracted using topological
methods [9, 18]. In order to disambiguate topological and geometric features,
Dabaghian et. al. performed an elegant experiment using linear tracks with
flexible joints [11]. This allowed them to alter geometric features of the
environment, while preserving the topological structure as reflected by the
animal’s place fields. They found that place fields recorded from an animal
running along the morphing track moved together with the track, preserving
the relative sequence of locations despite changes in angles and movement
direction. In other words, the place fields respected topological aspects of
the environment more than metric features [11].

a

a

bb

c

c

A B

Figure 6. Firing fields for grid cells. (A) Firing fields for four
entorhinal grid cells. Each grid field forms a hexagonal grid in
the animal’s two-dimensional environment, and each field thus has
multiple disconnected regions. (B) A hexagonal fundamental do-
main contains just one disc-like region per grid cell. Pairs of edges
with the same label (a, b, or c) are identified, with orientations
specified by the arrows.

What about the entorhinal grid cells? These neurons have firing fields
with multiple disconnected components, forming a hexagonal grid (see Fig-
ure 6A). This means that grid fields violate the good cover assumption of
the Nerve Lemma – if we consider them as an open cover for the entire 2-
dimensional environment. If, instead, we restrict attention to a fundamental
domain for these firing fields, as illustrated in Figure 6B, then each grid field
has just one (convex) component, and the Nerve Lemma applies. From the
spiking activity of grid cells we could thus infer the topology of this fun-
damental domain. The reader familiar with the topological classification of
surfaces may recognize that this hexagonal domain, with the identification
of opposite edges, is precisely a torus. To see this, first identify the edges
labeled “a” to get a cylinder. Next, observe that the boundary circles on
each end of the cylinder consist of the edges “b” and “c”, but with a 180◦



8 CARINA CURTO

twist between the two ends. By twisting the cylinder, the two ends can be
made to match so that the “b” and “c” edges get identified. This indicates
that the space represented by grid cells is not the full environment, but a
torus.

4. Topology in neuroscience: a bird’s-eye view

The examples from the previous section are by no means the only way
that topology is being used in neuroscience. Before plunging into further
details about what topology can tell us about neural codes, we now pause
for a moment to acknowledge some other interesting applications. The main
thing they all have in common is their recency. This is no doubt due to
the rise of computational and applied algebraic topology, a relatively new
development in applied math that was highlighted in the Current Events
Bulletin nearly a decade ago [14].

Roughly speaking, the uses of topology in neuroscience can be categorized
into three (overlapping) themes: (i) “traditional” topological data analysis
applied to neuroscience; (ii) an upgrade to network science; and (iii) under-
standing the neural code. Here we briefly summarize work belonging to (i)
and (ii). In the next section we’ll return to (iii), which is the main focus of
this talk.

4.1. “Traditional” TDA applied to neuroscience data sets. The ear-
liest and most familiar applications of topological data analysis (TDA) fo-
cused on the problem of estimating the “shape” of point-cloud data. This
kind of data set is simply a collection of points, x1, . . . , x` ∈ Rn, where n is
the dimensionality of the data. A question one could ask is: do these points
appear to have been sampled from a lower-dimensional manifold, such as
a torus or a sphere? The strategy is to consider open balls Bε(xi) of ra-
dius ε around each data point, and then to construct a simplicial complex
Kε that captures information about how the balls intersect. This simplicial
complex can either be the Cech complex (i.e., the nerve of the open cover
defined by the balls), or the Vietoris-Rips complex (i.e., the clique complex
of the graph obtained from pairwise intersections of the balls). By varying
ε, one obtains a sequence of nested simplicial complexes {Kε} together with
natural inclusion maps. Persistent homology tracks homology cycles across
these simplicial complexes, and allows one to determine whether there were
homology classes that “persisted” for a long time. For example, if the data
points were sampled from a 3-sphere, one would see a persistent 3-cycle.

There are many excellent reviews of persistent homology, including [14],
so I will not go into further details here. Instead, it is interesting to note
that one of the early applications of these techniques was in neuroscience,
to analyze population activity in primary visual cortex [31]. Here it was
found that the topological structure of activity patterns is similar between
spontaneous and evoked activity, and consistent with the topology of a two-
sphere. Moreover, the results of this analysis were interpreted in the context
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of neural coding, making this work exemplary of both themes (i) and (iii).
Another application of persistent homology to point cloud data in neuro-
science was the analysis of the spatial structure of afferent neuron terminals
in crickets [4]. Again, the results were interpreted in terms of the coding
properties of the corresponding neurons, which are sensitive to air motion
detected by thin mechanosensory hairs on the cricket. Finally, it is worth
mentioning that these types of analyses are not confined to neural activity.
For example, in [2] the statistics of persistent cycles were used to study brain
artery trees.

4.2. An upgrade to network science. There are many ways of construct-
ing networks in neuroscience, but the basic model that has been used for
all of them is the graph. The vertices of a graph can represent neurons,
cell types, brain regions, or fMRI voxels, while the edges reflect interactions
between these units. Often, the graph is weighted and the edge weights
correspond to correlations between adjacent nodes. For example, one can
model a functional brain network from fMRI data as a weighted graph where
the edge weights correspond to activity correlations between pairs of voxels.
At the other extreme, a network where the vertices correspond to neurons
could have edge weights that reflect either pairwise correlations in neural
activity, or synaptic connections.

Network science is a relatively young discipline that focuses on analyzing
networks, primarily using tools derived from graph theory. The results of a
particular analysis could range from determining the structure of a network
to identifying important subgraphs and/or graph-theoretic statistics (the
distribution of in-degree or out-degree across nodes, number of cycles, etc.)
that carry meaning for the network at hand. Sometimes, graph-theoretic
features do not carry obvious meaning, but are nevertheless useful for dis-
tinguishing networks that belong to distinct classes. For example, a feature
could be characteristic of functional brain networks derived from a subgroup
of subjects, distinguishing them from a “control” group. In this way graph
features may be a useful diagnostic tool for distinguishing diseased states,
pharmacologically-induced states, cognitive abilities, or uncovering system-
atic differences based on gender or age.

The recent emergence of topological methods in network science stems
from the following “upgrade” to the network model: instead of a graph, one
considers a simplicial complex. Sometimes this simplicial complex reflects
higher-order interactions that are obtained from the data, and sometimes it
is just the clique complex of the graph G:

X(G) = {σ ⊂ [n] | (ij) ∈ G for all i, j ∈ σ}.

In other words, the higher-order simplices correspond to cliques (all-to-all
connected subgraphs) of G. Figure 7A shows a graph (top) and the corre-
sponding clique complex (bottom), with shaded simplices corresponding to
two 3-cliques and a 4-clique. The clique complex fills in many of the 1-cycles
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in the original graph, but some 1-cycles remain (see the gold 4-gon), and
higher-dimensional cycles may emerge. Computing homology groups for the
clique complex is then a natural way to detect topological features that are
determined by the graph. In the case of a weighted graph, one can obtain
a sequence of clique complexes by considering a related sequence of simple
graphs, where each graph is obtained from the previous one by adding the
edge corresponding to the next-highest weight (see Figure 7B). The corre-
sponding sequence of clique complexes, {X(Gi)}, can then be analyzed using
persistent homology. Other methods for obtaining a sequence of simplicial
complexes from a network are also possible, and may reflect additional as-
pects of the data such as the temporal evolution of the network.

A B

Figure 7. Network science models: from graphs to clique
complexes and filtrations.

For a more thorough survey of topological methods in network science,
I recommend the forthcoming review article [15]. Here I will only mention
that topological network analyses have already been used in a variety of neu-
roscience applications, many of them medically-motivated: fMRI networks
in patients with ADHD [13]; FDG-PET based networks in children with
autism and ADHD [23]; morphological networks in deaf adults [22]; meta-
bolic connectivity in epileptic rats [7]; and functional EEG connections in
depressed mice [21]. Other applications to fMRI data include human brain
networks during learning [33] and drug-induced states [28]. At a finer scale,
recordings of neural activity can also give rise to functional connectivity
networks among neurons (which are not the same as the neural networks
defined by synaptic connections). These networks have also been analyzed
with topological methods [29, 18, 32].

5. The code of an open cover

We now return to neural codes. We have already seen how the hippocam-
pal place cell code reflects the topology of the underlying space, via the
nerve N (U) of a place field cover. In this section, we will associate a binary
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code to an open cover. This notion is closer in spirit to a combinatorial
neural code (see Figure 5), and carries more detailed information than the
nerve. In the next section, we’ll see how topology is being used to determine
intrinsic features of neural codes, such as convexity and dimension.

First, a few definitions. A binary pattern on n neurons is a string of 0s and
1s, with a 1 for each active neuron and a 0 denoting silence; equivalently, it
is a subset of (active) neurons σ ⊂ [n]. (Recall that [n] = {1, . . . , n}.) We
use both notations interchangeably. For example, 10110 and σ = {1, 3, 4}
refer to the same pattern, or codeword, on n = 5 neurons. A combinatorial
neural code on n neurons is a collection of binary patterns C ⊂ 2[n]. In other
words, it is a binary code of length n, where we interpret each binary digit as
the “on” or “off” state of a neuron. The simplicial complex of a code, ∆(C),
is the smallest abstract simplicial complex on [n] that contains all elements
of C. In keeping with the hippocampal place cell example, we are interested
in codes that correspond to open covers of some topological space.
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Figure 8. Codes and nerves of open covers. (A) An open
cover U , with each region carved out by the cover labeled by
its corresponding codeword. (B) The code C(U). (C) The
nerve N (U).

Definition 5.1. Given an open cover U , the code of the cover is the combi-
natorial neural code

C(U)
def
= {σ ⊂ [n] |

⋂
i∈σ

Ui \
⋃

j∈[n]\σ

Uj 6= ∅}.

Each codeword in C(U) corresponds to a region that is defined by the
intersections of the open sets in U (Figure 8A). Note that the code C(U)
is not the same as the nerve N (U). Figures 8B and 8C display the code
and the nerve of the open cover in Figure 8A. While the nerve encodes
which subsets of the Uis have non-empty intersections, the code also carries
information about set containments. For example, the fact that U2 ⊆ U1∪U3

can be inferred from C(U) because each codeword of the form ∗1 ∗ ∗ has an
additional 1 in position 1 or 3, indicating that if neuron 2 is firing then so is
neuron 1 or 3. Similarly, the fact that U2∩U4 ⊆ U3 can be inferred from the
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code because any word of the form ∗1 ∗ 1 necessarily has a 1 in position 3 as
well. These containment relationships go beyond simple intersection data,
and cannot be obtained from the nerve N (U). On the other hand, the nerve
can easily be recovered from the code since N (U) is the smallest simplicial
complex that contains it – that is,

N (U) = ∆(C(U)).

C(U) thus carries more detailed information than what is available in N (U).
The combinatorial data in C(U) can also be encoded algebraically via the
neural ideal [10], much as simplicial complexes are algebraically encoded by
Stanley-Reisner ideals [25].

It is easy to see that any binary code, C ⊆ {0, 1}n, can be realized as the
code of an open cover.3 It is not true, however, that any code can arise from
a good cover or a convex cover – that is, an open cover consisting of convex
sets. The following lemma illustrates the simplest example of what can go
wrong.

Lemma 5.2. Let C ⊂ {0, 1}3 be a code that contains the codewords 110 and
101, but does not contain 100 and 111. Then C is not the code of a good or
convex cover.

The proof is very simple. Suppose U = {U1, U2, U3} is a cover such that
C = C(U). Because neuron 2 or 3 is “on” in any codeword for which neuron
1 is “on,” we must have that U1 ⊂ U2 ∪U3. Moreover, we see from the code
that U1∩U2 6= ∅ and U1∩U3 6= ∅, while U1∩U2∩U3 = ∅. This means we can
write U1 as a disjoint union of two non-empty sets: U1 = (U1∩U2)∪(U1∩U3).
U1 is thus disconnected, and hence U can be neither a good nor convex cover.

6. Using topology to study intrinsic properties
of neural codes

In our previous examples from neuroscience, the place cell and grid cell
codes can be thought of as arising from convex sets covering an underlying
space. Because the spatial correlates of these neurons are already known, it
is not difficult to infer what space is being represented by these codes. What
could we say if we were given just a code, C ⊂ {0, 1}n, without a priori
knowledge of what the neurons were encoding? Could we tell whether such
a code can be realized via a convex cover?

3For example, if the size of the code is |C| = `, we could choose disjoint open intervals
B1, . . . , B` ⊂ R, one for each codeword, and define the open sets U1, . . . , Un such that Ui

is the union of all open intervals Bj corresponding to codewords in which neuron i is “on”
(that is, there is a 1 in position i of the codeword). Such a cover, however, consists of
highly disconnected sets and its properties reflect very little of the underlying space – in
particular, the good cover assumption of the Nerve Lemma is violated.
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6.1. What can go wrong. As seen in Lemma 5.2, not all codes can
arise from convex covers. Moreover, the problem that prevents the code
in Lemma 5.2 from being convex is topological in nature. Specifically, what
happens in the example of Lemma 5.2 is that the code dictates there must
be a set containment,

Uσ ⊆
⋃
j∈τ

Uj ,

where Uσ =
⋂
i∈σ Ui, but the nerve of the resulting cover of Uσ by the sets

{Uσ ∩Uj}j∈τ is not contractible. This leads to a contradiction if the sets Ui
are all assumed to be convex, because the sets {Uσ ∩ Uj}j∈τ are then also
convex and thus form a good cover of Uσ. Since Uσ itself is convex, and the
Nerve Lemma holds, it follows that N ({Uσ ∩ Uj}j∈τ ) must be contractible,
contradicting the data of the code.

These observations lead to the notion of a local obstruction to convexity
[16], which captures the topological problem that arises if certain codes
are assumed to have convex covers. The proof of the following lemma is
essentially the argument outlined above.

Lemma 6.1 ([16]). If C can be realized by a convex cover, then C has no
local obstructions.

The idea of using local obstructions to determine whether or not a neural
code has a convex realization has been recently followed up in a series of
papers [8, 24, 17]. In particular, local obstructions have been characterized
in terms of links, Lk∆(σ), corresponding to “missing” codewords that are
not in the code, but are elements of the simplicial complex of the code.

Theorem 6.2 ([8]). Let C be a neural code, and let ∆ = ∆(C). Then C has
no local obstructions if and only if Lk∆(σ) is contractible for all σ ∈ ∆ \ C.

It was believed, until very recently, that the converse of Lemma 6.1 might
also be true. However, in [24] the following counterexample was discovered,
showing that this is not the case. Here the term convex code refers to a code
that can arise from a convex open cover.

Example 6.3 ([24]). The code C = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4}
is not a convex code, despite the fact that it has no local obstructions.

That this code has no local obstructions can be easily seen using The-
orem 6.2. The fact that there is no convex open cover, however, relies on
convexity arguments that are not obviously topological. Moreover, this code
does have a good cover [24], suggesting the existence of a new class of ob-
structions to convexity which may or may not be topological in nature.

6.2. What can go right. Finally, it has been shown that several classes
of neural codes are guaranteed to have convex realizations. Intersection-
complete codes satisfy the property that for any σ, τ ∈ C we also have σ∩τ ∈
C. These codes (and some generalizations) were shown constructively to have
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convex covers in [17]. Additional classes of codes with convex realizations
have been described in [8].

Despite these developments, a complete characterization of convex codes
is still lacking. Finding the minimum dimension needed for a convex real-
ization is also an open question.

7. Codes from networks

We end by coming back to the beginning. Even if neural codes give
us the illusion that neurons in cortical and hippocampal areas are directly
sensing the outside world, we know that of course they are not. Their
activity patterns are shaped by the networks in which they reside. What
can we learn about the architecture of a network by studying its neural code?
This question requires an improved understanding of neural networks, not
just neural codes. While many candidate architectures have been proposed
to explain, say, orientation-tuning in visual cortex, the interplay of neural
network theory and neural coding is still in early stages of development.

Perhaps the simplest example of how the structure of a network can con-
strain the neural code is the case of simple feedforward networks. These
networks have a single input layer of neurons, and a single output layer.
The resulting codes are derived from hyperplane arrangements in the posi-
tive orthant of Rk, where k is the number of neurons in the input layer and
each hyperplane corresponds to a neuron in the output layer (see Figure 9).
Every codeword in a feedforward code corresponds to a chamber in such a
hyperplane arrangement.

1

2

3

Figure 9. A hyperplane arrangement in the positive or-
thant, and the corresponding feedforward code.

It is not difficult to see from this picture that all feedforward codes are
realizable by convex covers – specifically, they arise from overlapping half-
spaces [16]. On the other hand, not every convex code is the code of a
feedforward network [20]. Moreover, the discrepancy between feedforward
codes and convex codes is not due to restrictions on their simplicial com-
plexes. As was shown in [16], every simplicial complex can arise as ∆(C) for
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a feedforward code. As with convex codes, a complete characterization of
feedforward codes is still unknown. It seems clear, however, that topological
tools will play an essential role.
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LAPLACIAN GROWTH, SANDPILES AND SCALING LIMITS

LIONEL LEVINE AND YUVAL PERES

1. The abelian sandpile model

Start with n particles at the origin in the square grid Z2, and let them spread
out according to the following rule: whenever any site in Z2 has 4 or more particles,
it gives one particle to each of its 4 nearest neighbors (North, East, South and
West). The final configuration of particles does not depend on the order in which
these moves are performed (which explains the term “abelian”; see Lemma 1.1
below).

n = 105 n = 106

Figure 1. Sandpiles in Z2 formed by stabilizing 105 and 106 par-
ticles at the origin. Each pixel is colored according to the number
of sand grains that stabilize there (white 0, red 1, purple 2, blue 3).
The two images have been scaled to have the same diameter.

This model was invented in 1987 by the physicists Bak, Tang and Wiesenfeld
[7]. While defined by a simple local rule, it produces self-similar global patterns
that call for an explanation. Dhar [15] extended the model to any base graph and
discovered the abelian property. The abelian sandpile was independently discov-
ered by combinatorialists [10], who called it chip-firing. Indeed, in the last two
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decades the subject has been enriched by an exhilirating interaction of numerous
areas of mathematics, including statistical physics, combinatorics, free boundary
PDE, probability, potential theory, number theory and group theory. More on
this below. There are also connections to algebraic geometry [49, 8, 60], commu-
tative algebra [52, 53] and computational complexity [55, 6, 12]. For software for
experimenting with sandpiles, see [61].

Let G = (V,E) be a locally finite connected graph. A sandpile on G is a
function s : V → Z. We think of a positive value s(x) > 0 as a number of sand
grains (or “particles”) at vertex x, and negative value as a hole that can be filled
by particles. Vertex x is unstable if s(x) ≥ deg(x), the number of edges incident
to x. Toppling x is the operation of sending deg(x) particles away from x, one
along each incident edge. We say that a sequence of vertices x = (x1, . . . , xm) is
legal for s if si(xi) ≥ deg(xi) for all i = 1, . . . ,m, where si is the sandpile obtained
by toppling x1, . . . , xi−1; we say that x is stabilizing for s if sm ≤ deg−1. (All
inequalities between functions are pointwise.)

Lemma 1.1. Let s : V → Z be a sandpile, and suppose there exists a sequence
y = (y1, . . . , yn) that is stabilizing for s.

(i) Any legal sequence x = (x1, . . . , xm) for s is a permutation of a subsequence
of y.

(ii) There exists a legal stabilizing sequence for s.
(iii) Any two legal stabilizing sequences for s are permutations of each other.

Proof. Since x is legal for s we have s(x1) ≥ deg(x1). Since y is stabilizing for s
it follows that yi = x1 for some i. Toppling x1 yields a new sandpile s′. Removing
x1 from x and yi from y yields shorter legal and stabilizing sequences for s′, so (i)
follows by induction.

Let x be a legal sequence of maximal length, which is finite by (i). Such x must
be stabilizing, which proves (ii).

Statement (iii) is immediate from (i). �

We say that s stabilizes if there is a sequence that is stabilizing for s. If s
stabilizes, we define its odometer as the function on vertices

u(x) = number of occurences of x in any legal stabilizing sequence for s.

The stabilization ŝ of s is the result of toppling a legal stabilizing sequence for
s. The odometer determines the stabilization, since

ŝ = s+ ∆u (1)

where ∆ is the graph Laplacian

∆u(x) =
∑
y∼x

(u(y)− u(x)). (2)

Here the sum is over vertices y that are neighbors of x.
By Lemma 1.1(iii), both the odometer u and the stabilization ŝ depend only on

s, and not on the choice of legal stabilizing sequence, which is one reason the model
is called abelian (another is the role played by an abelian group; see Section 7).
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What does a very large sandpile look like? The similarity of the two sandpiles in
Figure 1 suggests that some kind of limit exists as we take the number of particles
n → ∞ while “zooming out” so that each square of the grid has area 1/n. The
first step toward making this rigorous is to reformulate Lemma 1.1 in terms of the
Laplacian as follows.

Least Action Principle. If there exists w : V → N such that

s+ ∆w ≤ deg−1 (3)

then s stabilizes, and w ≥ u where u is the odometer of s. Thus,

u(x) = inf{w(x) |w : V → N satisfies (3)}. (4)

Proof. If such w exists, then any sequence y such that w(x) = #{i : yi = x} for
all x is stabilizing for s. The odometer is defined as u(x) = #{i : xi = x} for a
legal stabilizing sequence x, so w ≥ u by part (i) of Lemma 1.1. The last line now
follows from (1). �

The Least Action Principle expresses the odometer as the solution to a varia-
tional problem (4). In the next section we will see that the same problem, without
the integrality constraint on w, arises from a variant of the sandpile which will be
easier to analyze.

2. Relaxing Integrality: The Divisible Sandpile

Let Zd be the set of points with integer coordinates in d-dimensional Euclidean
space Rd, and let e1, . . . , ed be its standard basis vectors. We view Zd as a graph
in which points x and y are adjacent if and only if x − y = ±ei for some i. For
example, when d = 1 this graph is an infinite path, and when d = 2 it is an infinite
square grid.

In the divisible sandpile model, each point x ∈ Zd has a continuous amount of
mass σ(x) ∈ R≥0 instead of a discrete number of particles. Start with mass m
at the origin and zero elsewhere. At each time step, choose a site x ∈ Zd with
mass σ(x) > 1 where σ is the current configuration, and distribute the excess mass
σ(x) − 1 equally among the 2d neighbors of x. We call this a toppling. Suppose
that these choices are sufficiently thorough in the sense that whenever a site
attains mass > 1, it is eventually chosen for toppling at some later time. Then we
have the following version of the abelian property.

Lemma 2.1. For any initial σ0 : Zd → R with finite total mass, and any thorough
sequence of topplings, the mass function converges pointwise to a function σ∞ :
Zd → R satisfying 0 ≤ σ∞ ≤ 1. Any site z satisfying σ0(z) < σ∞(z) < 1 has a
neighboring site y satisfying σ∞(y) = 1.

Proof. Let uk(x) be the total amount of mass emitted from x during the first k
topplings, and let σk = σ0 + ∆uk be the resulting mass configuration. Since uk is
increasing in k, we have uk ↑ u∞ for some u∞ : V → [0,∞]. To rule out the value
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∞, consider the quadratic weight

Q(σk) :=
∑
x∈Zd

(σk(x)− σ0(x))|x|2 =
∑
x∈Zd

uk(x).

To see the second equality, note that Q increases by h every time we topple mass
h. The set {σk ≥ 1} is connected and contains 0, and has cardinality bounded by
the total mass of σ0, so it is bounded. Moreover, every site z with σk(z) > σ0(z)
has a neighbor y with σk(y) ≥ 1. Hence supkQ(σk) <∞, which shows that u∞ is
bounded.

Finally, σ∞ := limσk = lim(σ0 + ∆uk) = σ0 + ∆u∞. By thoroughness, for each
x ∈ Zd we have σk(x) ≤ 1 for infinitely many k, so σ∞ ≤ 1. �

The picture is thus of a set of “filled” sites (σ∞(z) = 1) bordered by a strip of
partially filled sites (σ0(z) < σ∞(z) < 1). Every partially filled site has a filled
neighbor, so the thickness of this border strip is only one lattice spacing. Think of
pouring maple syrup over a waffle: most squares receiving syrup fill up completely
and then begin spilling over into neighboring squares. On the boundary of the
region of filled squares is a strip of squares that fill up only partially (Figure 3).

The limit u∞ is called the odometer of σ0. The preceding proof did not show
that u∞ and σ∞ are independent of the thorough toppling sequence. This is a
consequence of the next result.

Least Action Principle For The Divisible Sandpile. For any σ0 : Z2 →
[0,∞) with finite total mass, and any w : V → [0,∞) such that

σ +
1

2d
∆w ≤ 1 (5)

we have w ≥ u∞ for any thorough toppling sequence. Thus,

u∞(x) = inf{w(x) : w : V → [0,∞) satisfies (5)}. (6)

Proof. With the notation of the preceding proof, suppose for a contradiction that
uk 6≤ w for some k. For the miminal such k, the functions uk and uk−1 agree
except at xk, hence

1 =
(
σ +

1

2d
∆uk

)
(xk) <

(
σ +

1

2d
∆w
)

(xk) ≤ 1 ,

which yields the required contradiction. �

2.1. The superharmonic tablecloth. The variational problem (6) has an equiv-
alent formulation:

Lemma 2.2. Let γ : Zd → R satisfy 1
2d∆γ = σ0− 1. Then the odometer u of (6)

is given by
u = s− γ

where
s(x) = inf{f(x) | f ≥ γ and ∆f ≤ 0}. (7)

Proof. f is in the set on the right side of (7) if and only if w := f − γ is in the set
on the right side of (6). �
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Figure 2. The obstacles γ corresponding to starting mass 1 on
each of two overlapping disks (top) and mass 100 on each of two
nonoverlapping disks.

The function γ is sometimes called the obstacle, and the minimizing function s
in (7) called the solution to the obstacle problem. To explain this terminology,
imagine the graph of γ as a fixed surface (for instance, the top of a table), and the
graph of f as a surface that can vary (a tablecloth). The tablecloth is constrained
to stay above the table (f ≥ γ) and is further constrained to be superharmonic
(∆f ≤ 0), which in particular implies that f has no local minima. Depending on
the shape of the table γ, these constraints may force the tablecloth to lie strictly
above the table in some places.

The solution s is the lowest possible position of the tablecloth. The set where
strict inequality holds

D := {x ∈ Zd : s(x) > γ(x)}.

is called the noncoincidence set. In terms of the divisible sandpile, the odometer
function u is the gap s − γ between tablecloth and table, and the set {u > 0} of
sites that topple is the noncoincidence set.

2.2. Building the obstacle. The reader ought now be wondering, given a con-
figuration σ0 : Zd → [0,∞) of finite total mass, what the corresponding obstacle
γ : Zd → R looks like. The only requirement on γ is that it has a specified discrete
Laplacian, namely

1

2d
∆γ = σ0 − 1.

Does such γ always exist?
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Given a function f : Zd → R we would like to construct a function F such that
∆F = f . The most straightforward method is to assign arbitrary values for F on
a pair of parallel hyperplanes, from which the relation ∆F = f determines the
other values of F uniquely.

This method suffers from the drawback that the growth rate of F is hard to
control. A better method uses what is called the Green function or fundamen-
tal solution for the discrete Laplacian ∆. This is a certain function g : Zd → R
whose discrete Laplacian is zero except at the origin.

1

2d
∆g(x) = −δ0(x) =

{
−1 x = 0

0 x 6= 0.
(8)

If f has finite support, then we can construct F as a convolution

F (x) = −f ∗ g := −
∑
y∈Zd

f(y)g(x− y)

in which only finitely many terms are nonzero. (The condition that f has finite
support can be relaxed to fast decay of f(x) as |x| → ∞, but we will not pursue
this.) Then for all x ∈ Zd we have

∆F (x) =
∑
y∈Zd

f(y)δ0(x− y) = f(x)

as desired. By controlling the growth rate of the Green function g, we can control
the growth rate of F . The minus sign in equation (8) is a convention: as we will
now see, with this sign convention g has a natural definition in terms of random
walk.

Let ξ1, ξ2, . . . be a sequence of independent random variables each with the
uniform distribution on the set E = {±e1, . . . ,±ed}. For x ∈ Zd, the sequence

Xn = ξ1 + . . .+ ξn, n ≥ 0

is called simple random walk started from the origin in Zd: it is the location
of a walker who has wandered from 0 by taking n independent random steps,
choosing each of the 2d coordinate directions ±ei with equal probability 1/2d at
each step.

In dimensions d ≥ 3 the simple random walk is transient: its expected number
of returns to the origin is finite. In these dimensions we define

g(x) :=
∑
n≥0

P(Xn = x),

a function known as the Green function of Zd. It is the expected number of
visits to x by a simple random walk started at the origin in Zd. The identity

− 1

2d
∆g = δ0 (9)
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is proved by conditioning on the first step X1 of the walk:

g(x) = P (X0 = x) +
∑
n≥1

∑
e∈E

P (Xn = x|X1 = e)P (X1 = e).

= δ0(x) +
∑
n≥1

∑
e∈E

P (Xn−1 = x− e) 1

2d

Interchanging the order of summation, the second term on the right equals 1
2d

∑
y∼x g(y),

and (9) now follows by the definition of the Laplacian ∆.
The case d = 2 is more delicate because the simple random walk is recurrent:

with probability 1 it visits x infinitely often, so the sum defining g(x) diverges. In
this case, g is defined instead as

g(x) =
∑
n≥0

(P(Xn = x)− P(Xn = 0)) .

One can show that this sum converges and that the resulting function g : Z2 → R
satisfies (9); see [72]. The function −g is called the recurrent potential kernel
of Z2.

Convolving with the Green function enables us to construct functions on Zd
whose discrete Laplacian is any given function with finite support. But we want
more: In Lemma 2.2 we seek a function γ satisfying ∆γ = σ − 1, where σ has
finite support. Fortunately, there is a very nice function whose discrete Laplacian
is a constant function, namely the squared Euclidean norm

q(x) = |x|2 :=
d∑
i=1

x2i .

(In fact, we implicitly used the identity 1
2d∆q ≡ 1 in the quadratic weight argument

for Lemma 2.1.) We can therefore take as our obstacle the function

γ = −q − (g ∗ σ). (10)

In order to determine what happens when we drape a superharmonic tablecloth
over this particular table γ, we should figure out what γ looks like! In particular,
we would like to know the asymptotic order of the Green function g(x) when x is
far from the origin. It turns out [22, 38, 73] that

g(x) = (1 +O(|x|−2))G(x)

where G is the spherically symmetric function

G(x) :=

{
− 2
π log |x|, d = 2;

ad|x|2−d, d ≥ 3.
(11)

(The constant ad = 2
(d−2)ωd

where ωd is the volume of the unit ball in Rd.) As we

will now see, this estimate in combination with − 1
2d∆g = δ0 is a powerful package.

We start by analyzing the initial condition σ = mδ0 for large m.
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Figure 3. Divisible sandpile in Z2 started from mass m = 1600
at the origin. Each square is colored blue if it fills completely, red
if it fills only partially. The black circles are centered at the origin,
of radius r ± 2 where πr2 = m.

2.3. Point sources. Pour m grams of maple syrup into the center square of a
very large waffle. Supposing each square can hold just 1 gram of syrup before
it overflows, distributing the excess equally among the four neighboring squares,
What is the shape of the resulting set of squares that fill up with syrup?

Figure 3 suggests the answer is “very close to a disk”. Being mathematicians,
we wish to quantify “very close”, and why stop at two-dimensional waffles? Let
B(0, r) be the Euclidean ball of radius r centered at the origin in Rd.

Theorem 2.3. [46] Let Dm = {σ∞ = 1} be the set of fully occupied sites for the
divisible sandpile started from mass m at the origin in Zd. There is a constant
c = c(d), such that

B(0, r − c) ∩ Zd ⊂ Dm ⊂ B(0, r + c)

where r is such that B(0, r) has volume m. Moreover, the odometer u∞ satisfies

u∞(x) = mg(x) + |x|2 −mg(re1)− r2 +O(1) (12)

for all x ∈ B(0, r + c) ∩ Zd, where the constant in the O depends only on d.

The idea of the proof is to use Lemma 2.2 to write the odometer function as

u∞ = s− γ
for an obstacle γ with discrete Laplacian 1

2d∆γ = mδ0 − 1. What does such an
obstacle look like?
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Recalling that the Euclidean norm |x|2 and the discrete Green function g have
discrete Laplacians 1 and −δ0, respectively, a natural choice of obstacle is

γ(x) = −|x|2 −mg(x). (13)

The claim of (12) is that u(x) is within an additive constant of γ(re1)− γ(x). To
prove this one uses two properties of γ: it is nearly spherically symmetric (because
g is!) and it is maximized near |x| = r. From these properties one deduces that s
is nearly a constant function, and that {s > γ} is nearly the ball B(0, r) ∩ Zd.

The Euclidean ball as a limit shape is an example of universality: Although
our topplings took place on the cubic lattice Zd, if we take the total mass m→∞
while zooming out so that the cubes of the lattice become infinitely small, the
divisible sandpile assumes a perfectly spherical limit shape. Figure 1 strongly
suggests that the abelian sandpile, with its indivisible grains of sand, does not
enjoy such universality. However, discrete particles are not incompatible with
universality, as the next two examples show.

3. Internal DLA

Figure 4. An internal DLA cluster in Z2. The colors indicate
whether a point was added to the cluster earlier or later than ex-
pected: the random site x(j) where the j-th particle stops is colored
red if π|x(j)|2 > j, blue otherwise.

Let m ≥ 1 be an integer. Starting with m particles at the origin in the d-
dimensional integer lattice Zd, let each particle in turn perform a simple random
walk until reaching an unoccupied site; that is, the particle repeatedly jumps to
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an nearest neighbor chosen independently and uniformly at random, until it lands
on a site containing no other particles.

This procedure, known as internal DLA, was proposed by Meakin and Deutch
[54] and independently by Diaconis and Fulton [18]. It produces a random set Am
of m occupied sites in Zd. This random set is close to a ball, in the following sense.
Let r be such that the Euclidean ball B(0, r) of radius r has volume m. Lawler,
Bramson and Griffeath [42] proved that for any ε > 0, with probability 1 it holds
that

B(0, (1− ε)r) ∩ Zd ⊂ Am ⊂ B(0, (1 + ε)r) for all sufficiently large m.

A sequence of improvements followed, showing that the fluctuations of Am around
B(0, r) are logarithmic in r [40, 2, 3, 4, 31, 32, 33].

4. Rotor-routing: derandomized random walk

In a rotor-router walk on a graph, the successive exits from each vertex follow
a prescribed periodic sequence. Walks of this type were studied in [75] as a model
of mobile agents exploring a territory, and in [65] as a model of self-organized
criticality. Propp [67] proposed rotor walk as a derandomization of random walk,
a perspective explored in [14, 28].

In the case of the square grid Z2, each site has a rotor pointing North, East,
South or West. A particle starts at the origin; during each time step, the rotor at
the particle’s current location rotates 90 degrees clockwise, and the particle takes
a step in the direction of the newly rotated rotor.

In rotor aggregation, we start with n particles at the origin; each particle in
turn performs rotor-router walk until it reaches a site not occupied by any other
particles. Importantly, we do not reset the rotors between walks! Let Rn denote
the resulting region of n occupied sites in Z2. For example, if all rotors initially
point north, the sequence will begin R1 = {0}, R2 = {0, e1}, R3 = {0, e1,−e2}.
The region R106 is pictured in Figure 5. The limiting shape is again a Euclidean
ball [46].

5. Multiple sources; Quadrature domains

The Euclidean ball as a limiting shape is not too hard to guess. But what if
the particles start at two different points of Zd? For example, fix an integer r ≥ 1
and a positive real number a, and start with m =

⌊
ωd(ar)

d
⌋

particles at each of
re1 and −re1. Alternately release a particle from re1 and let it perform simple
random walk until it finds an unoccupied site, and then release a particle from
−re1 and let it perform simple random walk until it finds an unoccupied site. The
result is a random set Am,m consisting of 2m occupied sites in Zd.

If a < 1, then the distance between the source points ±re1 is so large compared
to the number of particles that with high probability, the particles starting at re1
do not interact with those starting at −re1. In this case Am,m is a disjoint union
of two ball-shaped clusters each of size m. On the other hand, if a � 1, so that
the two source points are very close together relative to the number of particles
released, then the cluster Am,m will look like a single ball of size 2m. In between
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Figure 5. Rotor-router aggregate of one million particles started
at the origin in Z2, with all rotors initially pointing North. Each
site is colored according to the final direction of its rotor (North,
East, South or West).

these extreme cases there is a more interesting behavior, described by the following
theorem.

Theorem 5.1. [47] There exists a deterministic domain D ⊂ Rd such that with
probability 1

1

r
Am,m → D (14)

as r →∞.

The precise meaning of the convergence of domains in (14) is the following:
given Dr ⊂ 1

rZ
d and Ω ⊂ Rd, we write Dr → Ω if for all ε > 0 we have

Ωε ∩
1

r
Zd ⊂ Dr ⊂ Ωε (15)



12 LIONEL LEVINE AND YUVAL PERES

Figure 6. Rotor-router aggregation started from two point
sources in Z2. Its scaling limit is a two-point quadrature domain
in R2, satisfying (16).

for all sufficiently large r, where

Ωε = {x ∈ Ω | B(x, ε) ⊂ Ω}

and

Ωε = {x ∈ Rd | B(x, ε) 6⊂ Ωc}
are the inner and outer ε-neighborhoods of D.

The limiting domain D is called a quadrature domain because it satisfies∫
D
hdx = h(−e1) + h(e1) (16)

for all integrable harmonic functions h on D, whre dx is Lebesgue measure on
Rd. This identity is analogous to the mean value property

∫
B hdx = h(0) for

integrable harmonic functions on the ball B of unit volume centered at the origin.
In dimension d = 2, the domain D has a much more explicit description: Its

boundary in R2 is the quartic curve(
x2 + y2

)2 − 2a2
(
x2 + y2

)
− 2(x2 − y2) = 0. (17)

When a = 1, the curve (17) becomes

(x2 + y2 − 2x)(x2 + y2 + 2x) = 0

which describes the union of two unit circles centered at ±e1 and tangent at the
origin. This case corresponds to two clusters that just barely interact, whose
interaction is small enough that we do not see it in the limit. When a � 1, the
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term 2(x2− y2) is much smaller than the others, so the curve (17) approaches the
circle

x2 + y2 − 2a2 = 0.

This case corresponds to releasing so many particles that the effect of releasing
them alternately at ±re1 is nearly the same as releasing them all at the origin.

Theorem 5.1 extends to the case of any k point sources in Rd as follows.

Theorem 5.2. [47] Fix x1, . . . , xk ∈ Rd and λ1, . . . , λk > 0. Let x::i be a closest
site to xi in the lattice 1

nZ
d, and let

Dn = {occupied sites for the divisible sandpile}
Rn = {occupied sites for rotor aggregation}
In = {occupied sites for internal DLA}

started in each case from
⌊
λin

d
⌋

particles at each site x::i in 1
nZ

d.

Then there is a deterministic set D ⊂ Rd such that

Dn, Rn, In → D

where the convergence is in the sense of (15); the convergence for Rn holds for
any initial setting of the rotors; and the convergence for In is with probability 1.

The limiting set D is called a k-point quadrature domain. It is characterized
up to measure zero by the inequalities∫

D
hdx ≤

k∑
i=1

λih(xi)

for all integrable superharmonic functions h on D, where dx is Lebesgue measure
on Rd. The subject of quadrature domains in the plane begins with Aharonov
and Shapiro [1] and was developed by Gustafsson [24], Sakai [69, 70] and others.
The boundary of a quadrature domain for k point sources in the plane lies on an
algebraic curve of degree 2k. In dimensions d ≥ 3, it is not known whether the
boundary of D is an algebraic surface!

6. Scaling limit of the abelian sandpile on Z2

Now that we have seen an example of a universal scaling limit, let us return to
our very first example, the abelian sandpile with discrete particles.

Take as our underlying graph the square grid Z2, start with n particles at
the origin and stabilize. The resulting configuration of sand appears to be non-
circular (Figure 1)—so we do not the scaling limit to be universal like the one in
Theorem 5.2. In a breakthrough work [58], Pegden and Smart proved existence of
its scaling limit as n→∞. To state their result, let

sn = nδ0 + ∆un

be the sandpile formed from n particles at the origin in Zd, and consider the
rescaled sandpile

s̄n(x) = sn(n1/dx).
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Theorem 6.1. [58] There is a function s : Rd → R such that s̄n → s weakly-∗ in
L∞(Rd).

The weak-∗ convergence of s̄n in L∞ means that for every ball B(x, r), the

average of sn over Zd ∩ n1/dB(x, r) tends as n → ∞ to the average of s over
B(x, r).

The limiting sandpile s is lattice dependent. Examining the proof in [58] reveals
that the lattice dependence enters in the following way. Each real symmetric d×d
matrix A defines a quadratic function qA(x) = 1

2x
TAx and an associated sandpile

sA : Zd → Z
sA = ∆ dqAe .

For each matrix A, the sandpile sA either stabilizes locally (that is, every site
of Zd topples finitely often) or fails to stabilize (in which case every site topples
infinitely often). The set of allowed Hessians Γ(Zd) is defined as the closure
(with respect to the Euclidean norm ‖A‖22 = Tr(ATA)) of the set of matrices A
such that sA stabilizes locally.

One can convert the Least Action Principle into an obstacle problem analogous
to Lemma 2.2 with an additional integrality constraint. The limit of these discrete
obstacle problems on 1

nZ
d as n→∞ is the following variational problem on Rd.

Limit of the least action principle.

u = inf
{
w ∈ C(Rd) | w ≥ −G and D2(w +G) ∈ Γ(Zd)

}
. (18)

Here G is the fundamental solution of the Laplacian in Rd. The infimum is
pointwise, and the minimizer u is related to the the sandpile odometers un by

lim
n→∞

1

n
un(n1/2x) = u(x) +G(x).

The Hessian constraint in (18) is interpreted in the sense of viscosity:

D2ϕ(x) ∈ Γ(Zd)

whenever ϕ is a C∞ function touching w + G from below at x (that is, ϕ(x) =
w(x) +G(x) and ϕ− (w +G) has a local maximum at x).

The obstacle G in (18) is a spherically symmetric function on Rd, so the lattice-
dependence arises solely from Γ(Zd). Put another way, the set Γ(Zd) is a way
of quantifying which features of the lattice Zd are still detectable in the limit of
sandpiles as the lattice spacing shrinks to zero.

An explicit description of Γ(Z2) appears in [45] (see Figure 7), and explicit
fractal solutions of the sandpile PDE

D2u ∈ ∂Γ(Z2)

are constructed in [44]. See [59] for images of Γ(L) for some other two-dimensional
lattices L.
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(a) (b) (c)

Figure 7. (a) According to the main theorem of [45], the set of
allowed Hessians Γ(Z2) is the union of slope 1 cones based at the
circles of an Apollonian circle packing in the plane of 2× 2 real
symmetric matrices of trace 2. (b) The same set viewed from above:
Color of point (a, b) indicates the largest c such that

[
c−a b
b c+a

]
∈

Γ(Z2). The rectangle shown, 0 ≤ a ≤ 2, 0 ≤ b ≤ 4 extends
periodically to the entire plane. (c) Close-up of the lower left corner
0 ≤ a ≤ 1, 0 ≤ b ≤ 2.

7. The sandpile group of a finite graph

Let G = (V,E) be a finite connected graph and fix a sink vertex z ∈ V . A
stable sandpile is now a map s : V \ {z} → N satisfying s(x) < deg(x) for all
x ∈ V \ {z}. As before, sites x with s(x) ≥ deg(x) topple by sending one particle
along each edge incident to x, but now particles falling into the sink disappear.

We define a Markov chain on the set of stable sandpiles as follows: at each time
step, add one sand grain at a vertex of V \ {z} selected uniformly at random, and
then perform all possible topplings until the sandpile is stable. Recall that a state
s in a finite Markov chain is called recurrent if whenever s′ is reachable from
s then also s is reachable from s′. Dhar [15] observed that the operation ax of
adding one particle at vertex x and then stabilizing is a permutation of the set
Rec(G, z) of recurrent sandpiles. These permutations obey the relations

axay = ayax and adeg(x)x =
∏
u∼x

au

for all x, y ∈ V \{z}. The subgroupK(G, z) of the permutation group Sym(Rec(G, z))
generated by {ax}x 6=z is called the sandpile group of G. Although the set
Rec(G, z) depends on the choice of sink vertex, the sandpile groups for different
choices of sink are isomorphic (see, e.g., [27, 29]).

The sandpile groupK(G, z) has a free transitive action on Rec(G, z), so #K(G, z) =
#Rec(G, z). One can use rotor-routing to define a free transitive action of K(G, z)
on the set of spanning trees of G [27]. In particular, the number of spanning trees
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Figure 8. Identity elements of the sandpile group Rec([0, n]2, z)
of the n × n grid graph with sink at the wired boundary (i.e., all
boundary vertices are identified to a single vertex z), for n = 198
(left) and n = 521.

also equals #K(G, z). The most important bijection between recurrent sandpiles
and spanning trees uses Dhar’s burning algorithm [15, 51].

A group operation ⊕ can also be defined directly on Rec(G, z), namely s ⊕ s′

is the stabilization of s + s′. Then s 7→
∏
x a

s(x)
x defines an isomorphism from

(Rec(G, z),⊕) to the sandpile group.

8. Loop erasures, Tutte polynomial, Unicycles

Fix an integer d ≥ 2. The looping constant ξ = ξ(Zd) is defined as the
expected number of neighbors of the origin on the infinite loop-erased random
walk in Zd. In dimensions d ≥ 3, this walk can be defined by erasing cycles from
the simple random walk in chronological order. In dimension 2, one first defines
the loop erasure of the simple random walk stopped on exiting the box [−n, n]2

and shows that the resulting measures converge weakly [39, 41].
A unicycle is a connected graph with the same number of edges as vertices.

Such a graph has exactly one cycle (Figure 9). If G is a finite (multi)graph, a
spanning subgraph of G is a graph containing all of the vertices of G and a subset
of the edges. A uniform spanning unicycle (USU) of G is a spanning subgraph
of G which is a unicycle, selected uniformly at random.

An exhaustion of Zd is a sequence V1 ⊂ V2 ⊂ · · · of finite subsets such that⋃
n≥1 Vn = Zd. Let Gn be the multigraph obtained from Zd by collapsing V c

n to
a single vertex zn, and removing self-loops at zn. We do not collapse edges, so
Gn may have edges of multiplicity greater than one incident to zn. Theorem 8.1,
below, gives a numerical relationship between the looping constant ξ and the mean
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unicycle length

λn = E [length of the unique cycle in a USU of Gn] .

as well as the mean sandpile height

ζn = E [number of particles at 0 in a uniformly random recurrent sandpile on Vn] .

To define the last quantity of interest, recall that the Tutte polynomial of a
finite (multi)graph G = (V,E) is the two-variable polynomial

T (x, y) =
∑
A⊂E

(x− 1)c(A)−1(y − 1)c(A)+#A−n

where c(A) is the number of connected components of the spanning subgraph
(V,A). Let Tn(x, y) be the Tutte polynomial of Gn. The Tutte slope is the ratio

τn =

∂Tn
∂y (1, 1)

(#Vn)Tn(1, 1)
.

A combinatorial interpretation of τn is the number of spanning unicycles of Gn
divided by the number of rooted spanning trees of Gn.

For a finite set V ⊂ Zd, write ∂V for the set of sites in V c adjacent to V .

Theorem 8.1. [48] Let {Vn}n≥1 be an exhaustion of Zd such that V1 = {0},
#Vn = n, and #(∂Vn)/n → 0. Let τn, ζn, λn be the Tutte slope, sandpile mean
height and mean unicycle length in Vn. Then the following limits exist:

τ = lim
n→∞

τn, ζ = lim
n→∞

ζn, λ = lim
n→∞

λn.

Their values are given in terms of the looping constant ξ = ξ(Zd) by

τ =
ξ − 1

2
, ζ = d+

ξ − 1

2
, λ =

2d− 2

ξ − 1
. (19)

The two-dimensional case is of particular interest, because the quantities ξ, τ, ζ, λ
rather intriguingly come out to be rational numbers.

Corollary 8.2. In the case d = 2, we have [37, 66, 13]

ξ =
5

4
and ζ =

17

8
.

Hence by Theorem 8.1,

τ =
1

8
and λ = 8.

The value ζ(Z2) = 17
8 was conjectured by Grassberger (see [16]). Poghosyan

and Priezzhev [62] observed the equivalence of this conjecture with ξ(Z2) = 5
4 , and

shortly thereafter three proofs [66, 37, 13] appeared.
The proof that ζ(Z2) = 17

8 by Kenyon and Wilson [37] uses the theory of
vector bundle Laplacians [36], while the proof by Poghosyan, Priezzhev and Ruelle
[66] uses monomer-dimer calculations. Earlier, Jeng, Piroux and Ruelle [30] had
reduced the computation of ζ(Z2) to evaluation of a certain multiple integral which
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Figure 9. A spanning unicycle of the 8 × 8 square grid. The
unique cycle is shown in red.

they evaluated numerically as 0.5± 10−12. This integral was proved to equal 1
2 by

Caracciolo and Sportiello [13], thus providing another proof.
All three proofs involve powers of 1/π which ultimately cancel out. For i =

0, 1, 2, 3 let pi be the probability that a uniform recurrent sandpile in Z2 has
exactly i grains of sand at the origin. The proof of the distribution

p0 =
2

π2
− 4

π3

p1 =
1

4
− 1

2π
− 3

π2
+

12

π3

p2 =
3

8
+

1

π
− 12

π3

p3 =
3

8
− 1

2π
+

1

π2
+

4

π3

is completed in [66, 37], following work of [51, 64, 30]. In particular, ζ(Z2) =
p1 + 2p2 + 3p3 = 17

8 .

Kassel and Wilson [35] give a new and simpler method for computing ζ(Z2),
relying on planar duality, which also extends to other lattices. For a survey of
their approach, see [34].

The objects we study on finite subgraphs of Zd also have “infinite-volume limits”
defined on Zd itself: Lawler [39] defined the infinite loop-erased random walk,
Pemantle [57] defined the uniform spanning tree in Zd, and Athreya and Járai [5]
defined the infinite-volume stationary measure for sandpiles in Zd. The latter limit
uses the burning bijection of Majumdar and Dhar [51] and the one-ended property
of the trees in the uniform spanning forest [57, 9]. As for the Tutte polynomial,
the limit

t(x, y) := lim
n→∞

1

n
log Tn(x, y)
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can be expressed in terms of the pressure of the Fortuin-Kasteleyn random cluster
model. By a theorem of Grimmett (see [23, Theorem 4.58]) this limit exists for all
real x, y > 1. Theorem 8.1 concerns the behavior of this limit as (x, y) → (1, 1);
indeed, another expression for the Tutte slope is

τn =
∂

∂y

[
1

n
log Tn(x, y)

]∣∣∣∣
x=y=1

.

9. Open problems

We conclude by highlighting a few of the key open problems in this area.

(1) Suppose s(x)x∈Z2 are independent and identically distributed random vari-
ables taking values in {0, 1, 2, 3, 4}. Viewing s as a sandpile, the event that
every site of Z2 topples infinitely often is invariant under translation, so it
has probability 0 or 1. We do not know of an algorithm to decide whether
this probability is 0 or 1! See [19].

(2) Does the rotor-router walk in Z2 with random initial rotors (independently
North, East, South, or West, each with probability 1

4) return to the origin
with probability 1? The number of sites visited by such a walk in n steps
is predicted to be of order n2/3 [63]. For a lower bound of that order, see
[21]. As noted there, even an upper bound of o(n) would imply recurrence,
which is not known!

(3) Recall that the weak-∗ convergence in Theorem 6.1 means that the average
height of the sandpile sn in any ball B converges as the lattice spacing
shrinks to zero. A natural refinement would be to show that for any ball
B and any integer j, the fraction of sites in B with j particles converges.
Understanding the scaling limit of the sandpile identity elements (Figure 8)
is another appealing problem.

(4) By [45], the maximal elements of Γ(Z2) correspond to the circles in the
Apollonian band packing of R2. Because the radius and the coordinates of
the center of each such circle are rational numbers, each maximal element
of Γ(Z2) is a matrix with rational entries. Describe the maximal elements
of Γ(Zd) for d ≥ 3. Are they isolated? Do they have rational entries?
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PROBABILISTIC COMBINATORICS AND THE RECENT WORK

OF PETER KEEVASH

W.T. GOWERS

1. The probabilistic method

A graph is a collection of points, or vertices, some of which are joined together
by edges. Graphs can be used to model a wide range of phenomena: whenever you
have a set of objects such that any two may or may not be related in a certain
way, then you have a graph. For example, the vertices could represent towns and
the edges could represent roads from one town to another, or the vertices could
represent people, with an edge joining two people if they know each other, or the
vertices could represent countries, with an edge joining two countries if they border
each other, or the vertices could represent websites, with edges representing links
from one site to another (in this last case the edges have directions – a link is from
one website to another – so the resulting mathematical structure is called a directed
graph).

Mathematically, a graph is a very simple object. It can be defined formally as
simply a set V of vertices and a set E of unordered pairs of vertices from V . For
example, if we take V = {1, 2, 3, 4} and E = {12, 23, 34, 14} (using ab as shorthand
for {a, b}), then we obtain a graph known as the 4-cycle.

Despite the simplicity and apparent lack of structure of a general graph, there
turn out to be all sorts of interesting questions one can ask about them. Here is a
classic example.

Question 1.1. Does there exist a triangle-free graph with chromatic number 2016?

Let me quickly explain what the various terms in the question mean. A triangle
in a graph is, as one would expect, a triple of vertices x, y, z such that all of xy, yz
and xz are edges. A graph is called triangle free if it contains no triangles. A
proper colouring of a graph is a way of assigning colours to its vertices such that
no two vertices of the same colour are joined by an edge. The chromatic number of
a graph is the smallest number of colours you need in a proper colouring. (One of
the most famous results of graph theory, the four-colour theorem, asserts that any
graph that you can draw in the plane without any of its edges crossing each other
has chromatic number at most 4. This can be interpreted as saying that if you
want to colour the countries in a map in such a way that no two adjacent countries
have the same colour, then four colours will suffice.)

How might one answer Question 1.1? The obvious thing would be to sit down
and try to construct one. But this seems to be rather hard. How can we ensure
that plenty of colours are needed? The only method that is immediately apparent
is to have a large set of vertices that are all joined to each other by edges, since
then all those vertices have to have different colours. But of course, if we do that,
then we massively violate the other main constraint, that the graph should contain
no triangles.

1
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That suggests that perhaps one can always properly colour a triangle-free graph
with a small number of colours. So how might we do that? Perhaps we could list
the vertices in some order and colour them in that order, using new colours only
when forced to do so. We could colour the first vertex red, then the second blue (if
it is joined to the first). The third would be joined to at most one of the first two,
so could be coloured either red or blue. And so on.

If one keeps going like this, one soon discovers that the number of colours one
needs can grow without limit. Unfortunately, this does not solve the problem: it
merely shows that choosing the colours in a greedy way does not work.

Although it is not the only way of solving the problem, there is an extraordinarily
simple and powerful idea that does the job. It is to take an appropriate random
graph. (This hint does not entirely spoil the problem, since it is still a very nice
challenge to come up with an explicit construction of a graph that works.)

Here is how the argument works. Let p be a probability that we will choose
later. Now let G be a random graph where we join a vertex x to a vertex y with
probability p, making all choices independently.

If there are n vertices, then the expected number of triangles in the graph is
at most p3

(
n
3

)
. This means that it is possible to make the graph triangle free by

deleting at most p3
(
n
3

)
edges.

We now make two simple observations. Recall that an independent set in a
graph is a set of vertices, no two of which are joined by an edge. The very simple
observation is that in a proper colouring, the vertices of any one colour must form
an independent set, so if a graph has n vertices and chromatic number k, then it
must have an independent set of size at least n/k. Therefore, to prove that the
chromatic number of a graph is large, it is sufficient to find a small upper bound on
the independence number of the graph – that is, the size of its largest independent
set.

The second observation is that if every set of m vertices contains more than
p3

(
n
3

)
edges, then we can remove an arbitrary set of p3

(
n
3

)
edges and will be left

with a graph that has independence number greater than m. So our task is reduced
to proving that every reasonably large set of vertices includes a reasonably large
number of edges.

At this point I will not give full details. I will just say that the probability q(m, r)
that some given set of m vertices spans fewer than r edges is given by the binomial
distribution B(

(
m
2

)
, p), for which we have standard estimates. So to ensure that

with probability greater than 1/2 every set of m vertices spans at least r edges,
one needs to choose the parameters in such a way that

(
n
m

)
q(m, r) < 1/2. This is

not hard to do, and it leads to a proof that there exists a triangle-free graph with
chromatic number proportional to

√
n/ log n. Finally, choosing n large enough, we

obtain a triangle-free graph with chromatic number at least 2016. (If we want,
we can remove edges from it until it has chromatic number exactly 2016, thereby
answering Question 1.1 exactly as it was asked.)

2. When is the probabilistic method appropriate?

This is not an easy question to answer with complete precision, but there are
some useful rough guidelines that one can give. Take the proof I have just sketched.
After the two simple observations our aim became to find a triangle-free graph with
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the property that for any set of m vertices there would be at least r edges between
those vertices. This task has the following four properties.

• Graphs are very structureless objects, in the sense that a general graph has
very few constraints that it needs to satisfy.

• It seems to be hard to define such a graph explicitly.
• We want to scatter the edges around very evenly.
• We want to do that very efficiently (so that we don’t end up choosing so
many edges that they bunch together to form triangles).

In such a situation, choosing edges at random makes very good sense: somehow, it
allows us to do a lot of tasks in parallel, each with a very high chance of success.

Contrast that with a task such as solving the famous Burnside problem: does
there exist a prime p and an infinite but finitely generated group such that every
element has order p? It would be ludicrous to suggest picking a random group
as a possible solution. That is partly because for an object to be a group, it has
to satisfy a set of axioms that impose significantly greater constraints than those
of a graph, where one simply chooses an arbitrary set of edges. Indeed, it is far
from obvious what a good model for a random group should be. (There are in
fact some very interesting models introduced by Gromov where one chooses a set
of generators and a random set of relations of a certain length, but this model of
random groups is of no help for the Burnside problem.) It is also because for the
Burnside problem there is an obvious construction: choose the free group G(k, p)
on k generators subject to the relations that every element has order p. This is a
well-defined group, and if such groups can be infinite, then this one must be. So
the problem boils down to showing that some G(k, p) is infinite.

There are also some intermediate problems – that is, problems that seem to have
too many constraints for probabilistic methods to be appropriate, but too few for
there to be obvious explicit constructions. An example of such a problem is the
following beautiful question. Recall that a Hamilton cycle in a graph is a cycle that
visits every vertex. That is, it is a sequence v1, v2, . . . , vn of vertices, where each
vertex is included exactly once, such that v1v2, v2v3, . . . , vn−1vn and vnv1 are all
edges.

Question 2.1. Let n = 2m + 1 be an odd integer greater than or equal to 3 and
define a graph Gn as follows. Its vertices are all subsets of {1, 2, . . . , n} of size m
or m + 1, and the edges are all pairs AB such that |A| = m, |B| = m + 1, and
A ⊂ B. Does every Gn contain a Hamilton cycle?

The graph Gn is called the middle layers graph in the discrete cube.
If one starts trying to build a Hamilton cycle in Gn, one runs into the problem of

having too much choice, and no obvious way of making it. (A natural thing to try
to do is find some sort of inductive construction, but a lot of people have tried very
hard to do this, with no success – a natural pattern just doesn’t seem to emerge
after the first few small cases.)

So there are not enough constraints to force one’s hand and in that way lead
one to a solution. At first this sounds like just the kind of situation for which the
probabilistic method was designed: why not start at a set and then keep randomly
choosing neighbouring vertices that have not yet been visited? Of course, that
cannot be the whole story, since there is no guarantee that one will not get stuck
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at some point, but perhaps one can combine this basic idea with a little bit of
backtracking here and there and end up proving the existence of a Hamilton cycle.

Unfortunately, this does not seem to work either. After a while, the constraints
start to bite, and one gets sufficiently stuck (at least potentially) that even being
allowed a little local tinkering does not allow one to proceed.

So here we have a situation that is difficult because it is somehow “intermediate”
between highly structured, where one has few options, so constructions, if they exist,
are in a certain sense easier to find, and highly unstructured, where one has so many
options that making random choices does not violate the constraints.

This well-known problem appears to have been recently solved by Torsten Mütze
(http://arxiv.org/abs/1404.4442), though I do not know to what extent his
argument has been thoroughly checked.

3. The existence of designs

A Steiner triple system is a finite set X and a collection T of triples of elements
of X with the property that every pair x, y of elements of X is contained in exactly
one triple xyz from T . One can think of it as a set of triangles that partition the
edges of the complete graph with vertex set X.

Do Steiner triple systems exist? Well, an obvious constraint is that the number
of edges in the complete graph with vertex set X should be a multiple of 3. That
is, if |X| = n, we need that 3|

(
n
2

)
. This holds if and only if n ≡ 0 or 1 mod 3.

A slightly less obvious constraint (until it is pointed out) is that n should be odd.
That is because the triangles xyz that contain a given vertex x will partition the
n− 1 edges that meet x into sets of size 2. Thus, n must, for very simple reasons,
be congruent to 1 or 3 mod 6.

When n = 1 the empty set is a trivial Steiner system. When n = 3 a single
triangle does the job. The next case, when n = 7, is more interesting: there is a
famous example known as the Fano plane. If we number its vertices from 1 to 7,
then the triples can be given as follows: 123, 246, 257, 167, 347, 356, 145. A less
mysterious definition is to take as vertices the set of all triples of 0s and 1s apart
from the triple 000, and then to take as our triple system (which must consist of
triples of these triples!) the set of all xyz such that x + y + z = 000, where the
addition is mod-2 in each coordinate. For example, one of the elements of this triple
system is the triple xyz with x = 100, y = 101 and x = 001.

Why does this work? Well it is clear that an edge xy can be contained in at
most one triple from the system, since the only possibility is the unique triple xyz
such that x + y + z = 000, which forces z to equal −(x+ y), which is the same as
x + y since addition is mod 2. The only thing that could conceivably go wrong is
if z turned out to equal x or y, but if x+ y is equal to x or y, then one of x and y
is 000, which is not allowed.

Note that this construction gives an infinite family of Steiner triple systems,
since the same proof works if we take non-zero 01-sequences of any fixed length k.
So there are Steiner triple systems for every n of the form 2k − 1. It turns out that
there are constructions similar in spirit to this one (making use of objects called
quasigroups) that prove that Steiner triple systems exist for every n that satisfies
the obviously necessary divisibility conditions – that is, for every n congruent to 1
or 3 mod 6.
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A design is a generalization of a Steiner triple system, where instead of aiming
to include every set of size 2 in exactly one set (from a carefully chosen collection)
of size 3, one wishes to include every set of size r in exactly one set of size s. People
also consider a further generalization where one wishes for every set of size r to be
contained in exactly λ sets of size s. When λ = 1, the case I shall concentrate on
here, designs are called Steiner systems.

No sooner is this definition presented, than several obvious questions immediately
arise. Here are five, in decreasing order of optimism. Let us say that a Steiner
(n, r, s)-system is a collection Σ of subsets size r of a set X of size n such that every
subset of X of size s is contained in exactly one set from Σ.

Question 3.1. If obvious necessary divisibility conditions are satisfied, does it fol-
low that a Steiner (n, r, s)-system exists?

Question 3.2. If obvious necessary divisibility conditions are satisfied and n is
sufficiently large, does it follow that a Steiner (n, r, s)-system exists?

Question 3.3. Is it the case that for all s < r there are infinitely many n such
that a Steiner (n, r, s)-system exists?

Question 3.4. Do Steiner (n, r, s)-systems exist with s arbitrarily large?

Question 3.5. Do Steiner (n, r, s)-systems exist with r arbitrarily large?

For the rest of this note I want to discuss a remarkable recent result of Peter
Keevash, but to set the scene let me give an idea of what was known before his
work.

First, it was known that Question 3.1 was too optimistic: there are triples (n, r, s)
for which no Steiner (n, r, s)-system exists even though the existence of such a
system is not ruled out on simple divisibility grounds. Second, the answer to
Question 3.5 was known to be positive: in a famous sequence of papers in the
1970s, Richard Wilson proved that for any fixed r, a Steiner (n, r, 2)-system exists
provided that n is sufficiently large and satisfies the obviously necessary divisibility
conditions. (His proof also gives a similar result for all higher values of λ.)

However, the answers to the questions in between were not known. There have
been many ingenious constructions of designs for specific values of n, r and s (and
λ if one makes that extra generalization), and a few small pairs (r, s) for which
Question 3.2 has a positive answer. But to give an idea of our level of ignorance,
no Steiner (n, r, s)-systems at all were known with s > 5. Thus, even an answer to
Question 3.4 would have been a remarkable achievement. But Keevash went much
further than this: he proved that the answer to Question 3.2 is yes! This is about
as non-incremental a result as one could imagine: going from a situation where
it was a huge struggle to prove the existence of even one design when s was even
slightly large, to proving that for each r and s the only obstacle to the existence of
a Steiner (n, r, s)-system was the trivial divisibility condition, for all but at most a
finite set of n.

4. Are probabilistic methods appropriate for the problem?

In the previous section we saw a simple algebraic construction of a family of
Steiner triple systems. That might suggest that explicit constructions are the right
way of tackling this problem, and indeed much research in design theory has con-
cerned using algebra to create interesting examples of designs.
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On the other hand, the constraints on a Steiner system are not all that strong.
Even for a triple system, if one wants to include all pairs in exactly one triple, the
constraints are very slack: there is no sense at all in which one’s moves are forced,
at least to start with.

In fact, the situation here is rather similar to the situation with the problem
about Hamilton cycles in middle-layer graphs. Suppose one just chooses sets of size
r more or less arbitrarily, but making sure that no two of them intersect in a set
of size s or more. (This ensures that no set of size s is contained in more than two
sets from our collection.) For a long time we will have no problem, but eventually
we will start to find that there are sets of size s that we do not seem to be able to
cover with a set of size r without that set overlapping too much with a set we have
already chosen. So the problem is difficult for a similar reason: there is too much
choice for algebraic constructions to be easy to discover, and too little choice for
simple probabilistic arguments to work.

Interestingly, however, it turns out that more sophisticated probabilistic argu-
ments enable one to prove the existence of collections of sets that are almost Steiner
systems. (This can mean one of two things: either one asks for no set of size s to be
covered more than once and almost all sets of size s to be covered, or one asks for
all sets of size s to be covered, and almost no sets of size s to be covered more than
once. It turns out that if you can achieve one, then you can achieve the other.)
Even more interestingly, Keevash’s proof uses an intriguing mixture of probabilis-
tic and algebraic methods, thus having the best of both worlds, and reflecting the
“intermediate” nature of the problem.

5. The Rödl nibble

Let us return to the simplest non-trivial case of our general problem, that of
Steiner triple systems. I shall give some indication of how probabilistic methods
can be used to create almost Steiner triple systems. The basic technique was
invented by Vojta Rödl, though an important precursor to it appeared in a paper
of Ajtai, Komlós and Szemerédi.

For this example, Rödl’s technique, which was dubbed the Rödl nibble, works
as follows. Let us discuss the version of the problem where we are trying to cover
all edges at least once and almost no edges more than once.

Let G0 be the complete graph on n vertices. We begin by taking a small “bite”
out of G0, by choosing triangles randomly with probability ε/(n−2) for some small
ε and removing them. The expected number of triangles we choose that contain
any given edge xy is then ε (since there are n − 2 possible z and each xyz has
a probability ε/(n − 2) of being chosen). We can in fact say more than this: the
distribution of the number of triangles we choose that contain an edge xy is Poisson
with mean ε.

Once we have done this, we will typically have covered a fraction roughly equal
to ε of all the edges of the graph. We now eliminate all the edges in all the triangles
that we have chosen and call the resulting graph G1.

We then repeat the process for G1. That is, we choose each triangle in G1

independently with probability p, for a suitably chosen p, and remove all the edges
in all the triangles we have chosen, obtaining a new graph G2. Note that none of
the triangles we choose in this second bite share an edge with any of the triangles
we chose in the first bite, since they are all triangles in G1.
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But what is a suitable probability p? There would not be a clear answer to this
question were it not for the fact that G1 has an extremely useful property that is
crucial to Rödl’s argument: with very high probability it is quasirandom. I will not
say exactly what a quasirandom graph is here, but roughly speaking a quasirandom
graph is one that behaves in many ways like a random graph of the same density. It
is a remarkable and important fact that this can be defined in a precise and useful
way – in fact, it can be defined in several ways that turn out to be equivalent, not
always for trivial reasons.

Once we know that G1 is quasirandom, we know that almost all edges will be
contained in approximately the same number of triangles in G1. If this number is
t, then we can choose the probability to be ε/t.

The Rödl nibble continues this process, showing at each stage that the graph
Gr that results after r bites have been taken is quasirandom. Eventually, one loses
control of the quasirandomness of Gr, but by that time there are so few edges that
one can simply include each remaining edge in a triangle and one will not have
covered too many edges more than once.

Rödl used a generalization of this argument to prove the existence of almost
Steiner (n, r, s)-systems for all sufficiently large n. (If you do not require an exact
Steiner system, then the divisibility constraints no longer apply.)

6. Keevash’s contribution

Before Peter Keevash’s work, the received wisdom was that with probabilistic
methods, results like that of Rödl were the best one could hope for. Indeed, one
can almost prove it: the probabilistic methods are insensitive to the divisibility
constraints, and we know that Steiner systems do not exist when the divisibility
constraints are not satisfied. Thus, it is very hard to see how a probabilistic ar-
gument could be made to work without also proving a false result. This does not
of course completely rule out using probabilistic methods – it just means that it is
very hard to see how one could use them.

A natural if hopeless-looking preliminary idea is that one might try to use prob-
abilistic methods to get almost all the way, and then some kind of clever local
backtracking and adjustments right at the end to get from an almost Steiner sys-
tem to an exact one. To oversimplify a lot, this is roughly what Keevash does. His
proof is long and complicated, and there is no hope of explaining it in a short time
to a general audience, so I will content myself with trying to explain roughly how
algebra enters the picture.

Recall the example we saw earlier of a family of Steiner triple systems. More or
less the same example (suitably generalized for the more general Steiner systems)

plays an important role in Keevash’s proof, but he uses the finite field F
2k rather

than just the Abelian group F
k
2 .

More precisely, he chooses k such that 2n ≤ 2k < 4n, takes a random map

φ : V (G) → F
2k , and lets T be the system of triangles xyz such that φ(x) + φ(y) +

φ(z) = 0. As before, no two triangles in T share an edge. He then defines G∗ to be
the graph obtained by taking all the edges in all the triangles of T . This graph has
positive density but there are many edges not included.

Next, he uses the Rödl nibble to cover the complement of G∗ as well as he can,
but for the reasons discussed above, the best he can hope for is to cover most of
the edges outside G∗ in this way. Let H be the union of all these edges. So now he
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has an almost Steiner triple system, one part of which covers G∗ and one part of
which covers H.

Why is he in any better a situation than one would be after simply applying
the Rödl nibble? This is (as it must be) the key to his argument. Whereas after
applying the Rödl nibble, there is almost nothing useful one can say about the
small graph that is not yet covered, we are now in a situation where we have the
union of a small graph (about which we can still say almost nothing) and the graph
G∗, about which it turns out that we can say rather a lot, thanks to its algebraic
definition.

What kind of thing would one like to say about G∗? To answer this question,
let us think about what we plan to do next. Let E be the small graph that consists
of the edges that we have not managed to cover. Obviously we would now like to
cover E, but there is no guarantee that E contains any triangles, so we are going to
have to be prepared to modify the system of triangles we have already chosen. We
do not touch any of the triangles used to cover H, because we do not know enough
about it, but we are happy to touch the triangles used to cover G∗, because those
are described very explicitly. As Keevash puts it in a key phrase, G∗ “carries a rich
structure of possible local modifications”. Roughly speaking, given an edge of E,
there are rather a lot of ways in which one can try to contain it in a triangle with
the other two edges in G∗, and once one does contain it, there are many ways in
which one can “repair the damage”, by removing the triangles used to cover those
other two edges and in a clever way organize for the triangles covering G∗ to be
adjusted slightly so that the edges that have just been uncovered get covered up
again.

One might ask why it is necessary for G∗ to be defined algebraically. Would it
not be possible just to take G∗ as a random union of edge-disjoint triangles? In
fact, why bother with G∗ at all? Why not just do the local modifications in H,
which will look pretty random? Would the randomness not make it highly likely
that local adjustments of the kind one wants to make are possible?

The answer to this turns out to be no. The reason is that algebraic constructions
have a lot of small structures that one does not get with random constructions. For
example, in both a random construction and an algebraic construction there will
be a large number of triples of triangles of the form xy′z′, x′yz′, x′y′z, but whereas
in the random case the probability that xyz also belongs to the system of triangles
is proportional to n−1 (because the number of triangles we choose is proportional
to n2 and the total number of triples of vertices is proportional to n3, and because
there is almost no correlation between choosing the first three triangles and the

fourth), in the algebraic case it is 1, since in F
2k the equations

x+ y′ + z′ = x′ + y + z′ = x′ + y′ + z = 0

imply the equation x+y+z = 0 (as can be seen by adding together the three sums).
Thus, an algebraically constructed triangle system is rich in configurations that look
like four alternate faces of an octahedron, and in other small configurations of a
similar kind, whereas a randomly constructed system is not.

Something like this idea works in general, but becomes much more complicated
– and it is already complicated even in the case of triangles and edges. Keevash
uses an algebraic construction to define what he calls a “template”, proves that the
template is rich in small configurations that can be used to make local adjustments,
and then uses that richness to deal with the small collection of sets that is left over
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after the Rödl nibble has done what it can. Part of the reason that the proof is
complicated is that it uses induction on s, so he has to consider simplicial complexes
and not just collections of sets of a given size. Thus, the paper is a technical tour de
force based on a beautiful underlying idea, and it solves one of the oldest problems
in combinatorics.

7. Further reading

These notes are not meant as a formal document, and therefore I have not given
a detailed bibliography. However, I should obviously give a reference to Keevash’s
original paper, or rather preprint, since it is not yet published. It is called “The
existence of designs,” and is available at http://arxiv.org/abs/1401.3665. It
contains references to many important earlier papers in the subject, some of which
I have alluded to above.

Gil Kalai presented Keevash’s work to the Bourbaki Seminar. His write-up,
which goes into more detail than I have (though nothing like full detail), can be
found here: http://www.bourbaki.ens.fr/TEXTES/1100.pdf.

Finally, an excellent introduction to the probabilistic method is the book The
Probabilistic Method, by Noga Alon and Joel Spencer: http://eu.wiley.com/

WileyCDA/WileyTitle/productCd-0470170204.html. Alternatively, it is easy to
find many good treatments of the method online.





What are Lyapunov exponents, and why are they

interesting?

Amie Wilkinson

Introduction

Taking as inspiration the Fields Medal work of Artur Avila, I’d like to
introduce you to Lyapunov exponents. My plan is to show how Lyapunov
exponents play a key role in three areas in which Avila’s results lie: smooth
ergodic theory, billiards and translation surfaces, and the spectral theory of
1-dimensional Schrödinger operators.

But first, what are Lyapunov exponents? Let’s begin by viewing them
in one of their natural habitats. The barycentric subdivision of a triangle
is a collection of 6 smaller triangles obtained by joining the midpoints of
the sides to opposite vertices. Here’s what happens when you start with an
equilateral triangle and repeatedly barycentrically subdivide:

Figure 1: Iterated barycentric subdivision, from [McM].
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As the subdivision gets successively finer, notice that many of the tri-
angles produced by subdivision get increasingly eccentric and needle-like.
We can measure the skinniness of a triangle T via the aspect ratio α(T ) =
area(T )/L(T )2, where L(T ) is the length of the long side. Suppose we la-
bel the triangles in a possible subdivision 1 through 6, roll a six-sided die
and at each stage choose a triangle to subdivide. The sequence of triangles
T1 ⊃ T2 ⊃ . . . obtained have aspect ratios α1, α2, . . ., where αn = α(Tn).

Theorem 0.1. There exists a real number χ < 0 such that almost surely:

lim
n→∞

1

n
logαn = χ.

In other words, there is a universal constant χ < 0, such that if triangles
are chosen successively by a random coin toss, then with probability 1, their
aspect ratios will tend to 0 at an exponential rate governed by exp(nχ). This
magical number χ is a Lyapunov exponent. For more details, see [BBC] and
[McM].

0.1 Cocycles, hyperbolicity and exponents

Formally, Lyapunov exponents are quantities associated to a cocycle over
a measure-preserving dynamical system. A measure-preserving dynamical
system is a triple (Ω, µ, f), where (Ω, µ) is a probability space, and f : Ω→ Ω
is a map preserving the measure µ, in the sense that µ(f−1(X)) = µ(X) for
every measurable X ⊂ Ω.

Here is a short list of examples of measure preserving systems that also
turns out to be quite useful for our purposes.

• Rotations on the circle. On the circle Ω = R/Z, let fα(x) = x +
α (mod 1), where α ∈ R is fixed. This preserves the Lebesgue-Haar
measure on µ on the circle, which assigns to an interval I its length
|I|.

• Toral automorphisms. Let Ω = T2 := R2/Z2, the 2-torus. Let

A ∈ SL(2,Z), for example A =

(
2 1
1 1

)
. Then A acts linearly on

the plane by multiplication and preserves the lattice Z2, by virtue of
having integer entries and determinant 1. It therefore induces a map
fA : T2 → T2 of the 2-torus, a group automorphism. The area µ is
preserved because det(A) = 1.
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• The Bernoulli shift. Let Ω = {1, . . . , k}N be the set of all infinite, one
sided strings ω = (ω1, ω2, · · · ) on the alphabet {1, . . . , k}. The shift
map σ : Ω → Ω is defined by σ(ω)k = ωk+1. Any probability vector
p = (p1, . . . , pk) (i.e. with pi ∈ [0, 1], and

∑
i pi = 1) defines a product

measure µ = pN on Ω. It is easy to see that the shift σ preserves µ.

A measurable map A : Ω→Md×d into the space d× d matrices (real or
complex) is called a cocycle over f . For each n > 0, and ω ∈ Ω, we write

A(n)(ω) = A(fn−1(ω)A(fn−2(ω) · · ·A(f(ω))A(ω),

where fn denotes the n-fold composition of f with itself. For n = 0, we set
A(n)(ω) = I, and if f is invertible, we also define, for n ≥ 1:

A(−n)(ω) = (A(n)(f−n(ω)))−1 = A−1(f (−n+1)(ω)) · · ·A−1(ω).

Using the language of cocycles, we can encode the behavior of a random
product of matrices. Let {A1, . . . , Ak} ⊂ Md×d be a finite collection of
matrices. Suppose we take a k-sided (Dungeons and Dragons) die and roll it
repeatedly. If the die comes up with the number j, we choose the matrix Aj ,

Figure 2: Four-sided Dungeons and Dragons die.

thus creating a sequence Aω1 , Aω2 , . . ., where ω = (ω1, ω2, . . .) ∈ {1, . . . , k}N.
This process can be packaged in a cocycle A over a measure preserving
system (Ω, µ, σ) by setting Ω = {1, . . . , k}N, µ = (p1, . . . , pk)

N, σ to be the
shift map, and A(ω) = Aω1 , where pj is the probability that the die shows j
on a roll. Then An(ω) is simply the product of the first n matrices produced
by this process.1

Another important class of cocycle is the derivative cocycle. Let f : M →
M be a C1 map on a compact d-manifold M preserving a probability mea-
sure µ. Suppose for simplicity that the tangent bundle is trivial: TM =

1More generally, suppose that η is a probability measure on the set of matrices Md×d.
The space Ω = MN

d×d of sequences (M1,M2, . . . ) carries the product (Bernoulli) mea-
sure ηN which is invariant under the shift map σ, where as above σ(M1,M2, . . . ) =
(M2,M3, . . . ). There is a natural cocycle A : Ω→Md×d given by A((M1,M2, . . . )) = M1.
The matrices A(n)(ω), for ω ∈ Ω are just n-fold random products of matrices chosen
independently with respect to the measure η.
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M × Rd. Then for each x ∈ M , the derivative Dxf : TxM → TfxM can be
written as a matrix Dxf ∈Md×d.

2 The Chain Rule implies that if A = Df is
a derivative cocycle, then Dxf

n = A(n)(x). A simple example of the deriva-
tive cocycle is provided by the toral automorphism fA : T2 → T2 described
above. Conveniently, the tangent bundle to T2 is trivial, and the derivative
cocycle is the constant cocycle DxfA = A.

Before defining Lyapunov exponents, we mention an important concept
called uniform hyperbolicity. A continuous cocycle A over a homeomorphism
f : Ω → Ω of a compact metric space Ω is uniformly hyperbolic if there
exists n ≥ 1, and for every ω ∈ Ω, there is a continuous splitting Rd =
Eu(ω)⊕ Es(ω) such that, for every ω ∈ Ω:

• A(ω)Eu(ω) = Eu(f(ω)), and A(ω)Es(ω) = Es(f(ω)),

• v ∈ Eu(ω) \ {0} =⇒ ‖A(n)(ω)v‖ ≥ 2‖v‖, and

• v ∈ Es(ω) \ {0} =⇒ ‖A(−n)(ω)v‖ ≥ 2‖v‖.

Notice that measure plays no role in the definition of uniform hyperbolicity.
It is a topological property of the cocycle. Hyperbolicity is an open prop-
erty of both the cocycle A and the dynamics f : that is, if A is uniformly
hyperbolic over f , and we make a uniformly small perturbations to both
A and f , then new cocycle will also be uniformly hyperbolic over the new
homeomorphism.

A diffeomorphism f : M →M whose derivative cocycle is uniformly hy-
perbolic is called Anosov.3 Anosov diffeomorphisms remain Anosov when
the dynamics are perturbed in a C1 way, by the openness of uniform hyper-
bolicity of cocycles.

The toral automorphism fA : T2 → T2, with A =

(
2 1
1 1

)
is Anosov;

since the derivative cocycle is constant, the splitting R2 = Eu(x) ⊕ Es(x),
for x ∈ T2 does not depend on x: Eu(x) is the expanding eigenspace for
A corresponding to the larger eigenvalue λ = (3 +

√
5)/2 > 1, and Es(x)

is the contracting eigenspace for A corresponding to the smaller eigenvalue
λ−1 = (3−

√
5)/2 < 1. In this example, we can choose n = 2.

2The case where TM is not trivializable is easily treated: either one trivializes TM
over a full measure subset of M , or one expands the definition of cocycle to include bundle
morphisms over f .

3Again, one needs to modify this definition when the tangent bundle TM is nontrivial.
The splitting of Rd in the definition is replaced by a splitting TxM = Eu(x)⊕Es(x) into
subspaces.
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A real number χ is a Lyapunov exponent for the cocycle A over (Ω, µ, f)
at ω ∈ Ω if there exists a nonzero vector v ∈ Rd, such that

lim
n→∞

1

n
log ‖A(n)(ω)v‖ = χ. (1)

Oseledec proved in 1968 [Os] that for any cocycle A over a measure pre-
serving system (Ω, µ, f) satisfying the integrability condition log+ ‖A‖ ∈
L1(Ω, µ), for µ-almost every ω ∈ Ω and for every nonzero v ∈ Rd the limit
in (1) exists. It is not hard to see that this limit can assume at most d
distinct values χ1(ω) > χ2(ω) > · · · > χk(ω)(ω), where k(ω) ≤ d.

We say that a cocycle A over (Ω, µ, f) is (measurably) hyperbolic if for
µ-a.e. ω, the exponents χj(ω) are all nonzero. Since the role played by
the measure is important in this definition, we sometimes say that µ is a
hyperbolic measure for the cocycle A. Uniformly hyperbolic cocycles over a
homeomorphism f are hyperbolic with respect to any f -invariant measure
(exercise). On the other hand, in the nonuniform setting it is possible to
be hyperbolic with respect one invariant measure, but not another.4 For
the toral automorphism fA described above, the Lyaponov exponents with
respect to any invariant measure, at any point, exist and equal ± log(λ).
This is a very special sitatuation.

Lyapunov exponents play an extensive role in the analysis of dynamical
systems. Three areas that are touched especially deeply are smooth dynam-
ics, billiards, and the spectral theory of 1-dimensional Schrödinger operators.
What follows is a brief sampling of Avila’s results in each of these areas. The
last section is devoted to a discussion of some of the themes that arise in
the study of Lyapunov exponents.

1 Ergodicity of “typical” diffeomorphisms

Smooth ergodic theory studies the dynamical properties of smooth maps
from a statistical point of view. A natural object of study is a measure-
preserving system (M, vol, f), where M is a smooth, compact manifold with-
out boundary, vol is a probability measure on M equivalent to the volume,
and f : M →M is a diffeomorphism preserving vol. Such a diffeomorphism
is ergodic if its orbits are equidistributed, in the following sense: for almost

4The terminology is not consistent across fields. In smooth dynamics, a cocycle over
a measurable system that is measurably hyperbolic is called nonuniformly hyperbolic,
whether it is uniformly hyperbolic or not. In the spectral theory community, a cocycle is
called nonuniformly hyperbolic if it is measurably hyperbolic but not uniformly hyperbolic.
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every x ∈M , and any continuous function φ : M → R:

lim
n→∞

1

n

(
φ(x) + φ(f(x)) + · · ·φ(fn−1(x))

)
=

∫
M
φdvol.

An example of an ergodic diffeomorphism is the rotation fα on R/Z, for α
irrational. In fact this transformation has a stronger property called unique
ergodicity, which means that the limit above exists for every x ∈ R/Z.5 This
is a highly degenerate example, as it is easily perturbed to be non-ergodic.

Another example of an ergodic diffeomorphism, in some sense at the
opposite extreme of the rotations, is the automorphism fA of the 2-torus

induced by multiplication by the matrix A =

(
2 1
1 1

)
. In spirit, this ex-

ample is closely related to the Bernoulli shift, and in fact its orbits can be
coded in such a way to produce a measure-preserving isomorphism with a
Bernoulli shift. The reason this map is ergodic is uniform hyperbolicity:
Anosov proved [An1] that any smooth uniformly hyperbolic, i.e. Anosov,
diffeomorphism that preserves volume is ergodic.

Figure 3: The action of fA on a cat, from [AA].

Anosov’s proof of ergodicity is involved, but viewing the action of fA
on a fundamental domain, one sees that fA mixes up sets quite a bit. See
Figure 3. This is an example of a stably ergodic diffeomorphism: since the

5This is a consequence of Weyl’s equidistribution theorem and can be proved using
elementary analysis. See, e.g. [He]. Note that fα is definitely not ergodic when α = p/q,
for then fqα = id.
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Anosov property is a C1-open one, the ergodicity cannot be destroyed by a
small perturbation, in marked contrast with the irrational rotation fα.

The question of whether ergodicity is a common property among diffeo-
morphisms is an old one, going back to Boltzmann’s ergodic hypothesis of the
late 19th Century, We can formalize the question by fixing a differentiability
class r ∈ [1,∞] and considering the set Diffrvol(M) of Cr, volume-preserving
diffeomorphisms of M . This is a topological space in the Cr topology, and
we say that a property holds generically in Diffrvol(M) if it holds for all f in
a countable intersection of open and dense subsets of Diffrvol(M).6

vanishing entropy

ergodic

Di�1
vol(M)

Figure 4: Generically, positive entropy implies ergodicity (and more).

Oxtoby and Ulam [OU] proved in 1939 that the generic volume-preserving
homeomorphism of a compact manifold is ergodic. At the other extreme,
KAM (Kolmogorov-Arnol’d-Moser) theory shows that ergodicity is not a
dense property, let alone a generic one, in Diff∞vol(M), if dim(M) ≥ 2. The
general question remains open for r ∈ [1,∞), but we now have a complete
answer for any manifold when r = 1 under the assumption of positive en-
tropy. Entropy is a numerical invariant attached to a measure preserving
system that measures the complexity of orbits. The rotation fα has entropy
0; the Anosov map fA has positive entropy log(λ). By a theorem of Ruelle,
positivity of entropy means that there is some positive volume subset of M
on which the Lyapunov exponents are nonzero in some directions.

6Since Diffrvol(M) is a Baire space, properties that hold generically hold for a dense
set, and two properties that hold generically separately hold together generically.
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Theorem 1.1 (Avila, Crovisier, Wilkinson [ACW]). Generically in Diff1
vol(M),

positive entropy implies ergodicity, and moreover measurable hyperbolicity.

See Figure 4. This result was proved in dimension 2 by Mañé-Bochi
[Ma, Boc1] and dimension 3 by M.A. Rodriguez-Hertz [R]. Positive entropy
is an a priori weak form of chaotic behavior that can be confined to an
invariant set. Measurable hyperbolicity means that at almost every point
all of the Lyapunov exponents of the derivative cocycle Df are nonzero.
Conceptually, the proof divides into two parts:

1. C1 generically, positive entropy implies nonuniform hyperbolicity. One
needs to go from some nonzero exponents on some of the manifold to all
nonzero exponents on almost all of the manifold. Since the cocycle and
the dynamics are intertwined, carrying this out is a delicate matter.
This relies on the relative flexibility of the C1 topology.

2. C1 generically, measurable hyperbolicity (with respect to volume) im-
plies ergodicity. This has the flavor of arguments going back to E.
Hopf (and later Anosov) which show that uniform hyperbolicity im-
plies ergodicity. It builds on techniques later devloped by Pesin in the
nonuniform setting [P].

2 Translation surfaces

A flat surface is a closed surface obtained by gluing together finitely many
parallelograms in R2 along parallel edges:

Figure 5: A flat surface with a distinguished “South,” also known as a
translation surface (courtesy Marcelo Viana).
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Two flat surfaces are equivalent if one can be obtained from the other
by cutting, translating, and rotating. A translation surface is a flat surface
that comes equipped with a well-defined, distinguished vertical, “North”
direction (or, “South” depending on your orientation). Two translation
surfaces are equivalent if one can be obtained from the other by cutting and
translating (but not rotating).

Fix a translation surface Σ of genus g > 0. If one picks an angle θ
and a point x on Σ, and follows the corresponding straight ray through Σ,
there are two possibilities: either it terminates in a corner, or it can be
continued for all time. Clearly for any θ, and almost every starting point
(with respect to area), the ray will continue forever. If it continues forever,
either it returns to the initial point and direction and produces a closed
curve, or it continues on a parallel course without returning. A version
of the Pigeonhole Principle for area (Poincaré recurrence) implies that for
almost every point and starting direction, the line will come back arbitrarily
close to the starting point.

Asymptotic cycles

Given any long geodesic segment in a given direction,
“close” it to get an element of :

PSfrag replacements

Kerckhoff, Masur, Smillie: The geodesic flow in almost
every direction is uniquely ergodic.
Then converges uniformly to some
when the length , where the asymptotic cycle
depends only on the surface and the direction.

Lyapunov exponents ofTeichmüller flows – p. 10/61

Figure 6: Closing up a ray that that comes back close to itself (courtesy
Marcelo Viana)

Kerckhoff-Masur-Smillie [KMS] proved more: for a fixed Σ, and almost
every θ, the ray through any point x is dense in Σ, and in fact is equidis-
tributed with respect to area. Such a direction θ is called uniquely ergodic, as
it is uniquely ergodic in the same sense that fα is, for irrational α. Suppose
we start with a uniquely ergodic direction and wait for the successive times
that this ray returns closer and closer to itself. This produces a sequence
of closed curves γn which produces a sequence of cycles [γn] in homology
H1(Σ,Z) ' Z2g.

Unique ergodicity of the direction θ implies that there is a unique c1 ∈
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H1(Σ,R) such that for any starting point x:

lim
n→∞

[γn]

`(γn)
= c1,

where `(γ) denotes the length in Σ of the curve γ.

Theorem 2.1 (Forni, Avila-Viana, Zorich [Fo, AV2, Zo1, Zo2]). Fix a topo-
logical surface S of genus g ≥ 1, and let Σ be almost any translation surface
modelled on S. 7 Then there exist real numbers 1 > ν2 > . . . > νg > 0 and
a sequence of of subspaces L1 ⊂ L2 ⊂ · · ·Lg of H1(Σ,R) with dim(Lk) = k
such that for almost every θ, for every x, and every γ in direction θ, the
distance from [γ] to Lg is bounded, and

lim sup
`(γ)→∞

log dist([γ], Li)

log(`(γ))
= νi+1,

for all i < g.

This theorem gives precise information about the way the direction of
[γn] converges to its asymptotic cycle c1: the convergence has a “directional
nature” much in the way a vector v ∈ Rd converges to infinity under repeated
application of a matrix

A =


λ1 ∗ · · · ∗
0 λ2 · · · ∗
0 · · · · · · ∗
0 0 · · · λd

 ,

with λ1 > λ2 > · · ·λd > 1.
The numbers νi are the Lyapunov exponents of the Kontsevich-Zorich

(KZ) cocycle over the so-called Teichmüller flow. The Teichmüller flow Ft
acts on the moduli space M of translation surfaces (that is, translation
surfaces modulo cutting and translation) by stretching in the East-West di-
rection and contracting in the North-South direction. More precisely, if Σ
is a translation surface, then Ft(Σ) is a new surface, obtained by transform-

ing Σ by the linear map

(
et 0
0 e−t

)
. Since a stretched surface can often

7“Almost any” means with respect to the Lebesgue measure on possible choices of
lengths and directions for the sides of the pentagon. This statement can be made more
precise in terms of Lebesgue measure restricted to various strata in the moduli space of
translation surfaces.
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t

Figure 7: A local picture of the Teichmüller flow (courtesy Marcelo Viana).

be reassembled to obtain a more compact one, it is plausible that the Te-
ichmüller flow has recurrent orbits (for example, periodic orbits). This is
true and reflects the fact that the flow Ft preserves a natural volume that
assigns finite measure to M. The Kontsevich-Zorich cocycle takes values
in the symplectic group Sp(2g,R) and captures homological data about the
cutting and translating equivalence on the surface.

Veech proved that ν2 < 1, Forni proved that νg > 0, and Avila-Viana
proved that the numbers ν2, ν3, . . . , νg−1 are all distinct. Zorich established
the connection between exponents and the so-called deviation spectrum,
which holds in greater generality. Many more things have been proved about

Figure 8: The moduli space of flat structures on the torus, a.k.a. the mod-
ular surface.

the Lyapunov exponents of the KZ cocycle, and some of their values have
been caclulated which are (until recently, conjecturally) rational numbers!
See [EKM, CE].
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In the g = 1 case where Σ is a torus, this result has a simple explanation.
The moduli spaceM is the set of all flat structures on the torus (up to homo-
thety), equipped with a direction. This is the quotient SL(2,R)/SL(2,Z),
which is the unit tangent bundle of the modular surface H/SL(2,Z) . The
(continuous time) dynamical system on Ω is the flow Ft on Ω given by left

multiplication by the matrix

(
et 0
0 e−t

)
. The cocycle is, in essence, the

derivative cocycle for this flow (transverse to the direction of the flow) This
flow is uniformly hyperbolic (i.e. Anosov), and its exponents are log(e) = 1
and log(e−1) = −1.

The proof for general translation surfaces is considerably more involved.
We can nonetheless boil it down to some basic ideas.

1. The Teichmüller flow itself is nonuniformly hyperbolic with respect to
a natural volume (Veech [Ve]), and can be coded in a way that the
dynamics appear almost random.

2. Cocycles over perfectly random systems (for example i.i.d. sequences
of matrices) have a tendency to have distinct, nonzero Lyapunov ex-
ponents. This was first proved by Furstenberg in the 2 × 2 case [F]
and later by Gol’dsheid-Margulis [GM] and Guivarc’h-Raugi [GR].

3. Cocycles over systems that are nonrandom, but sufficiently hyperbolic
and with good coding also tend to have distinct, nonzero Lyapunov ex-
ponents. This follows from series of results, beginning with Ledrappier
in the 2 × 2 case [Le], and in increasing generality by Bonatti-Viana
[BoVi], Viana [Vi], and Avila-Viana [AV1].

3 Hofstadter’s butterfly

Pictured in Figure 9 is the spectrum of the operator Hα
x : `2(Z) → `2(Z)

given by

[Hα
x u](n) = u(n+ 1) + u(n− 1) + 2 cos(2π(x+ nα))u(n),

where x is a fixed real number called the phase, and α ∈ [0, 1] is a parameter
called the frequency. The vertical variable is α, and the horizontal variable
is the spectral energy parameter E, which ranges in [−4, 4]. We can read
off the spectrum of Hα

x by taking a horizontal slice at height α; the black
region is the spectrum.

12
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q; hence one might expect the above condition to
be satisfied in roughly q distinct regions of the
e axis (one region centered on each root). This
is indeed the case, and is the basis for a very
striking (and at first disturbing) fact about this
problem: when n =p/q, the Bloch band always
breaks up into i.-recisely q distinct energy bands.
Since small variations in the magnitude of o. can
produce enormous fluctuations in the value of the
denominator q, one is apparently faced with an
unacceptable physical prediction. However, nature
is ingenious enough to find a way out of this ap-
pax'ent, anomaly. Befox'e we go into the x'esolution
however, let us mention certain facts about the
spectrum belonging to any value of z. Most can
be proven trivially: (i) Spectrum(tr) and spectrum
(ci+N) are identical. (ii) Spectrum(n) and spec-
trum(-tr) are identical. (iii) & belongs to spec-
trum(a } if and only if -e belongs to spectrum(a}.
(iv) If e belongs to spectrum (a) for any a, then
-4 ~ &~+4. The last property is a little subtler
than the previous three; it can be proven in dif-
ferent ways. One proof has been published. "
From properties (i) and (iv), it follows that a

graph of the spectrum need only include values of
& between + 4 and -4, and values of e in any unit
interval. We shall look at the interval [0, 1]. Fur
thermore, as a consequence of pxoperties, the
graph inside the above-defined rectangular region
must have two axes of reflection, namely the hor-
izontal line z= &, and the vertical line &=0. A
plot of spectrum(o. ), with n along the vertical axis,
appears in Fig. 1. (Only rational values of a with
denominator less than 50 are shown. )

IV. RECURSIVE STRUCTURE OF THE GRAPH

This graph has some vexy unusual properties.
The large gaps form a very striking pattern some-
what resembling a butterfly; perhaps equally strik-
ing are the delicacy and beauty of the fine-grained
structure. These are due to a very intricate
scheme, by which bands cluster into groups, which
themselves may cluster into laxger groups, and
so on. The exact rules of formation of these hier-
archically organized clustering patterns (II's) are
what we now wish to cover. Our description of 0's
will be based on three statements, each of which
describes some aspect of the structure of the
graph. All of these statements are based on ex-
tremely close examination of the numex ical data,
and are to be taken as "empirically proven" theo-
rems of mathematics. It would be preferable to
have a rigorous proof but that has so far eluded
capture. Before we present the three statements,
let us first adopt some nomenclature. A "unit
cell" is any portion of the graph located between
successive integers N and N +1—in fact we will
call that unit cell the N th unit cell. Every unit cell
has a "local variable" P which runs from 0 to 1.
in particular, P is defined to be the fractional part
of rt, usually denoted as (a). At P=O and P= I,
there is one band which stretches across the full
width of the cell, separating it from its upper and
lower neighbors; this band is therefore called a
"cell wall. " It turns out that eex'tain rational val-
ues of I3 play a very important role in the descrip-
tion of the structure of a unit cell; these are the
"pure cases"

FIG. 1. Spectrum inside
a unit cell. & is the hori-
zontal variable, ranging
between+4 and -4, and
p=(n) is the vertical vari-
able, ranging from 0 to 1.

Figure 9: Hofstadter’s butterfly, from [Ho].

In an influential 1976 paper, Douglas Hofstadter of Gödel, Escher Bach
fame discovered this fractal picture while modelling the behavior of electrons
in a crystal lattice under the force of a magnetic field [Ho]. This operator
plays a central role in the Thouless et al. theory of the integer quantum
Hall effect, and the butterfly has indeed appeared in von Klitzing’s QHE
experiments. Similar operators are used in modeling graphene and similar
butterflies also appear in graphene related experiments.

Some properties of the butterfly have been established rigorously. For
example, Avila and Krikorian proved:

Theorem 3.1 (Avila-Krikorian, [AK]). For every irrational α ∈ [0, 1], the
α-horizontal slice of the butterfly has measure 0.

Their proof complements and thus extends the earlier result of Last [La],
who proved the same statement, but for a full measure set of α satisfying
an arithmetic condition. In particular, we have:

Corollary 3.2. The butterfly has measure 0.

Some properties of the butterfly, for example its Hausdorff dimension,
remain unknown.

The connection between the spectrum of this operator and cocycles is
an interesting one. Recall the definition of the spectrum of Hα

x :

σ(Hα
x ) := {E ∈ C : Hα

x − E is not invertible}.

The eigenvalues are those E so that the eigenvalue equation Hα
x u = Eu

admits `2(Z) solutions.

13



The following simple observation is key. A sequence (un : n ∈ Z) ⊂ CZ

(not necessarily in `2(Z)) solves Hα
x u = Eu if and only if

AE(fnα (x))

(
un
un−1

)
=

(
un+1

un

)
, n ∈ Z,

where fα : R/Z→ R/Z is the translation mentioned above, and

AE(x) =

(
E − 2 cos(2πx) −1

1 0

)
, (2)

which defines an SL(2,R)-cocycle, an example of a Schrödinger cocycle.
Using the cocycle notation, we have

A
(n)
E (x)

(
u0
u−1

)
=

(
un
un−1

)
, n ∈ Z.

Now let’s connect the properties of this cocycle with the spectrum of Hα
x .

Suppose for a moment that the cocycle AE over fα is uniformly hyperbolic,
for some value of E. Then for every x ∈ R/Z there is a splitting R2 =
Eu(x) ⊕ Es(x) invariant under cocycle, with vectors in Eu(x) expanded

under A
(mn)
E (x), and vectors in Es(x) expanded under A

(−mn)
E (x), both by a

factor of 2m. Thus no solution u to Hα
x u = Eu can be polynomially bounded

simultaneously in both directions, which implies E is not an `2 eigenvalue
of Hα

x . It turns out that the converse is also true, and moreover:

Theorem 3.3 (R. Johnson, [J]). If α is irrational, then for every x ∈ [0, 1]:

σ(Hα
x ) = {E : AE is not uniformly hyperbolic over fα}. (3)

For irrational α, we denote by Σα the spectrum of σ(Hα
x ), which by

Theorem 3.3 does not depend on x. Thus for irrational α, the set Σα is the
α-horizontal slice of the butterfly.

The butterfly is therefore both a dynamical picture and a spectral one.
On the one hand, it depicts the spectrum of a family of operators Hα

x pa-
rametrized by α, and on the other hand, it depicts, within a 2-parameter
family of cocycles {(fα, AE) : (E,α) ∈ [−4, 4]× [0, 1]}, the set of parameters
corresponding to dynamics that are not uniformly hyperbolic.

Returning to spectral theory, let’s continue to explore the relationship
between spectrum and dynamics. If α is irrational, then fα is ergodic, and
Oseledec’s theorem implies that the Lyapunov exponents for any cocycle
over fα take constant values over a full measure set. Thus the Lyapunov
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exponents of AE over fα take two essential values, χ+
E ≥ 0, and χ−E ; the

fact that det(AE) = 1 implies that χ−E = −χ+
E ≤ 0. Then either AE is

nonuniformly hyperbolic (if χ+
E > 0), or the exponents of AE vanish.

Thus for fixed α irrational, the spectrum Σα splits, from a dynamical
point of view, into two (measurable) sets: the set of E for which AE is
nonununiformly hyperbolic, and the set of E for which the exponents of AE
vanish. On the other hand, spectral analysis gives us a different decompo-
sition of the spectrum:

σ(Hα
x ) = σac(H

α
x ) ∪ σsc(Hα

x ) ∪ σpp(Hα
x )

where σac(H
α
x ) is the absolutely continuous spectrum, σpp(Hx) is the pure

point spectrum (i.e., the closure of the eigenvalues), and σsc(H
α
x ) is the

singular continuous spectrum. All three types of spectra have meaningful
physical interpretations. While the spectrum σ(Hα

x ) does not depend in x
(since α is irrational), the decomposition into subspectra can depend on x.8

It turns out that the absolutely continuous spectrum does not depend on x,
so we can write Σac,α for this common set.

The next deep relation between spectral theory and Lyapunov exponents
is the following, which is due to Kotani:

Theorem 3.4 (Kotani, [Kot]). Fix α irrational. Let Z be the set of E such
that the Lyapunov exponents of AE over fα vanish. Let Zess denote the
essential closure of Z, i.e. the closure of the Lebesgue density points of Z.
Then

Σac = Zess.

Thus Lyapunov exponents of the cocycle are closely related to the spec-
tral type of the operators Hx. For instance, Theorem 3.4 implies that if AE
is nonuniformly hyperbolic over fα for almost every E ∈ Σα, then Σac,α is
empty: Hα

x has no absolutely continuous spectrum.
We remark that Theorems 3.3 and 3.4 hold for much broader classes

of Schrödinger operators over ergodic measure preserving systems. For a
short and self-contained proof of Theorem 3.3, see [Zh]. The spectral theory
of one-dimensional Schrödinger operators is a rich subject, and we’ve only
scratched the surface here; for further reading, see the recent surveys [JiM]
and [D].

Avila’s very recent work provides further fascinating connections of this
type, linking analytic properties of Lyapunov exponents of general quasiperi-
odic operators with analytic potentials to the spectral decomposition.

8In fact, the decomposition is independent of a.e. x, just not all x.
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4 To sum up

Let’s pause for a minute to reflect.
As it turns out, all three sections are about families of dynamical systems.

In Section 1, the family is the space of all volume preserving diffeomorph-
isms of a compact manifold M . This is an infinite dimensional, non-locally
compact space, and we have thrown up our hands and depicted it in Figure
4 as a blob. Theorem 1.1 asserts that within the positive entropy systems
(which turn out to be an open subset of the blob), measurable hyperbolicity
(and ergodicity) is generic.

In Section 2, the moduli space M of directed flat surfaces can also be
viewed as a space of dynamical systems, in particular the billiard flows on
rational polygons, i.e., polygons whose corner angles are multiples of 2π.
In a billiard system, one shoots a ball in a fixed direction and records the
location of the bounces on the walls. By a process called unfolding, a billiard
trajectory can be turned into a straight ray in a translation surface.9 The
process is illustrated here for the square torus billiard:

Figure 10: Unfolding billiards in a square to get lines in a torus (courtesy
Diana Davis).

The moduli space M is not so easy to draw and not completely under-
stood (except for g = 1). It is, however a manifold and carries some nice
structures, which makes it easier to picture than Diff(M). Theorem 2.1
illustrates how dynamical properties of a meta dynamical system, i.e. the
Teichmüller flow Ft : M → M are tied to the dynamical properties of the
elements of M. For example, the Lyapunov exponents of the KZ cocycle

9Not every translation surface comes from a billiard, since the billiards have extra
symmetries. But the space of billiards embeds inside the space of translation surfaces,
and the Teichmüller flow preserves the set of billiards.
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over Ft for a given billiard table with a given direction describe how well an
infinite billiard ray can be approximated by closed, nearby billiard paths.

In Section 3, we saw how the spectral properties of a family of opera-
tors {Hα

x : α ∈ [0, 1]} are reflected in the dynamical properties of families of
cocycles {(fα, AE) : (E,α) ∈ [−4, 4]×[0, 1]}. Theorems about spectral prop-
erties thus have their dynamical counterparts. For example, Theorem 3.3
tells us that the butterfly is the complement of those parameter values where
the cocycle (fα, AE) is uniformly hyperbolic. Since uniform hyperbolicity
is an open property in both α and E, the complement of the butterfly is
open. Corollary 3.2 tells us that the butterfly has measure 0. Thus the set of
parameter values in the square that are hyperbolic form an open and dense,
full-measure subset. In fact, work of Bourgain-Jitomirskaya [BoJi] implies
that the butterfly is precisely the set of parameter values (E,α) where the
Lyapunov exponents of (fα, AE) vanish for some x.10 These results in some
ways echo Theorem 1.1, within a very special family of dynamics.

The Hofstadter butterfly is just one instance of a low-dimensional family
of dynamical systems containing very interesting dynamics and rich struc-
ture. A similar picture is seen in complex dynamics,11 in the 1 (complex)
parameter family of dynamical systems {pc(z) = z2 + c : c ∈ C}. The Man-
delbrot set consists of parameters c for which the map fc has a connected
Julia set Jc:

Figure 11: The Mandelbrot Set

It is conjectured that the set of parameters c such that pc is uniformly
hyperbolic on Jc is (open and) dense in the Mandelbrot set.

10which automatically means for all x in case of irrational α.
11Another field in which Avila has made significant contributions, which we have not

touched upon here.

17



5 Themes

We end on a few themes that have come up in our discussion of exponents.

Nonvanishing exponents sometimes produce chaotic behavior. The
bedrock result in this regard is Anosov’s proof that smooth Anosov flows and
diffeomorphisms are mixing (and in particular ergodic). Another notable
result is Katok’s proof [Ka] that measurable hyperbolicity of diffeomorphism
produces exponential growth of periodic orbits.

Exponents can contain geometric information. We have not discussed
it here, but there are delicate relationships between entropy, exponents and
dimension [LY1, LY2].

Vanishing exponents sometimes present an exceptional situation
that can be exploited. Both Furstenberg’s theorem and Kotani theory
are examples. Here’s Furstenberg’s criterion, presented in a special case:

Theorem 5.1 (Furstenberg, [F]). Let (A1, . . . , Ak) ⊂ SL(2,R), and let G be
the smallest closed subgroup of SL(2,R) containing {A1, . . . , Ak}. Assume
that:

1. G is not compact.

2. There is no finite collection of lines ∅ 6= L ⊂ R2 such that M(L) = L,
for all M ∈ G.

Then for any probability vector p = (p1, . . . pk) on {1, . . . , k} with pi > 0,
for all i, there exists χ+(p) > 0, such that for almost every ω ∈ {1, . . . , k}N
(with respect to the Bernoulli measure pN):

lim
n→∞

‖A(n)(ω)‖ = χ+.

One way to view what this result is saying is: if the exponent χ+ vanishes,
then the matrices either have a common eigenvector, or they generate a
precompact group. Both possibilities are degenerate and are easily destroyed
by perturbing the matrices. One proof of a generalization of this result
[Le] exploits the connections between entropy, dimension and exponents
alluded to before. This theorem can be used to prove our statement from
the beginning about aspect ratios. See [McM] for details. See [BBC] for a
related result.
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Continuity and regularity of exponents is a delicate matter. There
are still basic open questions here. Some of Avila’s deepest results concern
the dependence of Lyapunov exponents on parameters and dynamics, but
this is the subject of a different talk.
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