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Abstract Nonlinear network dynamics are notoriously difficult to understand. Here
we study a class of recurrent neural networks called combinatorial threshold-linear
networks (CTLNs) whose dynamics are determined by the structure of a directed
graph. They are a special case of TLNs, a popular framework for modeling neural
activity in computational neuroscience. In prior work, CTLNs were found to be
surprisingly tractable mathematically. For small networks, the fixed points of the
network dynamics can often be completely determined via a series of graph rules
that can be applied directly to the underlying graph. For larger networks, it remains
a challenge to understand how the global structure of the network interacts with
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local properties. In this work, we propose a method of covering graphs of CTLNs
with a set of smaller directional graphs that reflect the local flow of activity. While
directional graphs may or may not have a feedforward architecture, their fixed point
structure is indicative of feedforward dynamics. The combinatorial structure of the
graph cover is captured by the nerve of the cover. The nerve is a smaller, simpler
graph that is more amenable to graphical analysis. We present three nerve theorems
that provide strong constraints on the fixed points of the underlying network from
the structure of the nerve. We then illustrate the power of these theorems with some
examples. Remarkably, we find that the nerve not only constrains the fixed points
of CTLNs, but also gives insight into the transient and asymptotic dynamics. This
is because the flow of activity in the network tends to follow the edges of the nerve.

1 Introduction

Combinatorial threshold-linear networks (CTLNs) are a special class of threshold-
linear networks (TLNs) whose dynamics are determined by the structure of a
directed graph. The firing rates x1(t), . . . , xn(t) of n recurrently-connected neurons
evolve in time according to the standard TLN equations:

dxi

dt
= −xi +




n∑

j=1

Wijxj + θi





+

, i = 1, . . . , n. (1)

These networks derive their name from the nonlinear transfer function,
[·]+ = max{0, ·}, which is threshold-linear. A given TLN is specified by the choice
of a connection strength matrixW and a vector of external inputs θ . TLNs have been
widely used in computational neuroscience as a framework for modeling recurrent
neural networks, including associative memory networks [3, 4, 6, 7, 10, 11, 18, 19].

What makes CTLNs special is that the matrixW = W(G, ε, δ) is determined by
a simple1 directed graph, as follows:

Wij =






0 if i = j,

−1+ ε if j → i in G,

−1 − δ if j #→ i in G.

(2)

Additionally, we fix θi = θ > 0 to be the same for all neurons, and we require the
ε, δ parameters to satisfy δ > 0, and 0 < ε < δ

δ+1 . CTLNs were first defined in [15],
where the ε < δ

δ+1 condition was motivated by the desired property that subgraphs
consisting of a single directed edge i → j should not be allowed to support stable
fixed points. Note that the upper bound on ε implies ε < 1, rendering the W matrix
effectively inhibitory. We think of the graph edges as excitatory connections in a

1 A graph is simple if it does not have loops or multiple edges between a pair of vertices.
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Fig. 1 (a) A neural network with excitatory pyramidal neurons (triangles) and a background net-
work of inhibitory interneurons (gray circles) that produces a global inhibition. The corresponding
graph (right) retains only the excitatory neurons and their connections. (b) TLN dynamics. (c) A
graph that is a 3-cycle (left), and a solution for the corresponding CTLN showing that network
activity follows the arrows in the graph (right). Peak activity occurs sequentially in the cyclic order
123. Unless otherwise noted, all simulations have parameters ε = 0.25, δ = 0.5, and θ = 1

sea of inhibition (Fig. 1a). Figure 1c shows an example solution for a CTLN whose
graph is a 3-cycle.

TLNs are high-dimensional nonlinear systems whose dynamics are still poorly
understood. However, in the special case of CTLNs, there appears to be a strong
connection between the attractors of the network and the pattern of stable and
unstable fixed points [14, 17].2 Moreover, these fixed points can often be completely
determined by the structure of the underlying graph. In prior work, a series of
graph rules were proven that can be used to determine fixed points of the CTLN
by analyzing G, irrespective of the choice of parameters ε, δ, and θ [8, 9]. A key
observation is that for a given network, there can be at most one fixed point per
support, σ ⊆ [n], where the support of a fixed point is the subset of active neurons
(i.e., supp x = {i | xi > 0}).

For a given choice of parameters, we use the notation

FP(G)
def= {σ ⊆ [n] | σ is a fixed point support ofW(G, ε, δ)},

where [n] def= {1, . . . , n}. For many graphs, we find that the fixed point supports in
FP(G) are confined to a subset of the neurons. In other words, there is a partition
{ω, τ } of the vertices of G such that, for every σ ∈ FP(G), we have σ ⊆ τ (see
Fig. 2a). In these cases, we observe that solutions of the network activity x(t) tend
to converge to a region of the state space where the most active neurons are in τ ,
and those in ω are either silent or have very low firing (see Fig. 2b). In other words,
the attractors live where the fixed points live.

This motivates us to define directional graphs. A directional graph G is a graph
with a proper subset of neurons τ such that FP(G) ⊆ FP(G|τ ), where G|τ is the
induced subgraph obtained by restricting to the vertices of τ . For example, the graph

2 A fixed point, x∗, of a TLN is a solution that satisfies dxi/dt |x∗ = 0 for each i ∈ [n].
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Fig. 2 Directional graphs and covers. (a) A directional graph, with fixed points supported in the
subset of nodes τ = {3, 4}. (b) A solution of a CTLN with the graph in (a). The network was
initialized with the activity concentrated on the neurons in ω = {1, 2}, but the activity flows from
ω → τ . (c) A graph with a partition of the nodes, each component in a different color. (d) A
directional cover of G. Subsets of nodes, νi , νj , νk, and νl , correspond to the partition in (c). The
four induced subgraphs within each oval, of the form Gij = G|νi∪νj , are all directional graphs
with direction νi → νj , as given by the arrows. (e) The nerve associated to the directional cover
in (d). The corresponding network can be viewed as a dimensional reduction of the one in (c)

in Fig. 2a is directional with a single fixed point supported in τ = {3, 4}. We also
require an additional technical condition that allows us to prove that certain natural
compositions, like chaining directional graphs together, produce a new directional
graph (see Definition 3.1 for the full definition). In simulations, such as the one in
Fig. 2b, we have seen that directional graphs display feedforward dynamics, even if
their architecture does not follow a feedforward structure. Activity that is initially
concentrated on ω flows towards τ , giving the dynamics an ω → τ directionality.
Thus, from a bird’s eye view, directional graphs behave like a single directed edge,
where the activity flows from the source to the sink. These observations prompted
us to ask the following question: if we cover a graph G with a collection of
directional graphs, what can we say about FP(G) from the combinatorial structure of
the cover?

In this paper we develop tools to answer this question, inspired by the con-
struction of the nerve of a cover of a topological space. We define a directional
cover of G as a set of directional subgraphs that cover G and have well-behaved
intersections.3 Effectively, such a cover is entirely determined by a partition of the

3 This is analogous to the definition of a “good” cover of a topological space, which also requires
well-behaved intersections. Nerves of good covers reflect the topology of the underlying space
[5, 13].
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vertices of G, denoted {νi}, that satisfies special properties. (See Definition 4.3 for
a precise definition.) We define the nerve of a directional cover as a new graph N
that has a directed edge for each directional graph in the cover, and a vertex for
each component νi of the partition. Figure 2c,d depicts a graph with a partition of
the nodes (indicated by the colors), and its corresponding directional cover. The
edges of the nerve reflect the local dynamics of G, and the nerve itself encodes the
combinatorics of the intersection pattern of the cover: the directional graphs overlap
precisely at vertices of the nerve where their edges meet. The partition of the vertices
ofG induces a canonical quotient map, π : VG → VN := {νi}, that simply identifies
all the vertices in each component νi . Figure 2e is the nerve of the directional node
in d, and the quotient map π sends each color in c to the corresponding node with
the same color in e -within the nerve N, we often label the node νi simply as i.

As an illustration of directional covers and nerves, consider the graph in Fig. 3a.
This graph is a chain of ten 5-cliques where the edges between adjacent cliques
all follow the pattern shown in panel c: there are edges forward from every node
in the first clique to every node in the second clique; every node in the second
clique (except for the top node) sends edges back to every node in the first clique.
Most edges are thus bidirectional arrows (in black), while the edges that only go

Fig. 3 Example graph with a directional cover, its nerve, and network activity that flows along
the nerve. (a) A chain of ten 5-cliques where the edges between adjacent cliques all follow the
pattern shown in panel (c). (b) The nerve of the graph in A induced by the partition of the vertices
as ν1, . . . , ν10. (c) The graph G restricted to a pair of adjacent cliques. All edges in black are
bidirectional, while those in green are unidirectional from the green clique to the pink clique. This
restricted graph is directional, and all the graphs in the directional cover of G have this form. (d)
A solution to the CTLN defined byG (with ε = 0.25 and δ = 0.5), where the activity is initialized
on the nodes in the first clique ν1. The transient dynamics slowly activate each clique in sequence,
following the path of the nerve, until the solution converges to the stable fixed point supported on
the nodes in ν10
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forward from clique i to clique i+1 are in color. The induced subgraphs G|νi∪νi+1

are all directional with direction νi → νi+1, despite all the back edges from right
to left. This means that FP(G|νi∪νi+1) ⊆ FP(G|νi+1), and we expect the activity
of the neurons to flow from νi to νi+1 (left to right). Figure 3b depicts the nerve
of G. Figure 3d shows the solution to a CTLN defined by G, where we have
initialized all the activity on the nodes in the first clique ν1. We see that the activity
eventually converges to the final component, shown in purple, where the fixed points
of the network are concentrated. The transient dynamics, however, are rather slow,
with each clique activated in a sequence that follows the path-like structure of
the nerve. Note that this network behaves similarly to a synfire chain [1, 2, 12],
despite numerous backward edges between components that completely destroy the
feedforward architecture (Fig. 3c). The sequential dynamics are maintained because
these backward edges do not disrupt the directionality of the graphs in the cover.

The main goal of this paper is to prove nerve theorems for CTLNs. Broadly
speaking, such a nerve theorem is a result that gives information about the dynamics
of a network from properties of the nerve. Specifically, we are interested in results
that allow us to constrain the fixed points of G by analyzing structural properties of
N. Ideally, we would like to prove the following kind of result: IfG has a directional
cover with nerve N, then

σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N), (3)

where π is the canonical quotient map from VG to VN. This can be quite powerful in
cases whereN is a much smaller and simpler graph. Unfortunately, the statement (3)
is not in general true. However, we do find that this holds whenever the nerve N
is a directed acyclic graph (DAG) or N is a cycle (see Theorems 4.8 and 4.9).
More generally, whenever N admits a DAG decomposition (see Definition 2.16),
Theorem 4.7 gives a result similar in spirit to (3) and allows us to greatly constrain
FP(G).

Our nerve theorems can be used to simplify a complex network by finding a
nontrivial directional cover and studying its nerve. Finding such covers is an art,
however, and we do not yet have a systematic way of doing it. On the other hand,
nerve theorems can also be used to engineer complex networks with prescribed
dynamic properties. This is how we constructed the example in Fig. 3. We explore
both kinds of applications in the last section of the paper.

The organization of this paper is as follows. In Sect. 2, we review some graph
theory terminology and basic background and notation for CTLNs. We also
introduce the DAG decomposition of a graph. In Sect. 3, we define directional
graphs, prove that certain graph structures are always directional, and provide some
other families of examples. In Sect. 4, we introduce directional covers and their
associated nerves. Here we also state and prove our main results, Theorems 4.7, 4.8
and 4.9. Finally, in Sect. 5, we illustrate the power of our theorems with some
applications.
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2 Preliminaries

In this section we review some useful terminology from graph theory and summarize
essential background and prior results about fixed points of CTLNs. We also
introduce the DAG decomposition of a graph, a notion that will appear in our main
nerve theorems.

2.1 Graph Theory Terminology

Definition 2.1 A directed graph G can be described as a tuple G = (VG,EG),
where VG is a finite set called the set of vertices and EG ⊆ VG × VG is the set of
(directed) edges, where (i, j) ∈ EG means there is a directed edge i → j from i

to j in G. If (i, j) /∈ EG, we write i #→ j . A directed graph is simple if it has no
self-loops, so that (i, i) /∈ EG for all i ∈ VG. A directed graph is oriented if it has
no bidirectional edges.

In this paper, we restrict ourselves to simple directed graphs. Unless otherwise
noted, we will use the word graph to refer to simple directed graphs.

Notation 2.2 Let G be a graph with vertex set VG and edge set EG. For any
subset of vertices σ ⊆ VG, denote by G|σ the induced subgraph obtained
by restricting to the vertices σ . More precisely, G|σ = (σ, E|σ ) where
E|σ = {(i, j) ∈ EG | i, j ∈ σ }.

Let σ1, σ2 ⊆ VG be two subsets of the vertices of G. We denote by
EG(σ1, σ2) ⊆ EG the set of directed edges from vertices in σ1 to vertices in σ2
in G.

Next, we define some basic notions relevant to graphs.

Definition 2.3 LetG be a graph and v ∈ VG be a vertex inG. The in-degree of v is
the number of incoming edges to v. The out-degree of v is the number of outgoing
edges from v. We say v is a source if v has no incoming edges, and we say v is
a proper source if it is a source that has at least one outgoing edge. We say v is a
sink if v has no outgoing edges. Note that a source that is not a proper source is an
isolated vertex, and thus it is also a sink.

Definition 2.4 We say that a graphG has uniform in-degree if every vertex v ∈ VG

has the same in-degree d. Note that an independent set is a graph with uniform
in-degree d = 0. A k-clique is an all-to-all bidirectionally connected graph with
uniform in-degree d = k − 1. And an n-cycle is a graph with n edges, 1 → 2 →
· · · → n → 1, which has uniform in-degree d = 1.
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2.2 Background on Fixed Points of CTLNs

In this subsection we recall the results from [8] that are relevant for this work and
include simple proofs to some of these to provide intuition to the reader.

A fixed point of a CTLN is simply a fixed point of the network equations (1). In

other words, it is a vector x∗ ∈ Rn
≥0 such that

dxi

dt
|x=x∗ = 0 for all i ∈ [n]. As

explained in [8], fixed points of CTLNs can be labelled by their supports (i.e. the
subset of active neurons), and for a given G the set of all fixed point supports is
denoted FP(G).

Lemma 2.5 ([8]) Let G be a graph on n vertices, and suppose G has uniform in-
degree. Then G has a full-support fixed point, σ = [n] ∈ FP(G).

In particular, this lemma says that cliques, cycles, and independent sets all have
a full-support fixed point. In fact, this fixed point is symmetric, with x∗

i = x∗
j for all

i, j ∈ [n]. This is true even for uniform in-degree graphs that are not symmetric.
More generally, fixed points can have very different values across neurons.

However, there is some level of “graphical balance” that is required of G|σ for any
fixed point support σ . For example, if σ contains a pair of neurons j, k that have
the property that all neurons mapping to j are also mapping to k, and j → k but
k #→ j , then σ cannot be a fixed point support. This is because k is receiving strictly
more inputs than j , and this imbalance rules out their ability to coexist in the same
fixed point support. To see this more rigorously, we have the following lemma.

Lemma 2.6 Let G be a CTLN and σ ⊆ VG. Suppose there exist vertices j, k ∈ σ

such that for each i ∈ σ \{j, k}, if i → j then i → k. Furthermore, suppose j → k

but k #→ j . Then σ /∈ FP(G).

Proof To obtain a contradiction, assume σ ∈ FP(G). The corresponding fixed point
x satisfies xi > 0 for all i ∈ σ , and dxi/dt = 0. In particular, setting dxj /dt = 0
and dxk/dt = 0 (and recalling Wjj = Wkk = 0) we obtain:

xj =
∑

i∈σ\{j,k}
Wjixi +Wjkxk + θ,

xk =
∑

i∈σ\{j,k}
Wkixi +Wkjxj + θ .

Now observe that for each i ∈ σ \ {j, k}, the fact that i → j implies i → k tells
us thatWji ≤ Wki , (see Eq. (2)). This means the summation term in the xj equation
above is less than or equal to the analogous term in the xk equation. Using this fact,
we see that xj − Wjkxk ≤ xk − Wkjxj , which can be rearranged as,

(1+Wkj )xj ≤ (1+Wjk)xk.
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Now recall that j → k but k #→ j , soWkj = −1+ ε andWjk = −1− δ. The above
inequality thus says that εxj ≤ −δxk . But this is a contradiction, because εxj > 0
and −δxk < 0. And so no fixed point supported on σ can exist. ,-

The conditions on j, k ∈ σ used in the above lemma is an example of so-called
graphical domination. This notion was first defined in [8], and provides a useful
tool for ruling in and ruling out fixed points of CTLNs purely based on the graph
structure, and independently of the ε, δ and θ parameters.

Definition 2.7 (graphical domination) Let G be a graph, σ ⊆ VG a subset of
the vertices, and j, k ∈ VG such that {j, k} ∩ σ #= ∅. We say that k graphically
dominates j with respect to σ , and write k >σ j , if the following three conditions
hold:

1. For all i ∈ σ \ {j, k} if i → j , then i → k.
2. If j ∈ σ , then j → k.
3. If k ∈ σ , then k ! j .

This definition of domination covers more cases than what we saw in Lemma 2.6.
This greater generality is reflected in the main theorem about domination, which
appeared as Theorem 4 in [8]. We cite a special case of this theorem below (also
illustrated in Fig. 4).

Theorem 2.8 (graphical domination [8]) Let σ ⊆ VG be a subset of the vertices
of a graph G. If there is a j ∈ σ and a k ∈ VG such that k >σ j (k graphically
dominates j with respect to σ ), then σ /∈ FP(G).

We will furthermore use the following useful equivalence, which states that σ

can only be a fixed point support if σ ∈ FP(G|σ ) and the fixed point survives the
addition of each individual k /∈ σ.

Fig. 4 The two cases of graphical domination in Theorem 2.8. In each panel, k graphically
dominates j with respect to σ (the outermost shaded region). The inner shaded regions illustrate
the subsets of nodes that send edges to j and k. Note that the vertices sending edges to j are
a subset of those sending edges to k, but this containment need not be strict. The dashed arrow
indicates an optional edge between j and k
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Lemma 2.9 ([8, Corollary 2]) Consider a CTLN determined by a graph G on a
set of vertices VG, and let σ ⊆ VG. Then

σ ∈ FP(G) ⇔ σ ∈ FP(G|σ∪{k}) for all k ∈ VG.

In particular, σ ∈ FP(G) ⇒ σ ∈ FP(G|σ ). Moreover, σ ∈ FP(G) ⇒ σ ∈ FP(G|τ )
for any τ with σ ⊆ τ .

One simple case where graphical domination can be used to rule out a fixed point
support is whenever a graph contains a proper source. This is Rule 6 in [8].

Lemma 2.10 (sources [8]) Let G be a graph and σ ⊆ VG. If there exists a j ∈ σ

such that j is a proper source in G|σ or j is a proper source in G|σ∪{)} for some
) ∈ VG, then σ /∈ FP(G).

Proof If j is a proper source in G|σ , then there exists k ∈ σ such that j → k.
Since j has no other inputs in σ , clearly k >σ j. If j is not a proper source in G|σ
but is a proper source in G|σ∪), then j → ), and hence ) >σ j . In either case, by
Theorem 2.8 we have that σ /∈ FP(G). ,-

The lemma above allows us to rule out fixed points of cycles that are not full
support.

Lemma 2.11 (cycles) IfG is a cycle on n vertices, thenG has a unique fixed point,
which has full support. In other words,

FP(G) = {[n]}.

Proof First observe that [n] ∈ FP(G) by Lemma 2.5 because a cycle has uniform
in-degree 1. To see that this is the only fixed point support ofG, consider any proper
subset σ " VG. Since G is a cycle, G|σ either contains a path or is an independent
set. If it contains a path, then the source of that path is a proper source inG|σ . If it is
an independent set, then for any i ∈ σ , we have i → ) inG for ) = i + 1. Then i is
a proper source in G|σ∪). Thus by Lemma 2.10, σ /∈ FP(G). Thus, FP(G) = {[n]}.

,-
Another simple case when graphical domination can be used to rule out fixed

points is whenever σ has a target in G. For k ∈ VG, we say that k is a target of σ if
i → k for every i ∈ σ \ {k}.
Lemma 2.12 (targets [8]) Let G be a graph and σ ⊆ VG. Suppose k ∈ VG is a
target of σ .

1. If k ∈ VG \ σ , then σ /∈ FP(G).
2. If k ∈ σ and there exists a j ∈ σ such that k #→ j , then σ /∈ FP(G).

Proof In case 1, it is straightforward to see that k >σ j for any j ∈ σ . In case 2,
we see that for the particular j such that k #→ j , we have k >σ j . In either case, by
Theorem 2.8 we have that σ /∈ FP(G). ,-
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The target lemma allows us to rule out fixed points of cliques that are not full
support.

Lemma 2.13 (cliques) If G is a clique on n vertices, then G has a unique fixed
point, which has full support. In other words,

FP(G) = {[n]}.

Proof First observe that [n] ∈ FP(G) by Lemma 2.5 because a clique has uniform
in-degree n − 1. To see that this is the only fixed point support of G, consider any
proper subset σ " VG and let k ∈ VG \ σ . Then k is a target of σ , and so by
Lemma 2.12, σ /∈ FP(G). Thus, FP(G) = {[n]}. ,-

Finally, using a more general form of domination defined in [8], we obtain the
following survival rule telling us precisely when a uniform in-degree fixed point
survives as a fixed point of a larger network (Theorem 5 of [8]):

Theorem 2.14 (uniform in-degree [8]) Let G be a graph and σ ⊆ VG such that

G|σ has uniform in-degree d. For k ∈ VG \ σ , let dk
def= |{i ∈ σ | i → k}| be the

number of edges k receives from σ . Then

σ ∈ FP(G) ⇔ dk ≤ d for every k ∈ VG \ σ.

Other than this theorem we will not use the more general form of domination.
Therefore, in the remainder of this work when we say domination we mean
graphical domination.

2.3 The DAG Decomposition

Two of our main results are nerve lemmas involving directed acyclic graphs
(DAGs). Recall that a DAG is a graph that has no directed cycles. There is a well
known characterization of DAGs in terms of a topological ordering of their vertices.
In particular, G is a DAG if and only if there exists an ordering of the vertices such
that edges inG only go from lower numbered to higher numbered vertices. In other
words, if i → j then i < j ; equivalently if i > j then i #→ j .

Lemma 2.15 (DAGs) Let G be a DAG and let τ = {sinks of G}. Then the fixed
point supports of G are all the nonempty subsets of τ , i.e.

FP(G) = P(τ ) \ {∅},

where P(τ ) denotes the power set of τ .
Proof First to see that P(τ ) \ {∅} ⊆ FP(G), notice that any non-empty subset of τ

is an independent set of sinks. An independent set has uniform in-degree 0, and thus
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by Theorem 2.14, an independent set produces a fixed point when it has no outgoing
edges. Since all the nodes in τ are sinks, every subset of τ has no outgoing edges,
and so every subset produces a fixed point support in FP(G).

Next, to see that no other sets can produce fixed points of G, consider σ ⊆ VG

such that σ #⊆ τ . Let j be the lowest number vertex in σ \ τ according to some
topological ordering of G. Then j has no incoming edges from other nodes in σ

since edges in a DAG can only go from lower numbered vertices to higher number
vertices. Moreover, there exists some ) ∈ VG such that j → ) since otherwise j

would be a sink, but j /∈ τ by design, which contains all the sinks of G. Thus j is a
proper source in G|σ∪), and so σ /∈ FP(G) by Lemma 2.10. ,-

Many graphs that are not DAGs nevertheless have a DAG-like structure on a
subgraph. This will also be a useful concept for our nerve theorems.

Definition 2.16 (DAG decomposition) Let G be a graph. For ω, τ ⊆ VG, we say
that (ω, τ ) is a DAG decomposition of G if ω∪̇τ is a partition of the vertices VG

such that:

1. G|ω is a DAG,
2. G|τ contains all sinks of G,
3. there are no edges from τ back to ω, i.e., EG(τ,ω) = ∅.
We say a DAG decomposition is non-trivial if ω #= ∅. We say a DAG decomposition
is maximal if ω is as large as possible. More precisely, (ω, τ ) is a maximal DAG
decomposition if there is no other DAG decomposition (ω′, τ ′) with ω " ω′.

Every graph G that has at least one proper source j has a DAG decomposition
with ω = {j} and τ = VG \ {j}. But DAG decompositions are most valuable when
τ is as small as possible. To minimize the size of τ , we’d like to “grow” ω as much
as possible, as in a maximal DAG decomposition. It turns out that there is straight-
forward procedure for generating a maximal DAG decomposition of a graph, and
moreover, the maximal DAG decomposition is in fact unique. Specifically, one
can iteratively refine a DAG decomposition by moving any nodes that are proper
sources in G|τ to ω (see Fig. 5). This process will maintain the property that G|ω
is a DAG (each node that is moved to ω will be at the end of the “topological
ordering” of the DAG) while also guaranteeing that there are no edges from nodes
in τ back to nodes in ω. Finally, the process terminates when there are no nodes
in τ that are proper sources in G|τ . It turns out that the τ satisfying G|τ has no
proper sources is both minimal, in the sense that |τ | is smallest and τ ⊆ τ ′ for any
other DAG decomposition (ω′, τ ′), and unique. As a result, this process yields the
unique maximal DAG decomposition. Note in particular that in any maximal DAG
decomposition (ω, τ ), τ cannot have proper sources, because if it did one could
move such a vertex to ω, contradicting maximality.

Lemma 2.17 Suppose that G contains a proper source. Then the DAG decom-
position (ω, τ ) of G satisfying G|τ has no proper sources is a maximal DAG
decomposition. In particular, G has a unique maximal DAG decomposition.
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Fig. 5 Iterative construction of DAG decompositions. (a) A DAG decomposition of a graph where
ω contains only a single source. The gray highlighted node 2 is a proper source in G|τ , but not a
source in the full graph. (b) A second DAG decomposition is obtained by moving node 2 to ω. Now
node 5 has become a proper source in the newG|τ . (c) A third DAG decomposition is obtained by
moving 5 to ω. In this decomposition, G|τ has no proper sources. Notice that node 7 is a source,
but because it has no outgoing edges, it is not a proper source so will not be moved to ω. In fact,
node 7 is a sink, and thus is required to be in τ by condition 2 of DAG decompositions. We have
thus arrived at the unique DAG decomposition with minimal τ and maximal DAG ω

Proof Let (ω, τ ) be a DAG decomposition of G satisfying G|τ has no proper
sources, and let (ω′, τ ′) be any other DAG decomposition of G. Suppose ω′ #⊆ ω.
Then since each DAG decomposition is a partition of the vertices, this condition on
ω implies that τ #⊆ τ ′. Then there exists a node i0 ∈ τ \ τ ′. Since i0 ∈ τ and G|τ
has no proper sources, there exists some i1 ∈ τ such that i1 → i0. Since i1 also is
not a proper source in G|τ , there exists some i2 ∈ τ such that i2 → i1 → i0. Again
i2 is not a proper source, and so there exists i3 ∈ τ such that i3 → i2 → i1 → i0.

Note that in the other DAG decomposition (ω′, τ ′), since i0 /∈ τ ′, we must have
i0 ∈ ω′. Moreover, by the definition of DAG decomposition, there are no edges
from nodes in τ ′ to nodes in ω′, and so all nodes in the path i3 → i2 → i1 → i0
must also be in ω′. We can continue to trace the path backwards in this way through
G|τ for arbitrarily many steps since it has no proper sources, but since τ is finite, at
some point some node must appear twice in this path. Thus this sequence of nodes
must contain a bidirectional edges and/or a directed cycle. But all the nodes in this
sequence must be in ω′, and by definition, G|ω′ must be a DAG, thus it cannot
contain any bidirectional edges or directed cycles. Thus we have a contradiction,
and so τ ⊆ τ ′, and thus ω′ ⊆ ω.

Since any DAG decomposition (ω, τ ) of G satisfying G|τ has no proper sources
must have maximal ω, it follows that there must be a unique decomposition
satisfying this property. Finally, since any maximal DAG decomposition must
satisfy this property, it follows there is a unique one and it is this one. ,-

3 Directional Graphs

In this section, we focus on a special class of graphs known as directional graphs,
first defined in [16]. The motivating heuristic behind directional graphs is that they
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are graphs whose vertices can be partitioned into two setsω and τ such that when the
neural activity is initialized on nodes in ω, it flows to the nodes in τ . In simulations,
we have seen that this flow of activity occurs whenever the fixed points of G are
confined to live in τ , so that FP(G) ⊆ FP(G|τ ). In order to guarantee nice properties
when we union together directional graphs, we require something slightly stronger
in our definition of directional graphs, namely that the collapse of the fixed points
onto the subnetwork G|τ be the result of graphical domination.

Definition 3.1 (directional graph) We say that a graph G is directional, with
direction ω → τ , if ω∪̇τ = VG is a nontrivial partition of the vertices (ω, τ #= ∅,
ω ∩ τ = ∅) such that FP(G) ⊆ FP(G|τ ) by way of graphical domination.
Specifically, we require the following property: for every σ #⊆ τ , there exists some
j ∈ σ ∩ ω and k ∈ VG such that k graphically dominates j with respect to σ , i.e.
k >σ j . When this is the case we say σ dies by (graphical) domination.

As mentioned above, we predict that directional graphs will have feedforward
dynamics, so that activity that is initially concentrated on G|ω should flow towards
G|τ , giving the dynamics an ω → τ directionality. The most natural examples of
directional graphs are those where G has an explicit feedforward architecture in
G|ω, for example when G|ω is a DAG, and there are no edges from τ back to ω.
In this case, it seems intuitive that the dynamics will flow along this feedforward
structure in ω and end up concentrated in τ .

It turns out that any DAG decomposition of a graph G immediately yields a
directional partition as intuitively predicted.

Lemma 3.2 If (ω, τ ) is a DAG decomposition of G, then G is directional with
direction ω → τ .

The key to the proof of Lemma 3.2 is the well known characterization of DAGs
in terms of a topological ordering of their vertices. Recall that G is a DAG if and
only if there exists an ordering of the vertices such that edges in G only go from
lower numbered to higher numbered vertices, i.e., if i > j , then i #→ j .

Proof To show that G is directional, we must show that any σ ⊆ VG that intersects
ω dies by graphical domination. Suppose σ ∩ ω #= ∅, and let j be the lowest
numbered vertex in σ ∩ ω with respect to some topological ordering of the DAG
G|ω. Since all the sinks in G are contained in τ , j ∈ ω must have at least one
outgoing edge in G, so j → k for some k ∈ VG. Moreover, j has no incoming
edges in G|σ∪k because of its numbering in the topological ordering. Thus, j is a
proper source in G|σ∪k and by Lemma 2.10, σ /∈ FP(G) because k >σ j . Thus
every σ with σ ∩ ω #= ∅ dies by graphical domination, and so G is directional with
direction ω → τ . ,-

DAG decompositions are a very special case of directional graphs ω → τ where
there are no back edges from τ to ω, and the ω component of the graph is a DAG.
Neither condition needs to hold for more general directional graphs. Figure 6 shows
several types of directional graphs. In panel a, there are only edges from ω → τ as
in a DAG decomposition. In panel b, the existence of a target in τ that receives edges
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Fig. 6 Three types of directional graphs. (a) A nontrivial DAG decomposition (ω, τ ) is a
directional graph with direction ω → τ . (b) If τ contains a target node of ω, and there are no
back edges τ → ω, then G is directional irrespective of the structure of G|ω . (c) A more general
directional graph can have a variety of forward and backward edges
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Fig. 7 Directional graphs: examples and non-examples. Note that we refer to fixed point supports
{ii , i2, . . . , ik} simply as i1i2 · · · ik . For example, 234 denotes {2, 3, 4}

from all nodes in ω guarantees that G is directional irrespective of the structure of
G|ω. Finally, in panel c we see a schematic of a directional graph with both forward
edges from ω to τ and backward edges from τ to ω.

In fact, directional graphs can have a surprisingly large number of back edges
while still preserving their “forward” directionality. All the graphs in Fig. 7a are
directional with ω → τ , and each of the graphs in a3–a6 actually has as many
back edges from τ to ω as it does forward edges. The dynamics for a3 and a6 are
shown on the right, and we see that even if we initialize the activity purely on nodes
in ω, the activity flows ω → τ as predicted by the directionality. Note that none
of the graphs in panel a has a proper source, and thus none has a nontrivial DAG
decomposition.
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Panel b in Fig. 7 shows some example graphs that are not directional for any
partition of the vertices. This is because every vertex is involved in at least one fixed
point support, so there cannot be a collapse FP(G) ⊆ FP(G|τ ) for any τ " VG.
The graph in b2 is particularly surprising since it only has edges forward from the
2-clique 12 to 34, so we might expect this to yield a directional decomposition. But
the forward edges are not sufficient to kill the 2-clique 12, and so we see from the
dynamics on the right, that we are not guaranteed a directionality of flow. Instead,
12 supports a stable fixed point, and thus when we initialize activity on those nodes,
it remains there, and never flows to the other stable fixed point 34.

Remark 3.3 IfG is a directional graph, its directional decomposition is not unique.
For example, as long as ω has more than one vertex, then vertices can always be
moved from it to τ and maintain directionality. However, directional decompositions
are most useful when the τ component is as small as possible, since this gives the
strongest restrictions on the possible fixed point supports of the whole network. One
candidate τ for such a decomposition is τ := ∪σ∈FP(G)σ . However, this set does not
guarantee a directional decomposition since we have not guaranteed that all subsets
of VG that intersect ω := VG \τ die by graphical domination. In order to satisfy this
property, it may be necessary to add some additional vertices to τ , and doing this in
a minimal way may not be unique. It is an open question if every directional graph
has a unique directional decomposition with minimal τ .

4 Directional Covers and Nerve Theorems

In this section, we aim to characterize the fixed points of more complex graphs by
covering the graph with directional graphs, and then analyzing a simpler associated
object known as the nerve of the cover. The intuition is as follows. As described
in Sect. 3, if G is a directional graph with direction ω → τ , the activity of the
network flows from ω to τ . Thus, from a bird’s eye view, the flow of activity of
such a graph can be represented by the flow of activity along a single directed edge
from source to sink. Moreover, this flow of activity reflects restrictions imposed on
the fixed point supports as well. With this in mind, we will take any graph G and
aim to cover it with directional graphs that have appropriate pairwise intersections.
From this cover, we construct a nerve, which is a simplified graph where subsets
of vertices are collapsed to single points, and each directional graph of the cover is
now represented by a single directed edge. These edges are glued to one another in a
way representative of the intersection pattern of the cover. We will see that, with this
construction, we are able to deduce certain restrictions on the fixed point supports
of the original graphG by studying the fixed points of the nerve of the cover, which
is in general a simpler graph.
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4.1 Directional Covers and Nerves

We begin by making the notion of directional cover and its nerve precise.

Definition 4.1 (graph cover) LetG be a graph. A graph cover ofG is a collection
of induced subgraphs U = {Gi := G|Vi | for some Vi ⊆ VG} such that G is the
union of the Gi . In other words, VG = ∪i∈I Vi and EG = ∪i∈IEGi .

Remark 4.2 Note that every vertex and every edge ofGmust live in at least oneGi ,
but often they live in multiple Gi within the cover. In particular, since the covering
graphs are induced subgraphs of G, if u, v ∈ Vi and u, v ∈ Vj , then any edges
between u and v will be in both Gi and Gj .

Next we turn to a special type of graph cover which we call rigid directional
cover. In a rigid directional cover, we require that all the graphs of the cover are
directional and that they overlap in prescribed ways that will facilitate associating a
nerve to the cover and ensure that this nerve captures constraints on FP(G).

The rigid condition can be informally described as follows. Consider a graph
cover U of G, where all the covering graphs are directional. Let G1,G2 ∈ U be a
pair of graphs in the cover, with directional decompositions ω1 → τ1 and ω2 → τ2,
respectively. The graph cover U is rigid if for any pair G1 and G2 that have
nontrivial intersection, their overlap is of one of the following three types:

1. The τ component of the first graph acts as the ω component of the second, i.e.,
VG1 ∩ VG2 = τ1 = ω2. In this case we say the graphs have a chaining overlap.
(See Fig. 8a.)

2. The two covering graphs intersect exactly at their τ component, i.e.,
VG1 ∩ VG2 = τ1 = τ2. In this case we say the graphs have merging overlap.
(See Fig. 8b.)

3. The two covering graphs intersect exactly at their ω component, i.e.,
VG1 ∩ VG2 = ω1 = ω2, and have the additional property that there are
no back edges from vertices in τ to vertices in ω in either graph, i.e.,
EG1(τ1,ω1) = EG2(τ2,ω2) = ∅. In this case we say the graphs have a splitting
overlap. (See Fig. 8c.)

Fig. 8 A pair of graphs G1 and G2 that have (a) a chaining overlap (b) a merging overlap and (c)
a splitting overlap
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Effectively, a rigid directional cover is always induced by a partition of the vertices
of the underlying graph and this partition encodes all the information of the cover
itself. Therefore, we formally define a rigid graph cover as follows.

Definition 4.3 (directional cover and its nerve) Let G be a graph. Given a
partition of the vertices, ν = {ν1, . . . , νn}, let

E = E(G, ν) := {(i, j) ∈ [n]×[n] |G|νi∪νj is directional with direction νi → νj },

I = I(G, ν) := {i ∈ [n] | G|νi is disconnected from the rest of the graph}.

We say that the partition {ν1, . . . , νn} induces a rigid directional cover of G if:

1. For every pair (νi , νj ) either (i, j) ∈ E or (j, i) ∈ E or there are no edges
between νi and νj . In other words, the set U = {Gij := G|νi∪νj | (i, j) ∈
E} ∪ {G|νi | i ∈ I} is a graph cover of G.

2. Whenever Gij ,Gik ∈ U, they have “splitting overlap”, meaning there are no
edges from νj to νi and no edges from νk to νi , i.e.,EG(νj , νi ) = EG(νk, νi ) = ∅.
We define the nerve of the cover, denoted byN = N(G,U), to be the graph with

vertex set VN := [n] and edge set EN := E. The partition ν induces a canonical
quotient map π : VG → VN that identifies all the vertices of a component νi , so that
π(νi ) = {i} for each i ∈ VN.

Note that an arbitrary partition will not typically induce a rigid directional cover
because there will be pairs (νi , νj ) with edges between them, but the induced
subgraphs G|νi∪νj will not be directional. In contrast, partitions that do induce
a rigid directional cover must have G|νi∪νj directional whenever there are edges
between νi and νj . Note that we do not require the G|νi for i ∈ I to be directional;
these graphs are included in U simply to ensure that isolated components of the
graph are still covered. In this paper we will only work with rigid directional covers.
Therefore, in the remainder of this work we will use the term directional cover to
refer to a rigid directional cover.

Figure 9 gives an illustration of a graph G with vertex partition ν = {νi} that
induces a collection of covering graphs {Gij } that are all directional. In the nerve,
N = N(G,U), we see a vertex i for each component νi fromG, and an edge i → j

corresponding to each covering graph Gij , which has direction νi → νj .

Lemma 4.4 LetG be a graph with nerveN = N(G,U) for some directional cover
U. Then the nerve N is a simple directed graph that is oriented.

Proof Recall that given a partition ν = {ν1, . . . , νn} of the vertices of G, the nerve
N is defined as a graph on n vertices with edge set E given in Definition 4.3. The
edge set E is straightforward to determine from the partition ν. Specifically, if there
are no edges between νi and νj in G, then neither (i, j) nor (j, i) are in E, since
G|νi∪νj is a disjoint union, which can never be directional. If there are any edges
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Fig. 9 A graph with a directional cover and the corresponding nerve. (Left) A graph G. (Middle)
A directional cover U of G. The sets νi , νj , νk, νl , νm partition the vertices of G. All the edges
of G are contained within some of the covering graphs {Gij } shown, each of which is directional
with direction νi → νj . (Right) The nerveN = N(G,U) with a vertex for each component of the
partition and a directed edge for each directional graph of the cover

between νi and νj , we must have either (i, j) ∈ E or (j, i) ∈ E in order for the
{Gij } to cover G. Moreover, we can only have one of (i, j) or (j, i) in E since
G|νi∪νj can never be directional with both νi → νj and νj → νi . Thus, N is
oriented. Finally, to see that N is simple, notice that (i, i) /∈ E since Gii can never
be directional with ω = τ = νi . ,-

Given the complexity of the requirements of a directional cover, specifically that
every covering graph of the form G|νi∪νj be directional, it is natural to ask when a
graph actually has such a cover. Of course, every graph has a trivial directional cover
induced by the trivial partition ν1 = VG; in this case, the nerve of the cover is just
a single point. At the other extreme, whenever G is an oriented graph, the partition
of singletons νi = {i} will induce a directional cover, whose nerve is precisely the
original graph G. While these two trivial covers exist, they clearly do not provide
any insight into the structure or expected dynamics of G. There is an art to finding
a partition of VG from which a cover with an informative nerve can be obtained.

It is important to note that not every graph has a directional cover induced by a
nontrivial partition. For example, ifG is a clique, then there is no nontrivial partition
of VG that can admit a directional cover since everyGij will be a clique, and thus not
directional. At the other extreme, there are graphs with multiple nontrivial partitions
of VG which induce directional covers. See for example, Fig. 10c,d, which shows
two different covers of the same graph, and where the nerve of the first one is
directional while the nerve of the second is a cycle.

It is an open question which graphs have at least one nontrivial partition that
admits a directional cover. And unfortunately, there is currently no efficient way
to find all the partitions of a graph that do induce directional covers. However,
when we have a directional cover of G, obtained either by brute force search or
from intuition into the original construction of the graph, the nerve of the cover can
give significant insight into the collection of fixed points and consequently into the
predicted dynamics of the underlying network. In particular, nerve theorems ensure
that there is a provable connection between FP(G) and the structure of the nerve
under certain conditions on G and/or N(G,U).
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Fig. 10 Counterexamples to general nerve theorems. (a) and (b) give two different graphs with
partitions that induce directional covers. The nerve of each cover is shown to the right. (c) and
(d) give two different partitions for the same graph. In (c), the partition induces a nerve that is
directional, while in (d), the partition induces a nerve that is a cycle

4.2 Nerve Theorems

Ideally, we would hope for a nerve theorem that provides a strong connection
between the fixed point supports of the original graph and those of the nerve. For
example, we might hope that for any graph G that admits a directional cover with
nerve N we can guarantee a condition such as

σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N). (4)

Unfortunately, though, this strong restriction on FP(G) does not hold for all graphs
and all directional covers.

Example 4.5 For the graph in Fig. 10a, we see that the partition {ν1, . . . , ν4} shown
induces a directional cover of G. The nerve N = N(G,U) of this cover is
shown on the right. Recall that a cycle is uniform in-degree 1 and thus it supports
a fixed point precisely when no external vertex receives more than one edge
from it (see Theorem 2.14 in Sect. 2 ). Thus we have 123 ∈ FP(G)4 since the
external vertices 4 and 5 each receive only one edge from the cycle. However,

4 Recall that we write 123 to denote the fixed point support {1, 2, 3}.
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π(123) = 123 /∈ FP(N) since in the nerve, the cycle 123 has two outgoing edges to
vertex 4. Thus, σ ∈ FP(G) #⇒ π(σ ) ∈ FP(N) for this example graph.

An alternative style of nerve theorem would enable us to at least restrict the
candidate fixed point supports ofG based on the structure of the nerve. For example,
we might hope that whenever the nerve N(G,U) is directional with direction
W → T that the directionality would pullback to guarantee G is directional with
direction ω → τ for ω = π−1(W) and τ = π−1(T). If this held, then we could
guarantee that the fixed point supports of G were confined to τ = π−1(T), and
thus FP(G) ⊆ FP(G|τ ) by Lemma 2.9. Such a result would be somewhat weaker
than (4) in that the restrictions on σ ∈ FP(G)would not be as strong. On other hand,
it would also be somewhat stronger in a different direction, since a result like this
would guarantee the presence of graphical domination relationships for ruling out
fixed point supports, which is not something guaranteed by (4). Unfortunately, this
alternative nerve theorem does not hold in general either, and the same graph from
Fig. 10a provides a counterexample, as do the other graphs in Fig. 10.

Example 4.6 It is straightforward to see that the nerve N in Fig. 10a is directional
for W := {1, 2, 3} and T := {4}: every subset S ⊆ VN that intersects W either
has a proper source in G|S, and thus dies from domination by Lemma 2.10, or
contains 123, in which case we have 4 >S 1. However, G is not directional since
12345 ∈ FP(G), so there is no collapse of the fixed point supports ofG onto a proper
subset τ . Figure 10c gives another counterexample whereG has a full support fixed
point but a directional cover whose nerve is directional.

We have seen that in general the existence of a directional relationship W → T
of the nerve does not guarantee directionality of G. But are there certain conditions
under which this holds? It turns out that we can pullback such a directionality
relationship in the special case when the nerve has a nontrivial DAG decomposition
(see Definition 2.16).

Theorem 4.7 (DAG decomposition of the nerve) Let G be a graph with nerve
N = N(G,U) where U is a directional cover induced by a partition {ν1, . . . , νn},
and let π : VG → VN = [n] be the canonical quotient map of the partition. Then
for any DAG decomposition (W,T) of the nerve N, we have that G is directional
with direction ω → τ for ω = π−1(W) and τ = π−1(T). In particular,

FP(G) ⊆ FP(G|τ ),

and so for all σ ∈ FP(G), we have π(σ ) ⊆ T.
Notice that in Theorem 4.7, we can only conclude that σ ∈ FP(G) ⇒ π(σ ) ⊆ T,

and so we do not quite have the ideal nerve theorem result that π(σ ) ∈ FP(N) as
in (4). The conclusion in Theorem 4.7 is weaker than (4) because although the
directionality of N guarantees that every element of FP(N) is contained in T as is
each π(σ ), we cannot guarantee that π(σ ) is actually a fixed point support ofN.
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Fig. 11 Example directional covers and nerves. (a1–c1) Graphs with simple directional covers
in which every pair of covering graphs have the same type of overlap (chaining overlap in (a),
merging overlap in (b), and splitting overlap in (c)). (a2–c2) Nerves for the simple directional
covers above

Next we consider when the nerve N is itself a DAG so that, in the maximal
DAG decomposition, T is precisely the sinks of N. We can immediately apply
Theorem 4.7 to see that the directionality of N pulls back to G, but in fact we
can say something stronger: the ideal nerve theorem conditions of (4) hold in this
case. Moreover, it turns out that there are further restrictions on the fixed point
supports of G in terms of the fixed points of the component subgraphs G|νi , which
are prescribed by the partition.

Theorem 4.8 (DAG nerve) Let G be a graph with nerve N = N(G,U)

where U is a directional cover induced by a partition {ν1, . . . , νn}, and let
π : VG → VN = [n] be the canonical quotient map of the partition. Suppose
thatN is a DAG, and let T = {sinks of N} andW = VN \ T. Then G is directional
with direction ω → τ for ω = π−1(W) and τ = π−1(T).

Moreover,

1. σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N) = P(T) \ {∅}, where P(T) denotes the power
set of T.

2. σ ∈ FP(G) ⇒ σ ∩ νi ∈ FP(G|νi ) ∪ {∅} for all i ∈ T and σ ∩ νj = ∅ for all
j ∈ W.

Figure 11 illustrates three special cases of directional coversU of a graphGwith
their corresponding nerves shown below. These directional covers have pairwise
overlaps that are either: only chainings (Fig. 11a), only mergings (Fig. 11b), or only
splittings (Fig. 11c). We refer to these types of overlaps as n-chaining, n-merging
and n-splitting, respectively. We see that their corresponding nerves are DAGs
where the set of sinks T is either a single sink, T = {n}, as in panels a2 and b2,
or an independent set of sinks, T = {2, 3, . . . , n}, as in panel c2. Theorem 4.7 tells
us that in each case the underlying graph G is directional with direction ω → τ for
τ = π−1(T). Additionally, in the case of n-splitting, Theorem 4.8 gives a stronger
result. Namely,
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σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N) and σ ∩ νi ∈ FP(G|νi )∪ {∅} for i ∈ {2, 3, . . . , n}.

That is: any fixed point support σ of G gets pushed forward to a fixed point support
of the nerve N, and for any 2 ≤ i ≤ n we have that if σ intersects νi then this
intersection is also a fixed point support of the induced subgraph on νi .

Thus far, we have only seen nerve theorems in the case when N has a nontrivial
DAG component, but it turns out that a similar nerve result holds in the case when
N is a cycle (and thus has no DAG component).

Theorem 4.9 (cycle nerve) Let G be a graph with nerve N = N(G,U) where U
is a directional cover induced by a partition {ν1, . . . , νn}, and let π :VG→VN = [n]
be the canonical quotient map.

Suppose that N is a cycle on n vertices. Then

1. σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N) = {[n]}
2. If {ν1, . . . , νn} is a simply-embedded partition of G, then

σ ∈ FP(G) ⇒ σ ∩ νi ∈ FP(G|νi ) for all i ∈ [n].
Theorem 4.9 is a repackaging of results from [16], which explores graphs known

as directional cycles; in the terminology of this paper, these are precisely graphs
with a directional cover whose nerve is a cycle. In [16, Theorem 1.2], it was shown
that for this family of graphs, every fixed point support must nontrivially intersect
every νi , and so for every σ ∈ FP(G), we have π(σ ) = [n]. Recall that when N is
a cycle, FP(N) = {[n]} by Lemma 2.11, and thus, combining these results, we are
guaranteed that π(σ ) ∈ FP(N). In [16, Theorem 1.5], it was also shown that when
the partition {ν1, . . . , νn} has a special property, known as simply-embedded,5 then
every fixed point support must restrict to a fixed point in each of the component
subgraphs G|νi , yielding the second part of Theorem 4.9.

It is worth noting that another special family of graphs with directional covers
was previously studied in [8, Section 5]. That work focused on composite graphs,
which are graphs where all the vertices in a component behave identically with
respect to the rest of the graph. Consequently, the only directional covering graphs
Gij used in the cover are those that have all possible edges forward from νi to
νj and no backward edges. In this context, the components of a composite graph
correspond to the partition {ν1, . . . , νn} that induces the directional cover, and the
skeleton of the composite graph is its nerve. With this perspective, many of the
results of [8, Section 5] can be reinterpreted as nerve theorems for the special family
of composite graphs.

5 We say that {ν1, . . . , νn} is a simply-embedded partition if every vertex in νi is treated identically
by the rest of the graph. In other words, for every j ∈ VG \ νi if j → k for some k ∈ νi , then
j → ) for all ) ∈ νi .
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4.3 Proofs of Nerve Theorems

Throughout this subsection we fix the following notation: G is a graph with a
partition {ν1, . . . , νn} that induces a directional cover U. The nerve N(G,U) is
denoted by N, and π : VG → VN = [n] is the canonical quotient map induced by
the partition.

Before proving the nerve theorems we give an overview of the structure of the
proofs. To prove Theorem 4.7 (DAG decomposition of the nerve), we first show
that whenever N has a proper source s, we can guarantee that G is directional for
ω = π−1(s) and τ = VG\ω (see Lemma 4.11). This gives a rather coarse directional
decomposition of G. We will then consider the general case when we have a DAG
decomposition (W,T) of the nerve N. We will use the previous result and show
inductively thatG is directional with direction π−1(W) → π−1(T). For this proof,
we will use three ingredients we briefly describe now.

First, we will use a topological ordering on W, which guarantees that the only
possible edges inN|W are from lower numbered vertices to higher number vertices.
With respect to this topological ordering, vertex 1 in N is a proper source; vertex 2
is a proper source in N|VN\{1}; vertex 3 is a proper source in N|VN\{1,2}, and so on.
This ordering will allow us to induct on |W|. The second ingredient is Lemma 4.12.
This result will allow us to refine a directional decomposition of a graph in order to
grow ω, and consequently shrink τ by looking at directional decompositions of the
subgraph induced on the vertices in τ . The third and final ingredient is Lemma 4.13.
This result will show that the construction of a directional cover and its nerve is
compatible with taking subgraphs of the underlying graph corresponding to only
some of the components of the partition inducing the cover.

At the core of the proofs is the process of “extending domination”. To see why
this idea is central, consider a directional cover of G and σ ⊆ VG a subset of the
vertices ofG. Let µ be the intersection of σ with the vertices of one of the covering
graphs such that µ is not contained in the τ component of that covering graph. Since
µ is completely contained within a directional graph then it must die by domination.
Under certain conditions, one can show that σ dies by domination by extending the
domination relationship on µ to all of σ . Therefore, all the proofs hinge on the
following technical result that determines when domination can be extended to a
superset.

Lemma 4.10 (restricting and extending domination) Let G be a graph, and let
α ⊂ µ ⊂ σ ⊆ VG be subsets of vertices with α possibly empty (see Fig. 12). Then
the following hold:

(a) Restriction: Suppose k >σ j where j ∈ µ and k ∈ VG. Then k >µ j.

(b) Extension: Suppose k >µ j where j ∈ µ \ α and k ∈ VG. If there are no edges
from σ \ µ to µ \ α (i.e., EG(σ \ µ, µ \ α) = ∅), then k >σ j.

Proof Recall from Definition 2.7 that k >σ j if the following three conditions
hold:
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Fig. 12 Figure for Lemma 4.10. A graph G with subsets of the vertices α ⊂ µ ⊆ σ ⊂ VG

satisfying the conditions of Lemma 4.10. Specifically, the vertex j ∈ µ \α, the vertex k ∈ VG, and
there are no edges from vertices in σ to those in µ \ α

1. For all i ∈ σ \ {j, k} if i → j , then i → k.
2. If j ∈ σ , then j → k.
3. If k ∈ σ , then k ! j .

For (a), Restriction, we see that k >σ j immediately implies that k >µ j since if
condition 1 holds for all of σ , then it holds for the subset µ as well, and conditions
2 and 3 go through directly.

For (b), Extension, we see condition 2 goes through immediately since j ∈µ⊂ σ .
For condition 3, observe that if k ∈ σ then either k ∈ µ or k ∈ σ \ µ, and in both
cases k ! j as required. Finally, for condition 1, notice that for i ∈ µ this condition
holds because k >µ j , while for i ∈ σ \ µ, this condition holds trivially because
j ∈ µ \ α and there are no edges from σ \µ to µ \ α by hypothesis. Thus condition
1 holds as well, and so k >σ j . ,-

We can now prove that it is possible to pull back directionality from the nerve N
to G whenever N has a proper source.

Lemma 4.11 If s is a proper source in N, then G is directional with ω = π−1(s)

and τ = VG \ ω.

Proof Let s be a proper source in N, ω := π−1(s), and τ := VG \ ω. To show that
G is directional with direction ω → τ , consider σ ⊆ VG such that σ ∩ ω #= ∅. We
need to show that σ dies by domination, i.e., that there exists a j ∈ σ ∩ ω and a
k ∈ VG such that k >σ j .

The organization of the proof is as follows. We first find a covering graph
Gs1 ∈ U such that ω ⊆ VGs1 . Then we set µ ⊆ σ to be the restriction of σ to
Gs1. Since Gs1 is directional, µ dies by domination. We will show that by setting
α ⊂ µ to be the intersection of µ with the τ component of Gs1, the conditions of
Lemma 4.10 hold (see Fig. 13). Thus, we can extend the domination relationship to
all of σ .

To find Gs1, notice that since s is a proper source in N there exists at least one
vertex in N that s sends an edge to; without loss of generality, label the vertices
of N that s sends edges to as 1, . . . , m. Since s → 1 in N, the covering graph
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Fig. 13 Figure for proof of Lemma 4.11. Vertex s is a proper source in N (right) with outgoing
edges to vertices 1,2, and 3. In G (left), we see the corresponding components νs and {ν1, ν2, ν3}.
We consider a subset σ ⊆ VG (outlined in red), and letµ := σ∩(νs∪ν1) (shaded in purple). Arrows
with an x through them indicate that no edges are allowed in the specified direction between the
relevant components. Specifically, there are no edges from {ν1, ν2, ν3} into νs because the graphs
Gs1, Gs2, and Gs3 must have “splitting overlap” by the definition of directional cover. There are
no edges from any other vertices in G into νs because there are no edges in the nerve between s
and any of the other vertices besides 1, 2, and 3

Gs1 := G|νs∪ν1 must be directional with direction νs → ν1. Let µ := σ ∩ (νs ∪ ν1)

(see Fig. 13). Since Gs1 is directional, there exists a j ∈ µ ∩ νs and k ∈ VGs1 such
that k >µ j . Following the notation of Lemma 4.10, let α := µ \ νs = µ ∩ ν1.
We will show that there are no edges in G from vertices in σ \ µ to vertices in
µ \ α = µ ∩ νs , enabling us to extend the domination relationship from µ to all
of σ .

Note that by definition of directional cover, there can only be edges between νs
and ν) in G if there is an edge between s and ) in N (see Definition 4.3). Thus the
only candidate vertices in G that could send edges into µ \ α = µ ∩ νs are those in
{ν1, . . . , νm} since the only edges in N that involve s are those from s to 1, . . . , m.
But since (s, 1), . . . , (s,m) ∈ EN, condition (2) of the definition of directional
cover requires that the covering graphsGs1, . . . ,Gsm have splitting overlap, so there
are no edges from ν) to νs for any 1 ≤ ) ≤ m. Thus, there are no edges from σ \ µ
into µ ∩ νs = µ \ α, and so by Lemma 4.10, the domination relationship k >µ j

extends to give k >σ j . Hence G is directional with direction ω → τ . ,-
We now give the two lemmas that allow us to inductively use the result above.

First, we show that one can refine a directional decomposition of a graph by looking
at possible directional decompositions of the subgraph induced on the τ component.

Lemma 4.12 Suppose that G is a directional graph with direction ω1 → τ1 and
that G|τ1 is also directional with direction ω2 → τ2 (see Fig. 14). Then G is
directional with direction ω1 ∪ ω2 → τ2.



Nerve Theorems for Neural Networks 155

Fig. 14 Figure for Lemma 4.12. A directional graph G with an initial directional partition ω1 →
τ1. Additionally, G|τ1 is directional with direction ω2 → τ2. These two partitions can then be
combined to show that G is directional for a larger set ω = ω1 ∪ ω2 (outlined in gray) and smaller
set τ = τ2

Proof Let ω = ω1 ∪ ω2 and τ = τ2. To show that G is directional with direction
ω → τ , consider σ ⊆ VG such that σ ∩ ω #= ∅. We will show that σ dies by
domination.

Case 1: σ ∩ ω1 #= ∅. Then since G is directional with ω1 → τ1, σ dies by
domination.

Case 2: σ ∩ω1 = ∅. Then σ ⊆ τ1. Since σ ∩ω #= ∅, we have σ ∩ω2 #= ∅. Then since
G|τ1 is directional with ω2 → τ2, there exists j ∈ σ ∩ ω2 and k ∈ VG|τ1 = τ1
such that k >σ j inG|τ1 . Since σ ∩ ω1 = ∅, there are no vertices in σ outside of
G|τ1 that could potentially subvert the domination relationship between k and j .
Thus, k >σ j in all of G, and so G is directional for ω = ω1 ∪ ω2 and τ = τ2.

,-
We now show that the construction of a directional cover and its nerve behaves

nicely for induced subgraphs of G, restricting to a subset of the partition compo-
nents.

Lemma 4.13 Let νI := {νi | i ∈ I } be a subset of the components of the partition
ν of G, for I ⊆ VN. Let GI := G|∪i∈I νi denote the induced subgraph of G on the
components νI . Then the partition νI of the vertices of GI induces a directional
cover UI whose nerve is N(GI ,UI ) = N|I , the restriction of the original nerve
N = N(G,U) to the vertices I .

Proof Observe that the partition νI yields the edge set

E(GI , νI ) := {(i, j) ∈ I × I | G|νi∪νj is directional with direction νi → νj }.

This edge set is clearly a subset of the edge set E(G, ν) for the cover U of G;
specifically, E(GI , νI ) = {(i, j) ∈ E(G, ν) | i, j ∈ I }. Moreover, the set of graphs
{Gij | (i, j) ∈ E(GI , νI )} form a graph cover of GI because for any i, j ∈ I if
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there are any edges between νi and νj in G, then Gij or Gji must have been in
the cover U of G, so one of these graphs is directional, and thus (i, j) or (j, i) is
in E(GI , νI ). Thus, νI induces a directional cover UI of GI with vertex set I and
edge set E(GI , νI ). Since E(GI , νI ) is precisely the edges of E(G, ν) among the
vertices in I , we see that the nerve of the cover N(GI ,UI ) is precisely N|I , the
restriction of the nerve of G to the vertices I . ,-

We are now prepared to prove Theorem 4.7 (reprinted below for convenience).

Theorem 4.7 (DAG decomposition of the nerve) For any DAG decomposition
(W,T) of the nerve N, we have that G is directional with direction ω → τ for
ω = π−1(W) and τ = π−1(T). In particular,

FP(G) ⊆ FP(G|τ ),

and so for all σ ∈ FP(G), we have π(σ ) ⊆ T.
Proof Let (W,T) be a DAG decomposition of the nerve N. We will show that G
is directional with direction π−1(W) → π−1(T) by inducting on |W| in the DAG
decomposition of N.

The base case of |W| = 1 follows immediately from Lemma 4.11 since the first
element of W must be a proper source in N. For the inductive step, assume the
inductive hypothesis holds whenever |W| < m and consider a DAG decomposition
(W,T) ofN where |W| = m. SinceN|W is a DAG, there is a topological ordering
of the vertices such that the only edges in N|W are from lower numbered to higher
numbered nodes; WLOG relabel the vertices of W as 1, . . . , m according to this
ordering. LetW1 = W \ {m} and T1 = T∪ {m}. It is straightforward to check that
(W1,T1) is also a DAG decomposition of N. Since |W1| < m, by the inductive
hypothesis, G is directional with

ω1 = π−1(W1) and τ1 = π−1(T1) = π−1(m) ∪ π−1(T).

We will show that G|τ1 is also directional, so that we may apply Lemma 4.12 and
further refine the directional decomposition of G. Specifically, we will show that
G|τ1 has direction ω2 → τ2 for ω2 = π−1(m) and τ2 = π−1(T1 \ {m}) = π−1(T).

By Lemma 4.13, the original directional cover ofG restricts to a directional cover
ofG|τ1 and its nerve isN|{m}∪T. Sincem ∈ W in the original DAG decomposition
of N, m is not a sink in N, so it has at least one outgoing edge. Moreover there are
no edges from T back to m in a DAG decomposition. Thus m is a proper source in
N|{m} ∪ T. Therefore, by Lemma 4.11, G|τ1 is directional with direction ω2 → τ2
for

ω2 = π−1(m) and τ2 = π−1(T).
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Finally, sinceG is directional with ω1=π−1(W \ {m}), τ1=π−1(m)∪ π−1(T)
and G|τ1 is directional with ω2 = π−1(m) and τ2 = π−1(T), we see from
Lemma 4.12, that G is directional with direction ω1 ∪ ω2 → τ2. Since π−1(W) =
ω1 ∪ ω2 and π−1(T) = τ2, we see G is directional with direction π−1(W) →
π−1(T) as desired. ,-

Next we consider when the nerve N is itself a DAG so that in the maximal
DAG decomposition T is precisely the sinks of N. Theorem 4.7 guarantees that
the directionality of N pulls back to G, but to prove the rest of the nerve theorem
conditions, we must appeal to a result characterizing the fixed point supports of
disjoint unions, proven in [8]. The disjoint union of component subgraphs is the
graph consisting of those subgraphs with no edges between the components.

Theorem 4.14 ([8], Theorem 11) Let G be the disjoint union of component
subgraphs G1, . . . ,GN . For any nonempty σ ⊆ VG,

σ ∈ FP(G) ⇔ σ ∩ VGi ∈ FP(Gi) ∪ {∅} for all i ∈ [N ].

We can now prove Theorem 4.8 (reprinted below).

Theorem 4.8 (DAG nerve) Suppose that N is a DAG, and let T = {sinks of N}
and W = VN \ T. Then G is directional with direction ω → τ for ω = π−1(W)

and τ = π−1(T).
Moreover,

1. σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N) = P(T) \ {∅}, where P(T) denotes the power
set of T.

2. σ ∈ FP(G) ⇒ σ∩νi ∈ FP(G|νi )∪{∅} for all i ∈T and σ∩νj =∅ for all j ∈W.

Proof The fact that G is directional with direction ω → τ for ω = π−1(W)

and τ = π−1(T) follows from Theorem 4.7 since the given choice of (W,T)
is the maximal DAG decomposition of N. As a consequence of this, we have
FP(G) ⊆ FP(G|π−1(T )), and so we turn our attention to G|π−1(T ) to understand
FP(G).

Observe that since T = {sinks of N}, there are no edges between the vertices
in T, and so N|T is an independent set. Thus, there are no edges in G between the
components νi for i ∈ T, and so G|π−1(T ) is a disjoint union of the component
subgraphs G|νi . Applying Theorem 4.14, we see that σ ∈ FP

(
G|π−1(T )

)
precisely

when σ ∩ νi ∈ FP(G|νi ) ∪ {∅} for all i ∈ T. And since FP(G) ⊆ FP
(
G|π−1(T )

)
by

the directionality of G, part (2) of the theorem statement follows immediately.
For part (1), observe that since G is directional, σ ∈ FP(G) implies that

π(σ ) ⊆ T. Since N is a DAG, by Lemma 2.15, FP(N) = P(T), and so every
subset of T is an element of FP(N). Thus, σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N) as
desired. ,-
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5 Some Extensions and Applications

We now turn our attention to some examples that illustrate the power of our nerve
theorems. Going back to Fig. 3a,b of the Introduction, we see that this graph and
its nerve satisfy the hypotheses of Theorem 4.7 and Theorem 4.8. The nerve (panel
b) is a simple path that has a maximal DAG decomposition with T = {10} (10 is
the unique sink node). Theorem 4.7 thus predicts that FP(G) ⊆ FP(G|ν10), since
ν10 = π−1({10}). In fact, FP(G) = {ν10}, so the network has a unique fixed point
supported on ν10. Moreover, this fixed point is stable because it corresponds to a
clique (see [8, 9]). As seen in panel d, the dynamics do indeed converge to this
stable fixed point. Furthermore, for solutions with initial conditions supported on
the first clique (G|ν1 ), we see that the transient dynamics activate all cliques in the
chain, in sequence, following the path of the nerve.

In the remainder of this section, we will discuss additional examples of networks
whose graphs and nerves satisfy the hypotheses of one or more of our nerve
theorems: Theorem 4.7, Theorem 4.8, and Theorem 4.9. Just as in Fig. 3, we will
see that the nerve not only predicts the fixed points and asymptotic dynamics, but
also provides insight into the transient dynamics of the network. In the second
subsection, we will see that even when we violate a key condition of directional
covers, the nerve of a network covered by directional graphs can still provide
accurate predictions of the dynamics.

5.1 Iterating and Combining DAG Decomposition and Cycle
Nerve Theorems

Recall that for any partition {ν1, . . . , νn} of the vertices of G, there is an associated
quotient map π : VG → VN = [n] defined by π(νi ) = {i} for each i ∈ [n]. We saw
in Sect. 4 that if such a partition induces a directional cover, and the nerve N has a
DAG decomposition (W,T), then the fixed points of the corresponding CTLN are
confined to the non-DAG part T. In other words, Theorem 4.7 tells us that

FP(G) ⊆ FP(G|τ ),

where τ = π−1(T). Now if we consider the restricted graph, G′ = G|τ , we can
potentially iterate this process by finding a new directional cover, with nerve N ′,
DAG decomposition (W′,T′), and quotient map π ′. This would enable us to further
restrict the fixed points of the original network to

FP(G) ⊆ FP(G′) ⊆ FP(G′′),

where G′′ = G|τ ′ , and τ ′ = π ′−1(T′) ⊂ τ . Note that G′′ is the original graph
restricted to an even smaller subset of vertices. This kind of iteration may enable us
to get more power from our nerve theorems, by further constraining FP(G).
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Fig. 15 Iterative application of nerve theorems

Figure 15 shows an example of a graph (a1) whose nerve (a2) is a DAG.
Therefore, we can apply Theorem 4.8 to conclude that the fixed point supports of
FP(G) must be unions of fixed points of G restricted to the green, red, or orange
components. Moreover, the activity flows towards the subnetwork corresponding to
the sinks in the nerve. Indeed, for a given initial condition supported on the top gray
nodes, we see the solution converge to a limit cycle supported only on green nodes
(a3).

The green component, however, is itself a complex graph. Thus, we may consider
the subgraph G′ of G corresponding to the non-DAG part of N. Figure 15 (right)
shows G′ (b1) with nodes colored according to a DAG decomposition of its own
nerve N ′ (b2). (Note that G′ is a disjoint union of three graphs, and the nerve
N ′ is the disjoint union of nerves for each connected component of G′.) Applying
Theorem 4.7 allows us to restrict the fixed points of G even further, to the vertices
that map to the colored nodes in b2. We see this reflected in the dynamics as well.
Panel b3 shows the same limit cycle as before, only now it’s clear that the green
curves in a3 correspond only to the yellow, purple, and blue neurons in b1.

We can also combine the DAG nerve theorems with the cycle nerve theorem,
Theorem 4.9. Figure 16a depicts the graph of a complex network whose nodes are
grouped according to a partition with 12 components (8 in gray, 4 in color). In panel
b we see the nerve of the induced directional cover, with the color of each node
matching those in the original graph. This nerve has a DAG decomposition with the
eight gray nodes in the DAG part, W, and the four colored nodes in the non-DAG
part, T. Theorem 4.7 thus tells us that all fixed points of the original graph G must
be contained in τ = π−1(T), which is the set of colored nodes in panel a. Indeed,
FP(G) ⊆ FP(G|τ ) for this graph.

Note that we can also apply another nerve theorem to G|τ to say something
stronger about FP(G). Because G|τ has a nerve that is a cycle, Theorem 4.9 tells us
that any fixed point of G must intersect each of the components π−1(i) for i in the
cycle. That is, fixed points of G must contain at least one vertex from each of the
four colors (red, blue, green, orange) shown in panel a. This is in fact the case, as
the CTLN for G has FP(G) = {14567}. Moreover, we see that even if we choose
initial conditions supported only on the gray vertices, the dynamics will converge to
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Fig. 16 Application of multiple nerve theorems. (a) A graph G for a CTLN. (b) A nerve N of G
with 12 vertices. Each of the gray vertices inN corresponds to a cluster of gray nodes in (a), while
the colored vertices in N correspond to the vertices with matching colors in G. (c) A solution to
a CTLN with graph G and initial conditions supported on the top-most gray nodes. The activity
flows down the network and converges to a limit cycle involving only the colored nodes

a part of the state space where the gray neurons are off and at least one neuron of
each color is active (see Fig. 16c).

5.2 Extensions Beyond Directional Covers

In Definition 4.3 of (rigid) directional covers, we required fairly stringent conditions
that enabled us to prove strong results about the fixed points of a graph in terms of
the fixed points of its nerve. Here we consider some examples of “weak” directional
covers, where the component graphs are all directional but one of the conditions in
Definition 4.3 is violated. Nevertheless, we find that the nerve provides a remarkably
accurate prediction of the network dynamics.

Our starting point for these examples is a pair of “nerve” graphs with a grid-like
structure, shown in Fig. 17a. Each graph is a finite lattice with directed edges moving
down and to the right across the grid, and an additional edge, 20 → 16, completing
a cycle at the bottom. We can think of these graphs as a pair of nerves, N1 and N2,
for larger networks obtained by inserting directional graphs along the edges. In this
case, a vertex i corresponds to a component νi , and an edge i → j corresponds to
a directional graph G|νi∪νj with direction νi → νj . The only difference is that the
first nerve, N1, includes the 15 → 20 edge; while the second nerve, N2, does not
(see dotted line in Fig. 17a).

The nerves enable one to make concrete predictions about the network dynamics.
Specifically, we can consider CTLNs where the graph G is chosen to be N1 or
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Fig. 17 A grid-like nerve shapes global sequential dynamics irrespective of the component
graphs. (a) Two versions of the nerve, with and without the 15 → 20 edge. (b–c) Solutions for
CTLNs where the graph is nerve 1 or nerve 2, respectively. (d) 5-clique component graphs and
a corresponding directional graph for an edge in the cover. (e) 5-star component graphs and their
directional graph. (f–i) Solutions for associated CTLNs for all four combinations of nerves and
component graphs

N2. Figure 17b shows a solution for a CTLN with G = N1, where the activity
is initialized with x1(0) = 0.5 and xi(0) = 0 for i > 1 (we refer to this as
initial condition 1). Note that the transient activity follows a hopscotch trajectory
1 → (2, 6) → 7 → (8, 12) → 13 → (14, 18) → 19, where the pairs
(2, 6), (8, 12), and (14, 18) fire synchronously. Once the activity reaches the bottom
row T, the dynamics converge to a limit cycle that follows the cycle 19 → 20 →
16 → 17 → 18 → 19 in the graph. If we choose the same initial condition
for G = N2, we obtain exactly the same result. This is because the activity
never reaches node 15, and so the cut edge is not “seen.” Figure 17c shows the
solution when we initialize instead at x3(0) = 0.5, and xi(0) = 0 for i #= 3
(initial condition 2). In this case, the activity follows the hopscotch trajectory
3 → (4, 8) → 9 → (10, 14) → 15 that ends in a stable fixed point at 15. This
is precisely what we expect since node 15 is a sink. These basic features of the
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dynamics for a CTLN defined directly on the nerve can be taken as a prediction for
the dynamics of any network G that has a directional cover with N1 or N2 as its
nerve.

If we consider a graph G for which N1 or N2 is the nerve of a directional cover,
satisfying all the conditions of Definition 4.3, then we have additional knowledge
about the fixed points ofG. The first nerve,N1, has a maximal DAG decomposition
(W,T) with nodes 1–15 in W and nodes 16–20 in T. Theorem 4.7 thus predicts
that all fixed points ofG are supported in τ = π−1(T). Moreover, sinceN|T forms a
cycle, applying Theorem 4.9 we expect all fixed points to intersect each component
of T. In the second nerve, N2, 15 #→ 20 and thus node 15 is a sink. Any DAG
decomposition forN2 must therefore include node 15 in T. Applying Theorem 4.7,
we expect fixed point(s) corresponding to the cycle, as before, as well as fixed
point(s) supported in ν15 = π−1(15). We may also have fixed points whose supports
are unions of those from the cycle and ν15. These observations are all independent
of the choice of components νi ofG and the subgraphsG|νi∪νj , so long as the nerve
corresponds to a directional cover in accordance with Definition 4.3.

What happens if a cover by directional graphs violates one of the conditions
of Definition 4.3? Figure 17d shows a directional graph that can be inserted along
the edges of N1 and N2. The components are 5-cliques, and the directional graphs
are the same as in Fig. 3c. Inserting these into the grid-like nerves, however, yields
many nodes with splitting overlaps (unlike for the nerve in Fig. 3b). This means
backwards edges within the directional graphs violate the “splitting” condition 2
of Definition 4.3, and the resulting network does not have a directional cover.
Moreover, the splitting condition was essential to our nerve theorems: the fixed
points of a network G obtained by inserting the Fig. 3c graph into either N1 or
N2 do not satisfy the constraints given by Theorem 4.7. In fact, there are numerous
fixed points supported outside G|τ for τ = π−1(T).

As another example, inserting the directional graph in Fig. 17e as G|νi∪νj along
the edges of N1 or N2 also produces a cover by directional graphs that violates the
splitting condition. Here, each component is a cyclically symmetric oriented graph
on five vertices, called the 5-star,6 and the directional graphs Gij = G|νi∪νj are
chosen to have forward edges from νi onto three of the nodes in νj , and backwards
edges from the remaining two nodes in νj to all five nodes in νi . Again, our nerve
theorems fail to predict the fixed point structure of the larger network.

Nevertheless, we find that the dynamics of these networks whose graph covers
violate the splitting condition are well predicted by their nerves. Figure 17f–i display
the dynamics of the networks obtained from each of the four combinations: 5-clique
components with nerve N1 (panel f), 5-clique components with nerve N2 (panel
g), 5-star components with nerve N1 (panel h), and 5-star components with nerve
N2 (panel i). In each case, the nerve dictates the global structure of the dynamics
as activity flows from one component to another. Figure 17f shows the solution
for a CTLN with 5-clique components and initial conditions supported in ν1. As

6 Each vertex k in the 5-star has two outgoing edges: k → k+ 1 and k → k+ 2 (indexing mod 5).
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predicted, the asymptotic behavior is of a limit cycle following the cycle 16 →
17 → 18 → 19 → 20 → 16 in the nerve. Figure 17g shows the activity with 5-
clique components inserted into nerveN2, with initial conditions leading the activity
to converge to a stable fixed point, as in Fig. 17c.

Inserting 5-star graphs in N1 and N2, instead of 5-cliques, also produces
asymptotic behavior that settles into a repeating sequence (Fig. 17h) or a localized
attractor (Fig. 17i). The structure of the inserted graphs, however, does affect the
local dynamics within each component of the nerve. In Fig. 17f the transient
dynamics are considerably more regular than in Fig. 17b, and the neurons within
each component fire synchronously. In contrast, in Fig. 17h the transient dynamics
are irregular like in Fig. 17b, and the neurons within each component do not fire
synchronously. In each case, we see global aspects of the dynamics being dictated
by the nerve, while local dynamics are affected by differences in the component
graphs G|νi . For example, in Fig. 17g the activity converges to a stable fixed point
corresponding to the 5-clique supported on ν15; but in Fig. 17i, the network does not
converge to a fixed point because the 5-star does not support a stable fixed point.
Instead, the activity settles into a limit cycle typical of 5-star CTLNs, with activity
confined almost entirely to the neurons in ν15.

Taken together, these examples suggest that nerves can be predictive of network
dynamics for a broader class of directional covers, including networks where our
current set of nerve theorems do not apply. It is an open question how to formalize
these observations into new nerve theorems that reflect the predictions on the
dynamics.

6 Conclusion

In this work, we investigated how the global structure of a network, as captured
by the nerve of a directional cover, reflects the underlying dynamics. By replacing
directional subgraphs with single edges, the nerve provides a significant dimen-
sionality reduction of a network. Moreover, this reduced network is meaningful: in
simulations, we have seen that the dynamics of a CTLN with a directional cover
closely follows the dynamics of its nerve.

Although the observed relationship between the dynamics of a network and its
nerve is so far heuristic, we have proven a number of theorems directly connecting
the fixed points of a larger network G to those of its nerve N. Specifically, we
showed that whenever the nerve has a DAG decomposition (W,T), the nerve is
directional with directionW → T, and this guarantees that the larger networkG is
also directional. In particular, the fixed points of the larger network are confined to
live in the pullback π−1(T) (Theorem 4.7). In the special case where the nerve is a
DAG, we have a tighter connection between FP(G) and FP(N). Theorem 4.8 shows
that every fixed point support of G projects to a fixed point of N. In other words,

σ ∈ FP(G) ⇒ π(σ ) ∈ FP(N).
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Moreover, every σ ∈ FP(G) is a union of fixed point supports of the component
subgraphsG|νi . Theorem 4.9 gives similar constraints on FP(G)whenever the nerve
is a cycle.

Due to the close relationship between fixed points and attractors in CTLNs,
understanding the fixed point structure and how this is shaped by network architec-
ture is an important step towards understanding how network connectivity shapes
dynamics. The machinery developed here thus provides a useful framework for
dimensionality reduction in the analysis of large networks. Moreover, it provides
insight into how to engineer complex networks with desired dynamic properties
from smaller building block components.
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