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Networks of neurons in the brain encode preferred patterns of neural
activity via their synaptic connections. Despite receiving considerable
attention, the precise relationship between network connectivity and en-
coded patterns is still poorly understood. Here we consider this problem
for networks of threshold-linear neurons whose computational function
is to learn and store a set of binary patterns (e.g., a neural code) as “per-
mitted sets” of the network. We introduce a simple encoding rule that
selectively turns “on” synapses between neurons that coappear in one or
more patterns. The rule uses synapses that are binary, in the sense of hav-
ing only two states (“on” or “off”), but also heterogeneous, with weights
drawn from an underlying synaptic strength matrix S. Our main results
precisely describe the stored patterns that result from the encoding rule,
including unintended “spurious” states, and give an explicit characteri-
zation of the dependence on S. In particular, we find that binary patterns
are successfully stored in these networks when the excitatory connec-
tions between neurons are geometrically balanced—i.e., they satisfy a set
of geometric constraints. Furthermore, we find that certain types of neu-
ral codes are natural in the context of these networks, meaning that the
full code can be accurately learned from a highly undersampled set of
patterns. Interestingly, many commonly observed neural codes in corti-
cal and hippocampal areas are natural in this sense. As an application,
we construct networks that encode hippocampal place field codes nearly
exactly, following presentation of only a small fraction of patterns. To
obtain our results, we prove new theorems using classical ideas from
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convex and distance geometry, such as Cayley-Menger determinants, re-
vealing a novel connection between these areas of mathematics and cod-
ing properties of neural networks.

1 Introduction

Recurrent networks in cortex and hippocampus exhibit highly constrained
patterns of neural activity, even in the absence of sensory inputs (Kenet,
Bibitchkov, Tsodyks, Grinvald, & Arieli, 2003; Yuste, MacLean, Smith, &
Lansner, 2005; Luczak, Bartho, & Harris, 2009; Berkes, Orban, Lengyel, &
Fiser, 2011). These patterns are strikingly similar in both stimulus-evoked
and spontaneous activity (Kenet et al., 2003; Luczak et al., 2009), suggesting
that cortical networks store neural codes consisting of a relatively small
number of allowed activity patterns (Yuste et al., 2005; Berkes et al., 2011).
What is the relationship between the stored patterns of a network and its
underlying connectivity? More specifically, given a prescribed set of binary
patterns (e.g., a binary neural code), how can one arrange the connectivity
of a network such that precisely those patterns are encoded as fixed-point
attractors of the dynamics, while minimizing the emergence of unwanted
“spurious” states? This problem, which we refer to as the network encoding
(NE) problem, dates back at least to 1982 and has been most commonly stud-
ied in the context of the Hopfield model (Hopfield, 1982, 1984; Amit, 1989b;
Hertz, Krogh, & Palmer, 1991). A major challenge in this line of work has
been to characterize the spurious states (Amit, Gutfreund, & Sompolinsky,
1985, 1987; Amit, 1989a; Hertz et al., 1991; Roudi & Treves, 2003).

In this letter, we take a new look at the NE problem for networks of
threshold-linear neurons whose computational function is to learn and store
binary neural codes. Following Xie, Hahnloser, and Seung (2002) and Hahn-
loser, Seung, and Slotine (2003), we regard stored patterns of a threshold-
linear network as “permitted sets” (aka “stable sets”; Curto, Degeratu, &
Itskov, 2012), corresponding to subsets of neurons that may be coactive at
stable fixed points of the dynamics in the presence of one or more external
inputs. Although our main results do not make any special assumptions
about the prescribed sets of patterns to be stored, many commonly observed
neural codes are sparse and have a rich internal structure, with correlated
patterns reflecting similarities among represented stimuli. Our perspective
thus differs somewhat from the traditional Hopfield model (Hopfield, 1982,
1984), where binary patterns are typically assumed to be uncorrelated and
dense (Amit, 1989b; Hertz et al., 1991).

To tackle the NE problem, we introduce a simple learning rule, called the
encoding rule, that constructs a network W from a set of prescribed binary
patterns C. The rule selectively turns “on” connections between neurons
that co-appear in one or more of the presented patterns and uses synapses
that are binary (in the sense of having only two states—“on” or “off”),
but also heterogeneous, with weights drawn from an underlying synaptic
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strength matrix S. Our main result, theorem 2, precisely characterizes the full
set of permitted sets P(W ) for any network constructed using the encoding
rule, and shows explicitly the dependence on S. In particular, we find that
binary patterns can be successfully stored in these networks if and only if
the strengths of excitatory connections among co-active neurons in a pattern
are geometrically balanced, that is, they satisfy a set of geometric constraints.
Theorem 3 shows that any set of binary patterns that can be exactly encoded
as C = P(W ) for symmetric W can in fact be exactly encoded using our
encoding rule. Furthermore, when a set of binary patterns C is not encoded
exactly, we are able to completely describe the spurious states and find that
they correspond to cliques in the “cofiring” graph G(C).

An important consequence of these findings is that certain neural codes
are natural in the context of symmetric threshold-linear networks; that is,
the structure of the code closely matches the structure of emerging spurious
states via the encoding rule, allowing the full code to be accurately learned
from a highly undersampled set of patterns. Interestingly, using Helly’s
theorem (Barvinok, 2002), we can show that many commonly observed
neural codes in cortical and hippocampal areas are natural in this sense. As
an application, we construct networks that encode hippocampal place field
codes nearly exactly, following presentation of only a small and randomly
sampled fraction of patterns in the code.

The organization of this letter is as follows. In section 2 we introduce
some necessary background on binary neural codes, threshold-linear net-
works, and permitted sets. In section 3, we introduce the encoding rule and
present our results. The proofs of our main results are given in section 4
and use ideas from classical distance and convex geometry, such as Cayley-
Menger determinants (Blumenthal, 1953), establishing a novel connection
between these areas of mathematics and neural network theory. Section 5
contains the discussion. The appendixes follow. Table 1 provides frequently
used notation in this letter.

2 Background

2.1 Binary Neural Codes. A binary pattern on n neurons is simply a
string of 0s and 1s, with a 1 for each active neuron and a 0 denoting silence;
equivalently, it is a subset of (active) neurons,

σ ⊂ {1, . . . , n} def= [n].

A binary neural code (aka a combinatorial neural code; Curto, Itskov, Morri-
son, Roth, & Walker, 2013; Osborne, Palmer, Lisberger, & Bialek, 2008) is a
collection of binary patterns C ⊂ 2[n], where 2[n] denotes the set of all subsets
of [n].

Experimentally observed neural activity in cortical and hippocampal
areas suggests that neural codes are sparse (Hromádka, Deweese, & Zador,
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Table 1: Frequently Used Notation.

Notation Meaning

[n] {1, . . . , n}, n = number of neurons
2[n] The set of all subsets of [n]
σ ⊂ [n] A subset of neurons; a binary pattern; a codeword; a permitted set
|σ | Number of elements (neurons) in the set σ

C ⊂ 2[n] A prescribed set of binary patterns, for example, a binary neural code
G(C) The cofiring graph of C; (i j) ∈ G(C) ⇔ {i, j} ⊂ σ for some σ ∈ C
X(G), X(G(C)) The clique complex of the graph G or G(C), respectively
supp(x) {i ∈ [n] | xi > 0}, for x ∈ Rn

≥0 a nonnegative vector
W An n × n connectivity matrix; the network with dynamics 2.1
D Fixed diagonal matrix of inverse time constants
P(W ) {σ ⊂ [n] | σ a permitted set of W}; set of all permitted sets of W
A An n × n matrix
Aσ , for σ ⊂ [n] The principal submatrix of A with index set σ

stab(A) {σ ⊂ [n] | Aσ is a stable matrix}
cm(A) Cayley-Menger determinant of A
1 ∈ Rn The column vector with all entries equal to 1
−11T n × n rank 1 matrix with all entries equal to −1

2008; Barth & Poulet, 2012), meaning that relatively few neurons are coactive
in response to any given stimulus. Correspondingly, we say that a binary
neural code C ⊂ 2[n] is k-sparse, for k < n, if all patterns σ ∈ C satisfy |σ | ≤ k.
Note that in order for a code C to have good error-correcting capability,
the total number of code words |C| must be considerably smaller than 2n

(MacWilliams & Sloane, 1983; Huffman & Pless, 2003; Curto et al., 2013), a
fact that may account for the limited repertoire of observed neural activity.

Important examples of binary neural codes are classical population
codes, such as receptive field codes (RF codes) (Curto et al., 2013). A sim-
ple yet paradigmatic example is the hippocampal place field code (PF code),
where single neuron activity is characterized by place fields (O’Keefe, 1976;
O’Keefe & Nadel, 1978). We consider general RF codes in section 3.6 and
specialize to sparse PF codes in section 3.7.

2.2 Threshold-Linear Networks. A threshold-linear network (Hahnloser
et al., 2003; Curto et al., 2012) is a firing rate model for a recurrent network
(Dayan & Abbott, 2001; Ermentrout & Terman, 2010), where the neurons
all have threshold nonlinearity, φ(z) = [z]+ = max{z, 0}. The dynamics are
given by

dxi

dt
= − 1

τi
xi + φ

⎛

⎝
n∑

j=1

Wi jx j + ei − θi

⎞

⎠ , i = 1, . . . , n,

where n is the number of neurons, xi(t) is the firing rate of the ith neuron at
time t, ei is the external input to the ith neuron, and θi > 0 is its threshold.
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Figure 1: A recurrent network receiving an input vector b = (b1, . . . , bn). The
firing rate of each neuron is given by xi = xi(t) and evolves in time according
to equation 2.1. The strengths of recurrent connections are captured by the
matrix W.

The matrix entry Wij denotes the effective strength of the connection from
the jth to the ith neuron, and the timescale τi > 0 gives the rate at which a
neuron’s activity decays to zero in the absence of any inputs (see Figure 1).

Although sigmoids more closely match experimentally measured input-
output curves for neurons, the above-threshold nonlinearity is often a good
approximation when neurons are far from saturation (Dayan & Abbott,
2001; Shriki, Hansel, & Sompolinsky, 2003). Assuming that encoded pat-
terns of a network are in fact realized by neurons that are firing far from
saturation, it is reasonable to approximate them as stable fixed points of the
threshold-linear dynamics.

These dynamics can be expressed more compactly as

ẋ = −Dx + [Wx + b]+ , (2.1)

where D def= diag(1/τ1, . . . , 1/τn) is the diagonal matrix of inverse time con-
stants, W is the synaptic connectivity matrix, b = (b1, . . . , bn) ∈ Rn with
bi = ei − θi, and [·]+ is applied elementwise. Note that unlike in the Hop-
field model, the “input” to the network comes in the form of a constant
(in time) external drive b rather than an initial condition x(0). We think of
equation 2.1 as describing the fast-timescale dynamics of the network and
b as representing the effect of an external stimulus. So long as b changes
slowly as compared to the fast network dynamics, the neural responses to
individual stimuli are captured by the steady states of equation 2.1 in the
presence of a constant input vector b.

In the encoding rule (see section 3.1), we assume homogeneous
timescales and use D = I (the identity matrix). Nevertheless, all results ap-
ply equally well to heterogeneous timescales (i.e., for any diagonal D hav-
ing strictly positive diagonal). We also assume that −D + W has a strictly
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negative diagonal, so that the activity of an individual neuron always decays
to zero in the absence of external or recurrent inputs. Although we consider
responses to the full range of inputs b ∈ Rn, the possible steady states of
equation 2.1 are sharply constrained by the connectivity matrix W. Assum-
ing fixed D, we refer to a particular threshold-linear network simply as W.

2.3 Permitted Sets of Threshold-Linear Networks. We consider
threshold-linear networks whose computational function is to encode a
set of binary patterns. These patterns are stored as “permitted sets” of the
network. The theory of permitted (and forbidden) sets was introduced in
Xie et al. (2002) and Hahnloser et al. (2003), and many interesting results
were obtained in the case of symmetric threshold-linear networks. Here we
review some definitions and results that apply more generally, though later
we will also restrict ourselves to the symmetric case.

Informally, a permitted set of a recurrent network is a binary pattern
σ ⊂ [n] that can be activated. This means there exists an external input to
the network such that the neural activity x(t) = (x1(t), . . . , xn(t)) converges
to a steady state x∗ ∈ Rn

≥0 (i.e., x∗ is a stable fixed point with all firing rates
nonnegative) having support σ :

σ = supp(x∗)
def= {i ∈ [n] | x∗

i > 0}.

Definition 1. A permitted set of the network 2.1 is a subset of neurons σ ⊂ [n]
with the property that for at least one external input b ∈ Rn, there exists an
asymptotically stable fixed point x∗ ∈ Rn

≥0 such that σ = supp(x∗) (Hahnloser
et al., 2003). For a given choice of network dynamics, the connectivity matrix W
determines the set of all permitted sets of the network, denoted P(W).

For threshold-linear networks of the form 2.1, it has been previously
shown that permitted sets of W correspond to stable principal submatrices
of −D + W (Hahnloser et al., 2003; Curto et al., 2012). Recall that a stable
matrix is one whose eigenvalues all have strictly negative real part. For any
n × n matrix A, the notation Aσ denotes the principal submatrix obtained by
restricting to the index set σ ; if σ = {s1, . . . , sk}, then Aσ is the k × k matrix
with (Aσ )i j = Asis j

. We denote the set of all stable principal submatrices of
A as

stab(A)
def= {σ ⊂ [n] | Aσ is a stable matrix}.

With this notation we can now restate our prior result, which generalizes
an earlier result of Hahnloser et al. (2003) to nonsymmetric networks.
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Theorem 1 (Curto et al., 2012, theorem 1.2).1 Let W be a threshold-linear network
on n neurons (not necessarily symmetric) with dynamics given by equation 2.1,
and let P(W) be the set of all permitted sets of W. Then

P(W) = stab(−D + W).

Theorem 1 implies that a binary neural code C can be exactly encoded as
the set of permitted sets in a threshold-linear network if and only if there
exists a pair of n × n matrices (D,W ) such that C = stab(−D + W ). From
this observation, it is not difficult to see that not all codes are realizable by
threshold-linear networks. This follows from a simple lemma:

Lemma 1. Let A be an n × n real-valued matrix (not necessarily symmetric)
with strictly negative diagonal and n ≥ 2. If A is stable, then there exists a 2 × 2
principal submatrix of A that is also stable.

Proof. We use the formula for the characteristic polynomial in terms of
sums of principal minors:

pA(X) = (−1)nXn + (−1)n−1m1(A)Xn−1

+ (−1)n−2m2(A)Xn−2 + · · · + mn(A),

where mk(A) is the sum of the k × k principal minors of A. Writing the char-
acteristic polynomial in terms of symmetric polynomials in the eigenvalues
λ1, λ2, . . . , λn, and assuming A is stable, we have m2(A) =

∑
i< j λiλ j > 0.

This implies that at least one 2 × 2 principal minor is positive. Since the cor-
responding 2 × 2 principal submatrix has negative trace, it must be stable.

Combining lemma 1 with theorem 1 then gives:

Corollary 1. Let C ⊂ 2[n]. If there exists a pattern σ ∈ C such that no order 2
subset of σ belongs to C, then C is not realizable as C = P(W) for any threshold-
linear network W.

Here we will not pay attention to the relationship between the input to the
network b and the corresponding permitted sets that may be activated, as
it is beyond the scope of this letter. In prior work, however, we were able to
understand with significant detail the relationship between a given b and the
set of resulting fixed points of the dynamics (Curto et al., 2012, proposition
2.1). For completeness, we summarize these findings in appendix D.

1Note that in Curto et al. (2012, theorem 1.2), permitted sets were called “stable sets.”
See also Hahnloser et al. (2003) for an earlier proof specific to the symmetric case.
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2.4 Structure of Permitted Sets of Symmetric Threshold-Linear Net-
works. In the remainder of this work, we restrict attention to the case of
symmetric networks. With this assumption, we can immediately say more
about the structure of permitted sets P(W ). Namely, if W is symmetric,
then the permitted sets P(W ) have the combinatorial structure of a simpli-
cial complex.

Definition 2. An (abstract) simplicial complex ∆ ⊂ 2[n] is a set of subsets of
[n] = {1, . . . , n} such that the following two properties hold: (1) for each i ∈
[n], {i} ∈ ∆, and (2) if σ ∈ ∆ and τ ⊂ σ , then τ ∈ ∆.

Lemma 2. If W is a symmetric threshold-linear network, thenP(W) is a simplicial
complex.

In other words, if W is symmetric, then every subset of a permitted set
is permitted, and every superset of a set that is not permitted is also not
permitted. This was first observed in Hahnloser et al. (2003), using an ear-
lier version of theorem 1 for symmetric W. It follows from the fact that
P(W ) = stab(−D + W ), by theorem 1, and stab(A) is a simplicial complex
for any symmetric n × n matrix A having strictly negative diagonal (see
corollary 7 in appendix A). The proof of this fact is a straightforward appli-
cation of Cauchy’s interlacing theorem (appendix A), which applies only to
symmetric matrices.

We are not currently aware of any simplicial complex ' that is not
realizable as ' = P(W ) for a symmetric threshold-linear network, although
we believe such examples are likely to exist.

3 Results

Theorem 1 allows one to find all permitted sets P(W ) of a given network
W. Our primary interest, however, is in the inverse problem:

NE problem: Given a set of binary patterns C ⊂ 2[n], how can one construct
a network W such that C ⊆ P(W ), while minimizing the emergence of
unwanted spurious states?

Note that spurious states are elements of P(W ) that were not in the pre-
scribed set of patterns to be stored; these are precisely the elements of
P(W ) \ C. If C ⊂ P(W ), so that all patterns in C are stored as permitted sets
of W but P(W ) may contain additional spurious states, then we say that
C has been encoded by the network W. If C = P(W ), so that there are no
spurious states, then we say that C has been exactly encoded by W.

We tackle the NE problem by analyzing a novel learning rule, called the
encoding rule. In what follows, the problem is broken into four motivating
questions that address (1) the learning rule, (2) the resulting structure of
permitted sets, (3) binary codes that are exactly encodable, and (4) the
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structure of spurious states when codes are not encoded exactly. In section
3.6 we use our results to uncover “natural” codes for symmetric threshold-
linear networks and illustrate this phenomenon in the case of hippocampal
PF codes in section 3.7.

3.1 The Encoding Rule

Question 1: Is there a biologically plausible learning rule that allows
arbitrary neural codes to be stored as permitted sets in threshold-linear
networks?

In this section we introduce a novel encoding rule that constructs a
network W from a prescribed set of binary patterns C. The rule is similar
to the classical Hopfield learning rule (Hopfield, 1982) in that it updates
the weights of the connectivity matrix W following sequential presentation
of binary patterns, and strengthens excitatory synapses between coactive
neurons in the patterns. In particular, the rule is Hebbian and local: each
synapse is updated only in response to the coactivation of the two adja-
cent neurons, and the updates can be implemented by presenting only one
pattern at a time (Hopfield, 1982; Dayan & Abbott, 2001). A key difference
from the Hopfield rule is that the synapses are binary: once a synapse (i j)
has been turned “on,” the value of Wij stays the same irrespective of the
remaining patterns.2 A new ingredient is that synapses are allowed to be
heterogeneous: in other words, the actual weights of connections are varied
among “on” synapses. These weights are assigned according to a predeter-
mined synaptic strength matrix S, which is considered fixed and reflects the
underlying architecture of the network. For example, if no physical connec-
tion exists between neurons i and j, then Si j = 0, indicating that no amount
of cofiring can cause a direct excitatory connection betwen those neurons.
On the other hand, if two neurons have multiple points of physical contact,
then Sij will be greater than if there are only a few anatomical contacts.
There is, in fact, experimental evidence in hippocampus for synapses that
appear binary and heterogeneous in this sense (Petersen, Malenka, Nicoll,
& Hopfield, 1998), with individual synapses exhibiting potentiation in an
all-or-nothing fashion, but having different thresholds for potentiation and
heterogeneous synaptic strengths.

Here we describe the encoding rule in general, with minimal assump-
tions on S. Later, in sections 3.4 and 3.5, we investigate the consequences
of various choices of S on the network’s ability to encode different types of
binary neural codes.

Encoding rule. This is a prescription for constructing (i.e., “learning”) a
network W from a set of binary patterns on n neurons, C ⊂ 2[n] (e.g., C is

2The learning rule in Xie et al. (2002) also had binary synapses in this sense.
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a binary neural code). It consists of three steps: two initialization steps,
followed by an update step:

Step 1: Fix an n × n synaptic strength matrix S and an ε > 0. We think of
S and ε as intrinsic properties of the underlying network architecture,
established prior to learning. Because S contains synaptic strengths
for symmetric excitatory connections, we require that Si j = Sji ≥ 0
and Sii = 0.

Step 2: The network W is initialized to be symmetric with effective con-
nection strengths Wi j = Wji < −1 for i ̸= j, and Wii = 0. (Beyond this
requirement, the initial values of W do not affect the results.)

Step 3: Following presentation of each pattern σ ∈ C, we turn “on” all
excitatory synapses between neurons that coappear in σ .3 This means
we update the relevant entries of W as follows:

Wi j := −1 + εSi j if i, j ∈ σ and i ̸= j.

Note that the order of presentation does not matter; once an excitatory
connection has been turned “on,” the value of Wij stays the same
irrespective of remaining patterns.

To better understand what kinds of networks result from the encoding
rule, observe that any initial W in step 2 can be written as Wi j = −1 − εRi j,
where Ri j = Rji > 0 for i ̸= j and Rii = −1/ε, so that Wii = 0. Assuming a
threshold-linear network with homogeneous timescales (i.e., fixing D = I),
the final network W obtained from C after step 3 satisfies

(−D + W )i j =

⎧
⎪⎨

⎪⎩

−1 + εSi j, if (i j) ∈ G(C)

−1, if i = j

−1 − εRi j if (i j) /∈ G(C),

(3.1)

where G(C) is the graph on n vertices (neurons) having an edge for each pair
of neurons that coappears in one or more patterns of C. We call this graph
the cofiring graph of C. In essence, the rule allows the network to “learn”
G(C), selecting which excitatory synapses are turned “on” and assigned to
their predetermined weights.

3By presentation of each pattern, we mean that patterns are considered one at a time
in building the W matrix, without regard to the dynamics of equation 2.1 (see Hopfield,
1982; Xie et al., 2002).
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Consequently, any matrix −D + W obtained via the encoding rule has
the form

−11T + εA,

where −11T denotes the n × n matrix of all −1s and A is a symmetric matrix
with zero diagonal and off-diagonal entries Ai j = Si j ≥ 0 or Ai j = −Ri j < 0,
depending on C. It then follows from theorem 1 that the permitted sets of
this network are

P(W ) = stab(−11T + εA).

Furthermore, it turns out that P(W ) for any symmetric W is of this form,
even if −D + W is not of the form −11T + εA.

Lemma 3. If W is a symmetric threshold-linear network (with D not necessarily
equal to the identity matrix I), then there exists a symmetric n × n matrix A with
zero diagonal such that P(W) = stab(−11T + A).

The proof is given in appendix B (see lemma 14).
In addition to being symmetric, the encoding rule (for small enough

ε) generates “lateral inhibition” networks where the matrix −D + W has
strictly negative entries. In particular, this means that the matrix D−W is
copositive—that is, xT (D − W )x > 0 for all nonnegative x except x = 0. It fol-
lows from (Hahnloser et al., 2003, theorem 1) that for all input vectors b ∈ Rn

and for all initial conditions, the network dynamics of equation 2.1 converge
to an equilibrium point. This was proven by constructing a Lyapunov-like
function, similar to the strategy in Cohen and Grossberg (1983).4

3.2 Main Result

Question 2: What is the full set of permitted sets P(W ) stored in a network
constructed using the encoding rule?

Our main result, theorem 2, characterizes the full set of permitted sets
P(W ) obtained using the encoding rule, revealing a detailed understand-
ing of the structure of spurious states. Recall from lemma 3 that the set
of permitted sets of any symmetric network on n neurons has the form
P(W ) = stab(−11T + εA), for ε > 0 and A a symmetric n × n matrix with
zero diagonal.5 Describing P(W ) thus requires understanding the stability

4Note that threshold-linear networks do not directly fall into the very general class of
networks discussed in Cohen and Grossberg (1983).

5In fact, any P(W ) of this form can be obtained by perturbing around any rank 1
matrix—not necessarily symmetric—having strictly negative diagonal (proposition 3 in
appendix B).
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of the principal submatrices (−11T + εA)σ for each σ ⊂ [n]. Note that these
submatrices all have the same form: −11T + εAσ , where −11T is the all
−1s matrix of size |σ | × |σ |. Proposition 1 (below) provides an unexpected
connection between the stability of these matrices and classical distance
geometry.6 We first present proposition 1 and then show how it leads to
theorem 2.

For symmetric 2 × 2 matrices of the form −11T + εA =[ −1 −1 + εA12
−1 + εA12 −1

]
, with ε > 0, it is easy to identify the condi-

tions for the matrix to be stable. One needs the determinant to be positive,
so A12 > 0 and ε < 2/A12. For 3 × 3 matrices, the conditions are more
interesting, and the connection to distance geometry emerges.

Lemma 4. Consider the 3 × 3 matrix −11T + εA, for a fixed symmetric A with
zero diagonal:

⎡

⎢⎣

−1 −1 + εA12 −1 + εA13

−1 + εA12 −1 −1 + εA23

−1 + εA13 −1 + εA23 −1

⎤

⎥⎦ .

There exists an ε > 0 such that this matrix is stable if and only if
√

A12,
√

A13,

and
√

A23 are valid edge lengths for a nondegenerate triangle in R2.

In other words, the numbers
√

Ai j must satisfy the triangle inequalities
√

Ai j <
√

Aik +
√

Ajk for distinct i, j, k. This can be proven by straightfor-
ward computation, using Heron’s formula and the characteristic polyno-
mial of the matrix. The upper bound on ε, however, is not so easy to identify.

Remarkably, the above observations completely generalize to n × n ma-
trices of the form −11T + εA, and the precise limits on ε can also be com-
puted for general n. This is the content of proposition 1, below. To state it,
however, we first need a few notions from distance geometry.

Definition 3. An n × n matrix A is a (Euclidean) square distance matrix if there
exists a configuration of points p1, . . . , pn ∈ Rn−1 (not necessarily distinct) such
that Ai j = ∥pi − p j∥2. A is a nondegenerate square distance matrix if the corre-
sponding points are affinely independent, that is, if the convex hull of p1, . . . , pn
is a simplex with nonzero volume in Rn−1.

Clearly, all square distance matrices are symmetric and have zero diagonal.
Furthermore, a 2 × 2 matrix A is a nondegenerate square distance matrix if

6Distance geometry is a field of mathematics that was developed in the early twentieth
century, motivated by the following problem: find necessary and sufficient conditions such
that a finite set of distances can be realized from a configuration of points in Euclidean
space. The classic text on this subject is Blumenthal (1953).
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and only if the off-diagonal entry satisfies the additional condition A12 > 0.
For a 3 × 3 matrix A, the necessary and sufficient condition to be a nonde-
generate square distance matrix is that the entries

√
A12,

√
A13, and

√
A23

are valid edge lengths for a nondegenerate triangle in R2 (this was precisely
the condition in lemma 4). For larger matrices, however, the conditions are
less intuitive. A key object for determining whether an n × n matrix A is a
nondegenerate square distance matrix is the Cayley-Menger determinant,

cm(A)
def= det

[
0 1T

1 A

]

,

where 1 ∈ Rn is the column vector of all ones. If A is a square distance
matrix, then cm(A) is proportional to the square volume of the simplex
obtained as the convex hull of the points {pi} (see lemma 11 in appendix A).
In particular, cm(A) ̸= 0 (and hence |cm(A)| > 0) if A is a nondegenerate
square distance matrix, while cm(A) = 0 for any other (degenerate) square
distance matrix.

Proposition 1. Let A be a symmetric n × n matrix with zero diagonal and ε > 0.
Then the matrix

−11T + εA

is stable if and only if the following two conditions hold:

(a) A is a nondegenerate square distance matrix, and
(b) 0 < ε < |cm(A)/ det(A)|.

Proposition 1 is essentially a special case of theorem 4—our core technical
result—whose statement and proof are given in section 4.1. The proof of
proposition 1 is then given in section 4.2. To our knowledge, theorem 4
is novel, and connections to distance geometry have not previously been
used in the study of neural networks or, more generally, the stability of
fixed points in systems of ODEs.

The ratio |cm(A)/ det(A)| has a simple geometric interpretation in cases
where condition (a) of proposition 1 holds. Namely, if A is an n × n nonde-
generate square distance matrix (with n > 1), then |cm(A)/ det(A)| = 1

2ρ2 ,

where ρ is the radius of the unique sphere circumscribed on any set of
points in Euclidean space that can be used to generate A (see remark 6 in
appendix C). Moreover, since |cm(A)| > 0 whenever A is a nondegenerate
square distance matrix, there always exists an ε small enough to satisfy the
second condition, provided the first condition holds. Combining proposi-
tion 1 with Cauchy’s interlacing theorem yields:
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Lemma 5. If A is an n × n nondegenerate square distance matrix, then

0 <

∣∣∣∣
cm(Aσ )
det(Aσ )

∣∣∣∣ ≤
∣∣∣∣
cm(Aτ )
det(Aτ )

∣∣∣∣ if τ ⊆ σ ⊆ [n].

Given any symmetric n × n matrix A with zero diagonal and ε > 0, it is
now natural to define the following simplicial complexes:

geomε(A)
def=

{
σ ⊆ [n] | Aσ a nondeg. sq. dist. matrix and

∣∣∣∣
cm(Aσ )

det(Aσ )

∣∣∣∣ > ε

}
, and

geom(A)
def= lim

ε→0
geomε(A)={σ ⊆ [n] | Aσ a nondeg. sq. dist. matrix}.

Lemma 5 implies that geomε(A) and geom(A) are simplicial complexes.
Note that if σ = {i}, we have Aσ = [0]. In this case, {i} ∈ geom(A) and {i} ∈
geomε(A) for all ε > 0 by our convention. Also, geomε(A) = geom(A) if
and only if 0 < ε < δ(A), where

δ(A)
def= min

{∣∣∣∣
cm(Aσ )

det(Aσ )

∣∣∣∣

}

σ∈geom(A)

.

If A is a nondegenerate square distance matrix, then δ(A)=|cm(A)/det(A)|.
To state our main result, theorem 2, we also need a few standard notions

from graph theory. A clique in a graph G is a subset of vertices that is all-to-
all connected.7 The clique complex of G, denoted X(G), is the set of all cliques
in G; this is a simplicial complex for any G. Here we are primarily interested
in the graph G(C), the cofiring graph of a set of binary patterns C ⊂ 2[n].

Theorem 2. Let S be an n × n synaptic strength matrix satisfying Si j = Sji ≥ 0
and Sii = 0 for all i, j ∈ [n], and fix ε > 0. Given a set of prescribed patterns
C ⊂ 2[n], let W be the threshold-linear network (see equation 3.1) obtained from C
using S and ε in the encoding rule. Then,

P(W) = geomε(S) ∩ X(G(C)).

If we further assume that ε < δ(S), then P(W) = geom(S) ∩ X(G(C)).

7For recent work encoding cliques in Hopfield networks, see Hillar, Tran, and Koepsell
(2012).
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In other words, a binary pattern σ ⊂ [n] is a permitted set of W if and only if
Sσ is a nondegenerate square distance matrix, ε < |cm(Sσ )/det(Sσ )|, and σ is a
clique in the graph G(C).

The proof is given in section 4.2. Theorem 2 answers question 2 and
makes explicit how P(W ) depends on S, ε, and C. One way of interpreting
this result is to observe that a binary pattern σ ∈ C is successfully stored as
a permitted set of W if and only if the excitatory connections between the
neurons in σ , given by S̃σ = εSσ , are geometrically balanced:! S̃σ is a nondegenerate square distance matrix.! | det(S̃σ )| < |cm(S̃σ )|.

The first condition ensures a certain balance among the relative strengths of
excitatory connections in the clique σ , while the second condition bounds
the overall excitation strengths relative to inhibition (which has been nor-
malized to −1 in the encoding rule).

We next turn to an example that illustrates how this theorem can be
used to solve the NE problem explicitly for a small binary neural code. In
the following section, section 3.4, we address more generally the question
of what neural codes can be encoded exactly and what the structure of
spurious states is when a code is encoded inexactly.

3.3 An Example. Suppose C is a binary neural code on n = 6 neurons,
consisting of maximal patterns

{110100, 101010, 011001, 000111},

corresponding to subsets {124}, {135}, {236}, and {456}, together with all
subpatterns (smaller subsets) of the maximal ones, thus ensuring that C is a
simplicial complex. This is depicted in Figure 2A, using a standard method
of illustrating simplicial complexes geometrically. The four maximal pat-
terns correspond to the shaded triangles, while patterns with only one or
two coactive neurons comprise the vertices and edges of the cofiring graph
G(C).8

Without theorem 2, it is difficult to find a network W that encodes C
exactly—that is, such that P(W ) = C. This is in part because each connec-
tion strength Wij belongs to two 3 × 3 matrices that must satisfy opposite
stability properties. For example, subset {124} must be a permitted set of
P(W ), while {123} is not permitted, imposing competing conditions on the
entry W12. In general, it may be difficult to patch together local ad hoc solu-
tions to obtain a single matrix W having all the desired stability properties.

8In this example, there are no patterns having four or more neurons, but these would
be illustrated by tetrahedra and other higher-order simplices.
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Using theorem 2, however, we can easily construct many exact solutions
for encoding C as a set of permitted sets P(W ). The main idea is as follows.
Consider the encoding rule with synaptic strength matrix S and 0 < ε <

δ(S). Applying the rule to C yields a network with permitted sets

P(W ) = geom(S) ∩ X(G(C)).

The goal is thus to find S so that C = geom(S) ∩ X(G(C)). From the cofiring
graph G(C), we see that the clique complex X(G(C)) contains all trian-
gles depicted in Figure 2A, including the empty (nonshaded) triangles:
{123}, {145}, {246}, and {356}. The matrix S must therefore be chosen so
that these triples are not in geom(S), while ensuring that {124}, {135}, {236},
and {456} are included. In other words, to obtain an exact solution, we
must find S such that Sσ is a nondegenerate square distance matrix for
each σ ∈ {{124}, {135}, {236}, {456}} but not for σ corresponding to an empty
triangle.

Solution 1. Consider the configuration of points p1, . . . , p6 ∈ R2 in Fig-
ure 2B, and let S be the 6 × 6 square distance matrix with entries Si j =
∥pi − p j∥2. Because the points lie in the plane, the largest principal sub-
matrices of S that can possibly be nondegenerate square distance matrices
are 3 × 3. This means geom(S) has no elements of size greater than 3. Be-
cause no two points have the same position, geom(S) contains the complete
graph with all edges (i j). It remains only to determine which triples are in
geom(S). The only 3 × 3 principal submatrices of S that are nondegen-
erate square distance matrices correspond to triples of points in general
position. From Figure 2B (left), we see that geom(S) includes all triples
except {123}, {145}, {246}, and {356}, since these correspond to triples of
points that are collinear (and thus yield degenerate square distance matri-
ces). Although C ̸= X(G(C)) and C ̸= geom(S), it is now easy to check that
C = geom(S) ∩ X(G(C)). Using theorem 2, we conclude that C = P(W ) ex-
actly, where W is the network obtained using the encoding rule with this S
and any 0 < ε < δ(S).

Solution 2. Let S be the symmetric matrix defined by the following
equations for i < j: Si j = 1 if i = 1; S24 = S35 = 1; S23 = S26 = S36 = 32; and
Si j = 52 if i = 4 or 5. Here we have only assigned values correspond-
ing to each edge in G(C) (see Figure 2C); remaining entries may be cho-
sen arbitrarily, as they play no role after we intersect geom(S) ∩ X(G(C)).
Note that S is not a square distance matrix at all, not even a degener-
ate one. Nevertheless, Sσ is a nondegenerate square distance matrix for
σ ∈ {{124}, {135}, {236}, {456}}, because the distances correspond to non-
degenerate triangles. For example, the triple {124} has pairwise distances
(1, 1, 1), which satisfy the triangle inequality. In contrast, the triple {123} has
pairwise distances (1, 1, 3), which violate the triangle inequality; hence,
S{123} is not a square distance matrix. Similarly, the triangle inequality is
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violated for each of {145}, {246}, and {356}. It is straightforward to check
that among all cliques of X(G(C)), only the desired patterns in C are also
elements of geom(S), so C = geom(S) ∩ X(G(C)).

By construction, solutions 1 and 2 produce networks W (obtained using
the encoding rule with ε, S, and C) with exactly the same set of permitted
sets P(W ). Nevertheless, the solutions are functionally different in that
the resulting input-output relationships associated with the equation 2.1
dynamics are different, as they depend on further details of W not captured
by P(W ) (see appendix D).

3.4 Binary Neural Codes That Can Be Encoded Exactly

Question 3: What binary neural codes can be encoded exactly as C = P(W )

for a symmetric threshold-linear network W?

Question 4: If encoding is not exact, what is the structure of spurious states?

From theorem 2, it is clear that if the set of patterns to be encoded
happens to be of the form C = geom(S) ∩ X(G(C)), then C can be exactly
encoded as P(W ) for small enough ε and the same choice of S. Similarly,
if the set of patterns has the form C = geomε(S) ∩ X(G(C)), then C can be
exactly encoded as P(W ) using our encoding rule (see section 3.1) with the
same S and ε. Can any other sets of binary patterns be encoded exactly via
symmetric threshold-linear networks? The next theorem assures us that the
answer is no. This means that by focusing attention on networks constructed
using our encoding rule, we are not missing any binary neural codes that
could arise as P(W ) for other symmetric networks.

Theorem 3. Let C ⊂ 2[n] be a binary neural code. There exists a symmetric
threshold-linear network W such that C = P(W) if and only if C is a simplicial
complex of the form

C = geomε(S) ∩ X(G(C)), (3.2)

for some ε > 0 and S an n × n matrix satisfying Si j = Sji ≥ 0 and Sii = 0 for all
i, j ∈ [n]. Moreover, W can be constructed using the encoding rule on C, using
this choice of S and ε.

The proof is given in section 4.2. Theorem 3 allows us to make a preliminary
classification of binary neural codes that can be encoded exactly, giving a
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partial answer to question 3. To do this, it is useful to distinguish three
different types of S matrices that can be used in the encoding rule:! Universal S. We say that a matrix S is universal if it is an n × n

nondegenerate square distance matrix. In particular, any principal
submatrix Sσ is also a nondegenerate square distance matrix, so
if we let 0 < ε < δ(S) =

∣∣cm(S)/ det(S)
∣∣, then any σ ∈ C has corre-

sponding excitatory connections εSσ that are geometrically balanced
(see section 3.2). Furthermore, geomε(S) = geom(S) = 2[n], and hence
geomε(S) ∩ X(G(C)) = X(G(C)), irrespective of S. It follows that if
C = X(G) for any graph G, then C can be exactly encoded using any
universal S and any 0 < ε < δ(S) in the encoding rule.9 Moreover,
since C ⊂ X(G(C)) for any code C, it follows that any code can be
encoded—albeit inexactly—using a universal S in the encoding rule.
Finally, the spurious states P(W ) \ C can be completely understood:
they consist of all cliques in the graph G(C) that are not elements of
C.! k-sparse universal S. We say that a matrix S is k-sparse universal if it
is a (degenerate) n × n square distance matrix for a configuration of
n points that are in general position10 in Rk−1, for k < n (otherwise S is
universal). Let 0 < ε < δ(S). Then, geomε(S) = geom(S) = {σ ⊂ [n] |
|σ | ≤ k}; this is the (k − 1)–skeleton11 of the complete simplicial com-
plex 2[n]. This implies that geomε(S) ∩ X(G(C)) = Xk−1(G(C)), where
Xk denotes the k-skeleton of the clique complex X:

Xk(G(C))
def= {σ ∈ X(G(C)) | |σ | ≤ k + 1}.

It follows that any k-skeleton of a clique complex, C = Xk(G) for any
graph G, can be encoded exactly. Furthermore, since any k-sparse
code C satisfies C ⊆ Xk−1(G(C)), any k-sparse code can be encoded
using this type of S matrix in the encoding rule. The spurious states
in this case are cliques of G(C) that have size no greater than k.! Specially tuned S. We will refer to all S matrices that do not fall into
the universal or k-sparse universal categories as specially tuned.
In this case, we cannot say anything general about the codes that
are exactly encodable without further knowledge about S. If we let
0 < ε < δ(S), as above, theorem 3 tells us that the binary codes C
that can be encoded exactly (via the encoding rule) are of the form

9Note that if C = X(G) is any clique complex with underlying graph G, then we
automatically know that G(C) = G, and hence X(G(C)) = X(G) = C.

10This guarantees that all k × k principal submatrices of S are nondegenerate square
distance matrices.

11The k-skeleton 'k of a simplicial complex ' is obtained by restricting to faces of
dimension ≤ k, which corresponds to keeping only elements σ ⊂ ' of size |σ | ≤ k + 1.
Note that 'k is also a simplicial complex.
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Table 2: Classification of S Matrices, Together with Encodable Codes and Spu-
rious States.

Type of S
matrix

C that can be exactly
encoded: C = P(W )

C that can be
encoded: C ⊂ P(W )

Spurious States
P(W ) \ C

Universal S Any clique complex
X(G)

All codes Cliques of G(C) that are
not in C

k-sparse
universal S

Any (k − 1)–skeleton
Xk−1(G) of a clique
complex

All k-sparse codes
(|σ | ≤ k for all
σ ∈ C)

Cliques of G(C) of size
≤ k, that are not in C

Specially
tuned S

C is of the form
geom(S) ∩ X(G)

Depends on S Cliques of G(C) that are
in geom(S) but not in C

Notes: The above assumes using the encoding rule on the code C with synaptic strength
matrix S and 0 < ε < δ(S). Additional codes may be exactly encodable for other choices
of ε.

C = geom(S) ∩ X(G(C)). Unlike in the universal and k-sparse univer-
sal cases, the encodable codes depend on the precise form of S. Note
that the example code C discussed in section 3.3 was not a clique
complex or the k-skeleton of a clique complex. Nevertheless, it could
be encoded exactly for the “specially tuned” choices of S exhibited in
solutions 1 and 2 (see Figures 2B and 2C).

A summary of what codes are encodable and exactly encodable for each
type of S matrix is shown in Table 2, under the assumption that 0 < ε < δ(S)

in the encoding rule.
We end this section with several technical remarks, along with some

open questions for further mathematical investigation.

Remark 1. Fine-tuning? It is worth noting here that solutions obtained by
choosing S to be a degenerate square distance matrix, as in the k-sparse uni-
versal S or the specially tuned S of Figure 2B, are not as finely tuned as they
might first appear. This is because the ratio |cm(Sσ )/ det(Sσ )| approaches
zero as subsets of points {pi}i∈σ used to generate S become approximately
degenerate, allowing elements to be eliminated from geomε(S) because of
violations to condition (b) in proposition 1, even if condition (a) is not quite
violated. This means the appropriate matrices do not have to be exactly de-
generate, but only approximately degenerate (see remark 7 in appendix C).
In particular, the collinear points in Figure 2B need not be exactly collinear
for solution 1 to hold.

Remark 2. Controlling spurious cliques in sparse codes. If the set of patterns
C ⊂ 2[n] to be encoded is a k-sparse code, that is, if |σ | ≤ k < n for all σ ∈ C,
then any clique of size k + 1 or greater in G(C) is potentially a spurious
clique. We can eliminate these spurious states, however, by choosing a
k-sparse universal S in the encoding rule. This guarantees that geomε(S)
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does not include any element of size greater than k, and hence P(W ) ⊆
Xk−1(G(C)).

Remark 3. Uniform S. To use truly binary synapses, we can choose S in the
encoding rule to be the uniform synaptic strength matrix having Si j = 1 for
i ̸= j and Sii = 0 for all i ∈ [n]. In fact, S is a nondegenerate square distance
matrix, so this is a special case of a “universal” S. Here δ(S) turns out to
have a very simple form:

δ(S) =
∣∣∣∣
cm(S)

det(S)

∣∣∣∣ = n
n − 1

.

Similarly, any k × k principal submatrix Sσ , with |σ | = k, satisfies δ(Sσ ) =
k

k−1 . This implies that geomε(S) is the k-skeleton of the complete simplicial
complex on n vertices if and only if

k + 2
k + 1

< ε <
k + 1

k
.

It follows that for this choice of S and ε (note that ε > δ(S)), the encoding rule
yields P(W ) = Xk(G(C)), just as in the case of k-sparse universal S. If, on the
other hand, we choose 0 < ε ≤ 1 < δ(S), then geomε(S) = geom(S) = 2[n],
and we have the usual properties for universal S.

Remark 4. Matroid complexes. In the special case where S is a square dis-
tance matrix, geom(S) is a representable matroid complex—the independent
set complex of a real-representable matroid (Oxley, 2011). Moreover, all
representable matroid complexes are of this form and can thus be encoded
exactly. To see this, take any code C having G(C) = Kn, the complete graph
on n vertices. Then X(G(C)) = 2[n], and the encoding rule (for ε < δ(S))
yields

P(W ) = geom(S).

Note that although the example code C of section 3.3 is not a matroid
complex (in particular, it violates the independent set exchange property;
Oxley, 2011), geom(S) for the matrix S given in solution 1 (see Figure 2B)
is a representable matroid complex, showing that C is the intersection of a
representable matroid complex and the clique complex X(G(C)).

Remark 5. Open questions. Can a combinatorial description be found for
all simplicial complexes that are of the form geomε(S) or geom(S), where
S and ε satisfy the conditions in theorem 3? For such complexes, can the
appropriate S and ε be obtained constructively? Does every simplicial com-
plex C admit an exact solution to the NE problem via a symmetric network
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W? That is, is every simplicial complex of the form geomε(S) ∩ X(G(C)),
as in equation 3.2? If not, what are the obstructions? More generally, does
every simplicial complex admit an exact solution (not necessarily sym-
metric) to the NE problem? We have seen that all matroid complexes for
representable matroids can be exactly encoded as geom(S). Can nonrepre-
sentable matroids also be exactly encoded?

3.5 Spurious States and “Natural” Codes. Although it may be possi-
ble, as in the example of Section 3.3, to precisely tune the synaptic strength
matrix S to exactly encode a particular neural code, this is somewhat con-
trary to the spirit of the encoding rule, which assumes S to be an intrinsic
property of the underlying network. Fortunately, as seen in section 3.4,
theorem 2 implies that certain “universal” choices of S enable any C ⊂ 2[n]

to be encoded. The price to pay, however, is the emergence of spurious
states.

Recall that spurious states are permitted sets that arise in P(W ) that
were not in the prescribed list C of binary patterns to be encoded. Theorem
2 immediately implies that all spurious states lie in X(G(C))—that is, every
spurious state is a clique of the cofiring graph G(C). We can divide them
into two types:! Type 1: Spurious subsets. These are permitted sets σ ∈ P(W ) \ C that

are subsets of patterns in C. Note that if C is a simplicial complex, there
will not be any spurious states of this type. But if C is not a simplicial
complex, then type 1 spurious states are guaranteed to be present
for any symmetric encoding rule, because P(W ) = stab(−D + W ) is
a simplicial complex for symmetric W (see lemma 2).! Type 2: Spurious cliques. These are permitted sets σ ∈ P(W ) \ C that
are not of the first type. Note that technically, the type 1 spurious
states are also cliques in G(C), but we will use the term spurious clique
to refer only to spurious states that are not spurious subsets.

Perhaps surprisingly, some common neural codes have the property that
the full set of patterns to be encoded naturally contains a large fraction of
the cliques in the code’s cofiring graph. In such cases, C ≈ X(G(C)), or
C ≈ Xk(G(C)). These neural codes therefore have very few spurious states
when encoded using a universal or k-sparse universal S, even though S has
not been specially tuned for the given code. We will refer to these as natural
codes for symmetric threshold-linear networks because they have two im-
portant properties that make them particularly fitting for these networks:

P1. Natural codes can be encoded exactly or nearly exactly, using any
universal or k-sparse universal matrix S in the encoding rule.

P2. Natural codes can be fully encoded following presentation of only
a small (randomly sampled) fraction of the patterns in the code.
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In other words, not only can natural codes be generically encoded with
very few spurious states, but they can also be encoded from a highly
undersampled set of codewords. This is because the network naturally
fills in the missing elements via spurious states that emerge after encoding
only part of the code. In the next two sections, we explain why RF codes
are “natural” in this sense, and illustrate the above two properties with a
concrete application of encoding two-dimensional PF codes, an important
example of RF codes.

3.6 Receptive Field Codes Are Natural Codes. RF codes are binary
neural codes consisting of activity patterns of populations of neurons that
fire according to receptive fields.12 Abstractly, a receptive field is a map fi :
S → R≥0 from a space of stimuli S to the average firing rate fi(s) of a single
neuron i in response to each stimulus s ∈ S. Receptive fields are computed
from experimental data by correlating neural responses to external stimuli.
We follow a common abuse of language, where both the map and its support
(i.e., the subset Ui ⊂ S where fi takes on strictly positive values) are referred
to as receptive fields. If the stimulus space is d-dimensional, S ⊂ Rd, we say
that the receptive fields have dimension d. The paradigmatic examples of
neurons with receptive fields are orientation-selective neurons in visual
cortex (Ben-Yishai, Bar-Or, & Sompolinsky, 1995) and hippocampal place
cells (McNaughton, Battaglia, Jensen, Moser, & Moser, 2006). Orientation-
selective neurons have tuning curves that reflect a neuron’s preference for a
particular angle. Place cells are neurons that have place fields (O’Keefe, 1976;
O’Keefe & Nadel, 1978); that is, each neuron has a preferred (convex) region
of the animal’s physical environment where it has a high firing rate. Both
tuning curves and place fields are examples of low-dimensional receptive
fields, having typical dimension d = 1 or d = 2.

The elements of an RF code C correspond to subsets of neurons that
may be coactivated in response to a stimulus s ∈ Rd (see Figure 3). Here
we define two variations of this notion, which we refer to as RF codes and
coarse RF codes.

Definition 4. Let {U1, . . . , Un} be a collection of convex open sets in Rd , where
each Ui is the receptive field corresponding to the ith neuron. To such a set of
receptive fields, we associate a d-dimensional RF code C, defined as follows: for each
σ ∈ 2[n],

σ ∈ C if and only if
⋂

i∈σ

Ui

∖ ⋃

j /∈σ

Uj ̸= ∅.

12In the vision literature, the term “receptive field” is reserved for subsets of the visual
field; we use the term in a more general sense, applicable to any modality.
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Figure 3: Two-dimensional receptive fields for six neurons. The RF code C has a
codeword for each overlap region. For example, the shaded region corresponds
to the binary pattern 001011; equivalently, we denote it as σ = {3, 5, 6} ∈ C. The
corresponding coarse RF code also includes all subsets, such as τ = {3, 5}, even
if they are not part of the original RF code.

This definition was previously introduced in Curto et al. (2013) and Curto,
Itskov, Veliz-Cuba, and Youngs (in press). A coarse RF code is obtained from
an RF code by including all subsets of code words, so that for each σ ∈ 2[n],

σ ∈ C if and only if
⋂

i∈σ

Ui ̸= ∅.

Note that the codeword σ = {3, 5, 6} in Figure 3 corresponds to stimuli
in the shaded region, not to the full intersection U3 ∩ U5 ∩ U6. Moreover,
the subset τ = {3, 5} ⊂ σ is not an element of the RF code, since U3 ∩ U5 ⊂
U6. Nevertheless, it often makes sense to also consider such subsets as
codewords; for example, the cofiring of neurons 3 and 5 may still be ob-
served, as neuron 6 may fail to fire even if the stimulus is in its receptive
field. This is captured by the corresponding coarse RF code.

Coarse RF codes carry less detailed information about the underlying
stimulus space (Curto & Itskov, 2008; Curto et al., in press), but turn out to
be more “natural” in the context of symmetric threshold-linear networks
because they have the structure of a simplicial complex.13 This implies
that coarse RF codes do not yield any type 1 spurious states—the spurious
subsets—when encoded in a network using the encoding rule. Furthermore,
both RF codes and coarse RF codes with low-dimensional receptive fields

13In topology, this simplicial complex is called the nerve of the cover {U1, . . . ,Un} (see
Bott & Tu, 1982; Curto & Itskov, 2008).
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contain surprisingly few type 2 spurious states—the spurious cliques. This
follows from Helly’s theorem, a classical theorem in convex geometry:

Helly’s theorem (Barvinok, 2002). Suppose that U1, . . . ,Uk is a finite collection
of convex subsets of Rd, for d < k. If the intersection of any d + 1 of these sets is
nonempty, then the full intersection

⋂k
i=1 Ui is also nonempty.

To see the implications of Helly’s theorem for RF codes, we define the notion
of Helly completion:

Definition 5. Let ∆d be a d-dimensional simplicial complex on n vertices. The
Helly completion ∆̄d is the largest simplicial complex on n vertices that has ∆d as
its d-skeleton.

In other words, the Helly completion of a d-dimensional simplicial complex
'd is obtained by adding in all higher-dimensional faces in a way that
is consistent with the existing lower-dimensional faces. In particular, the
Helly completion of any graph G is the clique complex X(G). For a two-
dimensional simplicial complex, '2, the Helly completion includes only
cliques of the underlying graph G('2) that are consistent with '2. For
example, the Helly completion of the code in section 3.3 does not include
the 3-cliques corresponding to empty (nonshaded) triangles in Figure 2A.
With this notion, Helly’s theorem can now be reformulated:

Lemma 6. Let C be a coarse d-dimensional RF code, corresponding to a set of
place fields {U1, . . . , Un} where each Ui is a convex open set in Rd . Then C is the
Helly completion of its own d-skeleton: C = C̄d .

This lemma indicates that low-dimensional RF codes, whether coarse or
not, have a relatively small number of spurious cliques, since most cliques
in X(G(C)) are also in the Helly completion C̄d for small d. In particular, it
implies that coarse RF codes of dimensions d = 1 and d = 2 are very natural
codes for symmetric threshold-linear networks.

Corollary 2. If C is a coarse one-dimensional RF code, then it is a clique complex:
C = C̄1 = X(G(C)). Therefore, C can be exactly encoded using any universal S in
the encoding rule.

Corollary 3. If C is a coarse two-dimensional RF code, then it is the Helly
completion of its own 2-skeleton, C = C̄2, which can be obtained from knowledge of
all pairwise and triple intersections of receptive fields.

For coarse two-dimensional RF codes, the only possible spurious cliques are
therefore spurious triples and the larger cliques of G(C) that contain them.
The spurious triples emerge when three receptive fields Ui,Uj, and Uk have
the property that each pair intersects, but Ui ∩ Uj ∩ Uk = ∅. For generic ar-
rangements of receptive fields, this is relatively rare, allowing these codes to
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be encoded nearly exactly using any universal S in the encoding rule. In the
next section, we illustrate this phenomenon in the case of two-dimensional
place field codes.

3.7 Encoding Sparse Place Field Codes in Threshold-Linear Networks.
As seen in the previous section, Helly’s theorem sharply limits the number
of spurious cliques that result from encoding low-dimensional RF codes.
Here we illustrate this phenomenon explicitly in the case of sparse place
field codes (PF codes). In particular, we find that PF codes can be encoded
nearly exactly from a very small, randomly selected sample of patterns. The
near-exact encoding of PF codes from highly undersampled data shows
that they are “natural” codes for symmetric threshold-linear networks, as
defined in section 3.5.

PF codes. Let {U1, . . . ,Un} be a collection of convex open sets in Rd, where
each Ui is the place field corresponding to the ith neuron (O’Keefe, 1976;
O’Keefe & Nadel, 1978). To such a set of place fields, we associate a d-
dimensional PF code, C, defined as follows: for each σ ∈ 2[n], σ ∈ C if and only
if the intersection

⋂
i∈σ Ui is nonempty.

Note that in this definition, PF codes are coarse RF codes. PF codes
are experimentally observed in recordings of neural activity in rodent hip-
pocampus (McNaughton et al., 2006). The elements of C correspond to
subsets of neurons that may be coactivated as the animal’s trajectory passes
through a corresponding set of overlapping place fields. Typically d = 1 or
d = 2, corresponding to the standard “linear track” and “open field” envi-
ronments (Muller, 1996); recently, it has also been shown that flying bats
possess d = 3 place fields (Yartsev & Ulanovsky, 2013).

It is clear from corollary 2 above that one-dimensional PF codes can be
encoded exactly (i.e., without any spurious states) using any universal S
matrix in the encoding rule. Two-dimensional PF codes have no type 1
spurious states, but may have type 2 spurious cliques. For sparse PF codes,
however, the spurious cliques can be further restricted (beyond what is
expected from Helly’s theorem) by choosing a k-sparse universal S.

Near-Exact Encoding of Sparse PF Codes. Consider a two-dimensional PF
code C that is k-sparse, so that no more than k neurons can cofire in a single
pattern—even if there are higher-order overlaps of place fields. Experimen-
tal evidence suggests that the fraction of active neurons is typically on the
order of 5% to 10% (Andersen, Morris, Amaral, Bliss, & O’Keefe, 2006), so
we make the conservative choice of k = n/10 (our results improve with
smaller k). In what follows, S was chosen to be k-sparse universal and ε so
that 0 < ε < δ(S), in order to control spurious cliques of size greater than k.
We also assume the worst-case scenario of P(W ) = Xk−1(G(C)), providing
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an upper bound on the number of spurious cliques resulting from our en-
coding rule. What fraction of the stored patterns is spurious? This can be
quantified by the following error probability,

Perror
def= |P(W ) \ C|

|P(W )|
=

|Xk−1(G(C))| − |C|
|Xk−1(G(C))|

,

which assumes all permitted sets are equally likely to be retrieved from
among the stored patterns in P(W ). For exact encoding, Perror = 0, while
large numbers of spurious states will push Perror close to 1.

To investigate how “exactly” two-dimensional PF codes are encoded, we
generated random k-sparse PF codes with circular place fields, n = 80–100
neurons, and k = n/10 (see appendix E). Because experimentally observed
place fields do not have precise boundaries, we also generated “jittered”
codes, where spurious triples were eliminated from the 2-skeleton of the
code if they did not survive after enlarging the place field radii from r0 to
r1 by a jitter ratio, (r1 − r0)/r0. This has the effect of eliminating spurious
cliques that are unlikely to be observed in neural activity, as they correspond
to very small regions in the underlying environment. For each code and each
jitter ratio (up to ∼ 0.1), we computed Perror using the formula above. Even
without jitter, the error probability was small, and Perror decreased quickly
to values near zero for 10% jitter (see Figure 4A).

Encoding Full PF Codes from Highly Undersampled Sets of Patterns. To inves-
tigate what fraction of patterns is needed to encode a two-dimensional PF
code using the encoding rule, we generated randomly subsampled codes
from k-sparse PF codes. We then computed the number of patterns that
would be encoded by a network if a subsampled code was presented.
Perhaps surprisingly, network codes obtained from highly subsampled PF
codes (having only 1% to 5% of the patterns) are nearly identical to those
obtained from full PF codes (see Figure 4B). This is because large numbers of
“spurious” states emerge when encoding subsampled codes, but most cor-
respond to patterns in the full code. The spurious states of subsampled PF
codes can therefore be advantageous, allowing networks to quickly encode
full PF codes from only a small fraction of the patterns.

The results summarized in Figure 4 confirm the fact that sparse PF codes
are natural codes, as they satisfy both properties P1 and P2 outlined in
section 3.5. These codes can be encoded nearly exactly because they have
very few spurious states. The spurious cliques are limited by two factors: the
implications of Helly’s theorem (see section 3.6) and their sparsity, enabling
the choice of a k-sparse universal S that automatically eliminates spurious
cliques of size greater than k.
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Figure 4: PF encoding is near-exact and can be achieved by presenting a small
fraction of patterns. (A) Perror was computed for randomly generated k-sparse
PF codes having n = 80, 90, and 100 neurons and k = n/10. For each jitter ratio,
the average value of Perror over 100 codes is shown. (B) For n = 90, 100 and
110 neurons, k-sparse PF codes with jitter ratio 0.1 were randomly generated
and then randomly subsampled to contain a small fraction (≤5%) of the total
number of patterns. After applying the encoding rule to the subsampled code,
the number of encoded cliques was computed. In each case, the fraction of
encoded cliques for the subsampled code (as compared to the full PF code)
was averaged over 10 codes. Cliques were counted using Cliquer (Niskanen &
Ostergard, 2010), together with custom-made Matlab software.

4 Proofs

To the best of our knowledge, all proofs in this section are original, as are
the results presented in theorems 2, 3, and 4. Theorem 4 is our core technical
result, which we state and prove in section 4.1. It appears to be closely related
to some relatively recent results in convex geometry, involving correlation
matrices and the geometry of the “elliptope” (Deza & Laurent, 1997). Our
proof, however, relies on only classical distance geometry and well-known
facts about stable symmetric matrices; these are summarized in appendix
A. The key new insight that allows us to connect stability of matrices of the
form −11T + εA to Cayley-Menger determinants is lemma 7. In section 4.2
we give the proofs of proposition 1, theorem 2, and theorem 3, which all
rely on theorem 4.

4.1 Statement of Theorem 4 and Its Proof. The statement of theorem 4
uses the following definition and some new notation.

Definition 6. A Hebbian matrix A is an n × n matrix satisfying Ai j = Aji ≥ 0
and Aii = 0 for all i, j ∈ [n].
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The name reflects the fact that these are precisely the types of matrices that
arise when synaptic weights are modified by a Hebbian learning rule. We
also need the notation,

Rn
×

def= {v ∈ Rn | vi ̸= 0 for all i ∈ [n]}

for the set of vectors with all nonzero entries. Note that for v ∈ Rn
×, −vvT

is a symmetric n × n rank 1 matrix with strictly negative diagonal. Next,
given any v ∈ Rn and any n × n matrix A,

Av def= diag(v)Adiag(v)

denotes the matrix with entries Av
i j = viv jAi j. We are now ready to state

theorem 4.

Theorem 4. Let A be a Hebbian matrix and ε > 0. For v ∈ Rn
×, consider the

perturbed matrix

M = −vvT + εAv.

The following are equivalent:

1. A is a nondegenerate square distance matrix.
2. There exists an ε > 0 such that M is stable.
3. There exists a δ > 0 such that M is stable for all 0 < ε < δ.
4. 0 < − cm(A)

det A < ∞; and M is stable if and only if 0 < ε < − cm(A)
det A .

The rest of this section is devoted to proving theorem 4. A cornerstone of
the proof is the following lemma, which allows us to connect perturbations
of rank 1 matrices to Cayley-Menger determinants:

Lemma 7 (determinant lemma). Let u, v ∈ Rn. For any real-valued n × n matrix
A and any t ∈ R,

det(−uvT + t diag(u)A diag(v))

= det(diag(u)diag(v))
(
tn det A + tn−1cm(A)

)
.

In particular, if u = v ∈ Rn
× and t > 0, then

sgn(det(−vvT + t Av)) = sgn (t det A + cm(A)) ,

where sgn : R → {±1, 0} is the sign function. Moreover, taking u = v = 1 ∈ Rn

yields

det(−11T + t A) = tn det A + tn−1cm(A).
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Proof of Lemma 7. Note that for any n × n matrix A, t ∈ R, and u, v ∈ Rn,
we have

det(−uvT + tdiag(u)Adiag(v))=det(diag(u)diag(v)) det(−11T + tA),

where −11T is, as usual, the rank 1 matrix of all −1s. It thus suffices to show
that

det(−11T + tA) = tn det A + tn−1cm(A),

where cm(A) is the Cayley-Menger determinant of A.
Let w, z ∈ Rn, and let Q be any n × n matrix. We have

det

[
1 zT

w Q

]

= det(Q − wzT ),

where we have used the well-known formula for computing the deter-
minant of a 2 × 2 block matrix.14 On the other hand, the usual cofactor
expansion along the first row gives

det

[
1 zT

w Q

]

= det(Q) + det

[
0 zT

w Q

]

.

Therefore,

det(−wzT + Q) = det(Q) + det

[
0 zT

w Q

]

.

In particular, taking w = z = 1 ∈ Rn (the column vector of all ones) and Q =
tA, we have det(−11T + tA) = det(tA) + cm(tA) = tn det A + tn−1cm(A).

Finally, to prove theorem 4 we will need the following technical lemma:

Lemma 8. Fix v ∈ Rn
×, and let A be an n × n Hebbian matrix. If (−1)ncm(A) ≤

0, then −vvT + t Av is not stable for any t > 0. In particular, if there exists a t > 0
such that −vvT + t Av is stable, then (−1)ncm(A) > 0.

14 The formula det
[ A B

C D

]
= det(A) det(D − CA−1B) applies so long as A is invert-

ible. It follows from observing that
[ I 0
−CA−1 I

][ A B
C D

]
=

[ A B
0 −CA−1B + D

]
.
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For its proof, we will need a simple convexity result.

Lemma 9. Let M, N be real symmetric n × n matrices so that M is negative
semidefinite (i.e., all eigenvalues are ≤ 0) and N is strictly negative definite (i.e.,
stable, with all eigenvalues < 0). Then tM + (1 − t)N is strictly negative definite
(i.e., stable) for all 0 ≤ t < 1.

Proof. M and N satisfy xTMx ≤ 0 and xTNx < 0 for all x ∈ Rn, so we have
xT (tM + (1 − t)N)x < 0 for all nonzero x ∈ Rn if 0 ≤ t < 1.

The proof of lemma 8 relies on lemmas 7 and 9, which we have just
proven, and also on some well-known results from classical distance ge-
ometry that are collected in appendix A. These include facts about stable
symmetric matrices (Cauchy’s interlacing theorem, corollary 6, and lemma
10) as well as facts about square distance matrices (lemma 12, proposition
2, and corollary 8). These facts are also used in the proof of theorem 4.

Proof of Lemma 8. Since A is symmetric, so are Av and −vvT + tAv for
any t. Hence, if any principal submatrix of −vvT + tAv is unstable, then
−vvT + tAv is also unstable, by corollary 6. Therefore, without loss of gener-
ality, we can assume (−1)|σ |cm(Aσ ) > 0 for all proper principal submatrices
Aσ , with |σ | < n (otherwise, we use this argument on a smallest principal
submatrix such that (−1)|σ |cm(Aσ ) ≤ 0). By lemma 12, this implies that Aσ

is a nondegenerate square distance matrix for all σ such that |σ | < n, and
so we know by proposition 2 that (−1)|σ | det Aσ < 0 and that each Aσ such
that 1 < |σ | < n has one positive eigenvalue and all other eigenvalues are
negative.

We prove the lemma by contradiction. Suppose there exists a t0 > 0
such that −vvT + t0Av is stable. Applying lemma 9 with M = −vvT and
N = −vvT + t0Av , we have that −vvT + (1 − t)t0Av is stable for all 0 ≤ t < 1.
It follows that −vvT + tAv is stable for all 0 < t ≤ t0. Now lemma 10 im-
plies that (−1)n det(−vvT + tAv ) > 0 for all 0 < t ≤ t0. By lemma 7, this is
equivalent to having (−1)n(t det A + cm(A)) > 0 for all 0 < t ≤ t0. By as-
sumption, (−1)ncm(A) ≤ 0. But if (−1)ncm(A) < 0, then there would exist
a small enough t > 0 such that (−1)n(t det A + cm(A)) < 0. Therefore, we
conclude that cm(A) = 0 and hence (−1)n det A > 0.

Next, let λ1 ≤ · · · ≤ λn ≤ λn+1 denote the eigenvalues of the Cayley-

Menger matrix CM(A) =
[ 0 1T

1 A

]
, and observe that A, A[n−1], and

CM(A[n−1]) are all principal submatrices of CM(A). Since everything is
symmetric, Cauchy’s interlacing theorem applies. We have seen above that
A[n−1] has one positive eigenvalue and all others negative, so by Cauchy
interlacing, λn+1 > 0 and λn−2 < 0. Because cm(A) = detCM(A) = 0, then
CM(A) must have a zero eigenvalue, while det A ̸= 0 implies that it is
unique. We thus have two cases.
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Case 1: Suppose λn−1 = 0 and thus λn > 0. Since we assume (−1)n−1

cm(A[n−1]) > 0, the n × n matrix CM(A[n−1]) must have an odd number of
positive eigenvalues, but by Cauchy interlacing the top two eigenvalues
must be positive, so we have a contradiction.

Case 2: Suppose λn = 0 and thus λn−1 < 0. Then by Cauchy interlacing
A has exactly one positive eigenvalue. On the other hand, the fact that
(−1)n det A > 0 implies that A has an even number of positive eigenvalues,
which is a contradiction.

We can now prove theorem 4.

Proof of Theorem 4. We prove (4) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (4).
(4) ⇒ (3) ⇒ (2) is obvious.
(2) ⇒ (1): Suppose there exists a t > 0 such that −vvT + tAv is stable.

Then, by corollary 6 and lemma 8, (−1)|σ |cm(Aσ ) > 0 for all principal sub-
matrices Aσ . By lemma 12, it follows that A is a nondegenerate square
distance matrix.

(1) ⇒ (4): Suppose A is a nondegenerate square distance matrix. By
lemma 12, we have (−1)|σ |cm(Aσ ) > 0 for all Aσ , while proposition 2 implies
(−1)|σ | det(Aσ ) < 0 for all Aσ with |σ | > 1. This implies that for |σ | > 1 we
have − cm(A

σ
)

det(A
σ
)
> 0 (by corollary 8), and that if ε > 0,

(−1)|σ | (ε det(Aσ ) + cm(Aσ )
)

> 0 ⇔ ε < − cm(Aσ )

det(Aσ )
.

Applying now lemma 7,

(−1)|σ | det(−vvT + εAv )σ > 0 ⇔ ε < − cm(Aσ )

det(Aσ )
.

For |σ | = 1, we have diagonal entries Aσ = Av
σ = 0 and (−vvT )σ < 0, so

(−1) det(−vvT + εAv )σ > 0 for all ε. Using lemma 10, we conclude (assum-
ing ε > 0):

−vvT + εAv is stable ⇔ ε < δ,

where

δ = min
{
− cm(Aσ )

det(Aσ )

}

σ⊆[n]
> 0.

It remains only to show that δ = −cm(A)/ det(A). Note that we cannot use
lemma 5 from the main text because that lemma follows from proposition
1 and hence is a consequence of theorem 4.
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On the other hand, because the matrix −vvT + εAv changes from stable
to unstable at ε = δ, by continuity of the eigenvalues as functions of ε, it
must be that

det(−vvT + δAv ) = 0.

Using lemma 7 it follows that δ det(A) + cm(A) = 0, which implies δ =
−cm(A)/ det(A).

4.2 Proofs of Proposition 1, Theorem 2, and Theorem 3. Here we prove
our main results from sections 3.2 and 3.4. We begin with the proof of
proposition 1.

Proof of Proposition 1. Setting v = 1 ∈ Rn
× (the column vector of all ones)

in theorem 4 yields a slightly weaker version of proposition 1, as the hy-
pothesis in theorem 4 is that A is Hebbian, which is more constrained than
the proposition 1 hypothesis that A is symmetric with zero diagonal. To see
why proposition 1 holds more generally, suppose A is symmetric with zero
diagonal but not Hebbian. Then there exists an off-diagonal pair of negative
entries, Ai j = Aji < 0, and the 2 × 2 principal submatrix,

(−11T + εA){i j} =
( −1 −1 + εAi j

−1 + εAi j −1

)
,

is unstable as it has negative trace and negative determinant. It follows from
Cauchy’s interlacing theorem (see corollary 6 in appendix A) that −11T + εA
is unstable for any ε > 0. Correspondingly, condition (a) in proposition 1 is
violated, as the existence of negative entries guarantees that A cannot be a
nondegenerate square distance matrix.

To prove theorems 2 and 3, we will need the following two corollaries of
proposition 1. First, recall the definitions for geom(A), geomε(A), δ(A) from
section 3.2. Applying proposition 1 to each of the principal submatrices of
the perturbed matrix −11T + εA we obtain:

Corollary 4. If A is a symmetric matrix with zero diagonal, and ε > 0, then

stab(−11T + εA) = geomε(A).

For 0 < ε < δ(A), stab(−11T + εA) = geom(A).

Next, recall that X(G) is the clique complex of the graph G.

Corollary 5. Let A be a symmetric n × n matrix with zero diagonal, and ε > 0.
Let G be the graph on n vertices having (i j) ∈ G if and only if Ai j ≥ 0. For any
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n × n matrix S with Si j = Sji ≥ 0 and Sii = 0, if S “matches” A on G (i.e., if
Si j = Ai j for all (i j) ∈ G), then

geomε(A) = geomε(S) ∩ X(G).

In particular, geom(A) = geom(S) ∩ X(G).

We can now prove theorems 2 and 3.

Proof of Theorem 2. Any network W obtained via the encoding rule (see
equation 3.1) has the form −D + W = −11T + εA, where A is symmetric
with zero diagonal and “matches” the (nonnegative) synaptic strength ma-
trix S precisely on the entries Aij such that (i j) ∈ G(C). All other off-diagonal
entries of A are negative. It follows that

P(W ) = stab(−11T + εA) = geomε(A)

= geomε(S) ∩ X(G(C)),

where the last two equalities are due to corollaries 4 and 5, respectively.

Proof of Theorem 3. (⇐) This is an immediate consequence of theorem 2.
(⇒) Suppose there exists a symmetric network W with P(W ) = C, and

observe by theorem 1 that P(W ) = stab(−11T + A), for some symmetric
n × n matrix A with zero diagonal. By corollaries 4 and 5,

C = P(W ) = geomε(A) = geomε(S) ∩ X(G),

where ε = 1, G is the graph associated with A (as in corollary 5) and S is an
n × n matrix with Si j = Sji ≥ 0 and zero diagonal that “matches” A on G. It
remains only to show that geomε(S) ∩ X(G) = geomε(S) ∩ X(G(C)). Since
C = geomε(A), any element {i j} ∈ C must have corresponding Ai j > 0, so
G(C) ⊆ G and hence X(G(C)) ⊆ X(G). On the other hand, C = C ∩ X(G(C)),
so we conclude that C = geomε(S) ∩ X(G(C)).

5 Discussion

Understanding the relationship between the connectivity matrix and the
activity patterns of a neural network is one of the central challenges in
theoretical neuroscience. We have found that in the context of symmetric
threshold-linear networks, one can obtain an unexpectedly precise under-
standing of the binary activity patterns stored by network steady states. In
particular, we have arrived at a complete and precise combinatorial char-
acterization of spurious states, something that has not yet been achieved
in the context of the Hopfield model (Amit et al., 1985, 1987; Amit, 1989a;
Hertz et al., 1991; Roudi & Treves, 2003). Moreover, we have shown that
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network solutions to the NE problem can be obtained constructively, using
a simple encoding rule. A new concept that emerges from our results is that
of geometric balance, whereby the excitatory synapses between neurons in a
stored pattern must satisfy a set of geometric constraints, ensuring they are
appropriately bounded and balanced in their strengths.

As a consequence of our main results, we have discovered that
threshold-linear networks naturally encode neural codes arising from low-
dimensional receptive fields (such as place fields) while introducing very
few spurious states. Remarkably, these codes can be “learned” by the net-
work from a highly undersampled set of patterns. Neural codes represent-
ing (continuous) parametric stimuli, such as place field codes, have typically
been modeled as arising from continuous attractor networks whose synap-
tic matrices have symmetric Mexican hat–type connectivity (Ben-Yishai
et al., 1995; McNaughton et al., 2006). This is in large part due to the fact that
there is a well-developed mathematical handle on these networks (Amari,
1977; Bressloff, 2012; Itskov, Hansel, & Tsodyks, 2011). Our work shows
that one can have fine mathematical control over a much wider class of
networks, encompassing all symmetric connectivity matrices. It may thus
provide a novel foundation for understanding—and engineering—neural
networks with prescribed steady-state properties.

Appendix A: Stable Symmetric Matrices and
Square-Distance Matrices

In this appendix we review some classical facts about stable symmetric
matrices and square-distance matrices that are critical to many of our proofs.
Everything in this section is well known.

A.1 Stable Symmetric Matrices. Here we summarize some well-
known facts about the stability of symmetric matrices that we use in various
proofs. The first is Cauchy’s interlacing theorem, which relates eigenvalues
of a symmetric matrix to those of its principal submatrices. Recall that the
eigenvalues of a symmetric matrix are always real.

Theorem 5 (Cauchy’s interlacing theorem; Horn & Johnson, 1985). Let A be a
symmetric n × n matrix, and let B be an m × m principal submatrix of A. If the
eigenvalues of A are α1 ≤ . . .α j . . . ≤ αn and those of B are β1 ≤ . . . β j . . . ≤ βm,
then α j ≤ β j ≤ αn−m+ j for all j.

Some immediate consequences of this theorem are:

Corollary 6. Any principal submatrix of a stable symmetric matrix is stable.
Any symmetric matrix containing an unstable principal submatrix is unstable.

Corollary 7. Let A be a symmetric n × n matrix with strictly negative diagonal.
Then stab(A) is a simplicial complex.
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Proof. First, recall the definitions of stab(A) and simplicial complex from
sections 2.3 and 2.4. We need to check the two properties in the definition
of a simplicial complex. Property 1 holds for stab(A), because A has strictly
negative diagonal. Property 2 follows from corollary 6.

Another well-known consequence of Cauchy’s interlacing theorem is the
following lemma. Here A[k] refers to the principal submatrix obtained by
taking the upper left k × k entries of A.

Lemma 10. Let A be a real symmetric n × n matrix. Then the following are
equivalent:

1. A is a stable matrix.
2. (−1)k det(A[k]) > 0 for all 1 ≤ k ≤ n.
3. (−1)|σ | det(Aσ ) > 0 for every σ ⊆ [n].

Proof. We prove (1) ⇔ (2). The equivalence between (1) and (3) follows
using a very similar argument.

(⇒) Assume A is stable. Then λ1(A) ≤ · · · ≤ λn(A) < 0. By Cauchy’s
interlacing theorem, λ1(A) ≤ λi(A[k]) ≤ λn(A) for all i = 1, . . . , k and k =
1, . . . , n. Therefore, all eigenvalues of the matrices A[k] are strictly negative,
and hence (−1)k det(A[k]) > 0 for all k.

(⇐) We prove this by induction. The base case is n = 1: indeed, a 1 × 1
matrix A = [a] is stable if − det(A[1]) > 0, that is, if a < 0. Now suppose
(⇐) of the theorem is true for (n − 1) × (n − 1) matrices and also that
(−1)k det(A[k]) > 0, k = 1, . . . , n, for an n × n matrix A. This implies A[n−1] is
stable. By Cauchy’s interlacing theorem, the highest eigenvalue λn−1(A[n−1])

lies between the top two eigenvalues of A:

λn−1(A) ≤ λn−1(A[n−1]) ≤ λn(A).

The stability of A[n−1] thus implies λ1(A) ≤ · · · ≤ λn−1(A) < 0. It remains
only to check that λn(A) < 0. For n even, (−1)n det(A[n]) > 0 implies
λ1(A)λ2(A) · · · λn(A) > 0, hence λn(A) < 0. For n odd, (−1)n det(A[n]) > 0
implies λ1(A)λ2(A) · · · λn(A) < 0, hence λn(A) < 0. It follows that A is
stable.

A.2 Square Distance Matrices. Recall from section 3.2 the definitions of
square distance matrix, nondegenerate square distance matrix, and Cayley-
Menger determinant. Our convention is that the 1 × 1 zero matrix [0] is
a nondegenerate square distance matrix, as |cm([0])| = 1 > 0. As an ex-
ample, a 3 × 3 symmetric matrix A with zero diagonal is a nondegenerate
square distance matrix if and only if the off-diagonal entries Aij are all pos-
itive, and their square roots

√
A12,

√
A13, and

√
A23 satisfy all three triangle

inequalities.
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There are two classical characterizations of square distance matrices. The
first, due to Menger (Blumenthal, 1953), relies on Cayley-Menger determi-
nants. The second, due to Schoenberg (Schoenberg, 1935), uses eigenvalues
of principal submatrices. Both are needed for our proof of theorem 4.

The relationship between Cayley-Menger determinants and simplex vol-
umes is well known:

Lemma 11. Let p1, . . . , pk be k points in a Euclidean space. Assume that Ai j =
∥pi − p j∥2 is the matrix of square distances between these points. Then the (k − 1)-
dimensional volume V of the convex hull of the points {pi }k

i=1 can be computed as

V2 =
(−1)k

2(k−1) ((k − 1)!)2 cm(A). (A.1)

In particular, if A is a degenerate square distance matrix then, cm(A) = 0.

This leads to Menger’s characterization of square distance matrices. Recall
that Aσ is the principal submatrix obtained by restricting A to the index set
σ .

Lemma 12. Let A be an n × n matrix satisfying Ai j = Aji ≥ 0 and Aii = 0 for
all i, j ∈ [n] (i.e., A is a Hebbian matrix). Then,

1. A is a square distance matrix if and only if (−1)|σ |cm(Aσ ) ≥ 0 for every
Aσ .

2. A is a nondegenerate square distance matrix if and only if (−1)|σ |cm(Aσ ) >

0 for every Aσ .

Proof. The first item is equivalent to the corollary of theorem 42.2 in
Blumenthal (1953). Item 2 is equivalent to theorem 41.1 in Blumenthal
(1953).

Schoenberg’s characterization implies that if a matrix is a square distance
matrix, then the determinant of any principal submatrix has opposite sign
to that of its Cayley-Menger determinant.

Proposition 2. Let A be an n × n square distance matrix that is not the zero
matrix. Then:

1. A has one strictly positive eigenvalue and n − 1 eigenvalues that are less
than or equal to zero. In particular, (−1)|σ |det(Aσ ) ≤ 0 for every principal
submatrix Aσ .

2. If A is a nondegenerate square distance matrix, A has no zero eigenvalues
and (−1)|σ |det(Aσ ) < 0 for every principal submatrix Aσ with |σ | > 1.
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Proof. This proposition is contained in Deza and Laurent (1997, theorem
6.2.16). It can also be proven directly from theorem 1 of Schoenberg’s 1935
paper (Schoenberg, 1935).

Corollary 8. If A is an n × n nondegenerate square distance matrix with n > 1,
then

−cm(A)
det A

> 0.

Appendix B: Some More Facts about Permitted Sets
of Symmetric Threshold-Linear Networks

This section proves a few additional (and novel) facts about permitted sets
in symmetric threshold-linear networks. These were not included in the
main text in order not to disrupt the flow of the exposition.

Recall from theorem 1 that the permitted sets P(W ), where W is a
threshold-linear network with dynamics given by equation 2.1, always have
the form

P(W ) = stab(−D + W ).

Here we show that when W is symmetric (like the networks obtained us-
ing the encoding rule, equation 3.1), P(W ) can always be expressed as
stab(−11T + A) or stab(−xyT + B), where −xyT is any rank 1 matrix having
strictly negative diagonal, and A, B are square matrices with zero diagonal.
In what follows, we use the notation Rn

× and Av defined at the beginning of
section 4.1.

Lemma 13. Let M be a symmetric n × n matrix, and v ∈ Rn
×. Then

stab(Mv) = stab(M).

In other words, a principal submatrix Mv
σ is stable if and only if Mσ is stable.

Proof. By lemma 10, τ ∈ stab(M) if and only if (−1)|σ | det(Mσ ) > 0
for every σ ⊆ τ . Observe that since Mv = diag(v)M diag(v), we have
sgn(det(Mv

σ )) = sgn(det(Mσ )) for all σ ⊆ [n]. It follows that τ ∈ stab(Mv )

if and only if τ ∈ stab(M).

Lemma 14. For any symmetric threshold-linear network W on n neurons, there
exists a symmetric n × n matrix A with zero diagonal such that

P(W) = stab(−11T + A).
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Proof. Let x ∈ Rn
× be the vector such that diag(−xxT ) = diag(−D + W ),

and write

−D + W = −xxT + (−D + W + xxT ),

where the term in parentheses is symmetric and has zero diagonal. This can
be rewritten as

−D + W = diag(x)(−11T + A)diag(x) = (−11T + A)x,

where

A = diag(x)−1(−D + W + xxT )diag(x)−1

is a symmetric n × n matrix with zero diagonal. It follows from lemma 13
that P(W ) = stab(−D + W ) = stab(−11T + A).

Lemma 14 implies that all sets of permitted sets P(W ) for symmetric
networks W have the formP(W ) = stab(−11T + A), where A is a symmetric
matrix having zero diagonal. The following proposition implies that all such
P(W ) can also be obtained by perturbing around any rank 1 matrix with
negative diagonal, not necessarily symmetric. Note that if x, y ∈ Rn

×, the
rank 1 matrix −xyT has strictly negative diagonal if and only if xiyi > 0 for
all i ∈ [n].

Proposition 3. Fix x, y ∈ Rn
× with xi yi > 0 for all i ∈ [n]. For any symmetric

threshold-linear network W on n neurons, there exists an n × n matrix B with zero
diagonal such that

P(W) = stab(−xyT + B).

The proof of this proposition constructs the matrix B explicitly and relies
on the following lemma.

Lemma 15. Let M be any n × n matrix and T an n × n invertible diagonal
matrix. Then

stab(T MT−1) = stab(M).

Proof. We have (TMT−1)σ = Tσ Mσ T−1
σ . Since conjugation preserves the

eigenvalue spectrum, the statement follows.

Proof of Proposition 3. Let W be a symmetric threshold-linear network
on n neurons. By lemma 14, there exists a symmetric n × n matrix A with
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zero diagonal such that P(W ) = stab(−11T + A). It thus remains only to
construct an n × n matrix B with zero diagonal such that

stab(−xyT + B) = stab(−11T + A).

We prove that this can always be done in two steps. First, we prove that
it can be done in the special case x = y, and then we show that B can be
constructed in general.

Step 1: Fix x = y ∈ Rn
×, and observe that −xxT + Ax = (−11T + A)x, so by

lemma 13 we have stab(−xxT + Ax) = stab(−11T + A). Letting B =
Ax, we obtain the desired statement.

Step 2: Fix x, y ∈ Rn
× so that xiyi > 0 for all i ∈ [n], and let T be the diagonal

matrix with entries Tii =
√

yi/xi. Then

(T(−xyT )T−1)i j =
√

yi

xi
(−xiy j)

√
x j

y j
= −√

xiyi
√

x jy j,

so T(−xyT )T−1 = −zzT for z ∈ Rn
× having entries zi = √xiyi. It

follows from step 1 that stab(−11T + A) = stab(−zzT + Az) =
stab(T(−xyT )T−1 + Az). Let

B = T−1AzT.

Then, using lemma 15, stab(−xyT + B) = stab(T(−xyT + B)T−1) =
stab(−11T + A). Since A has zero diagonal, so do Az and B. Note that
B can be obtained explicitly, using the expression for A in the proof of
lemma 14.

Appendix C: Remarks on the Ratio − cm(A)
det(A)

Remark 6. If A is an n × n nondegenerate square distance matrix for n > 1,
then the ratio − cm(A)

det(A)
has a very nice geometric interpretation:

− cm(A)

det(A)
=

∣∣∣∣
cm(A)

det(A)

∣∣∣∣ = 1
2ρ2 ,

where ρ is the radius of the unique sphere circumscribed on the points used
to generate A. This is proven in Berger (1994, proposition 9.7.3.7), where it is
also shown that det(A) ̸= 0 not only if A is a nondegenerate square distance
matrix, but also if A is a degenerate square distance matrix corresponding to
n points in general position in Rn−2. Since cm(A) vanishes in this case, we
see that the ratio − cm(A)

det(A)
goes to zero as n points that are initially in general
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position in Rn−1 approach general position on a hyperplane of dimension
n − 2.

Remark 7. The previous remark has important implications for the appar-
ent fine-tuning that is involved in eliminating spurious cliques by arranging
points to be collinear, or coplanar, so that the corresponding principal sub-
matrix Aσ is degenerate (as in Figure 2B). Since −11T + εAσ is stable only
for

0 < ε < − cm(Aσ )

det(Aσ )
= 1

2ρ2 ,

where ρ is the radius of the circumscribed sphere, then by making the points
{pi}i∈σ corresponding to Aσ approximately degenerate, ρ can be made large
enough so that −11T + εAσ is unstable—without the fine-tuning required
to make Aσ exactly degenerate.

Similarly, exact solutions for k-skeleta of clique complexes, obtained us-
ing a k-sparse universal S, which is a degenerate square distance matrix, are
also not as finely tuned as they might first appear. If in fact S is a nondegen-
erate square distance matrix, corresponding to a configuration of n points
in Rn−1 that approximately lies on a k-dimensional plane, the value of δ(Sσ )

will be very small for any pattern of size |σ | > k + 1; one can thus choose
ε large enough to ensure that geomε(S) = {σ ⊂ [n] | |σ | ≤ k + 1}, as in the
case where S is truly degenerate.

Remark 8. It is quite simple to understand the scaling properties of
−cm(A)/ det(A). If A is any n × n matrix, then cm(tA) = tn−1cm(A), while
det(tA) = tn det(A), so

− cm(tA)

det(tA)
= 1

t

(
− cm(A)

det(A)

)
,

independent of n. If Ai j = ∥pi − p j∥2, for p1, . . . , pn ∈ Rn−1, and we scale the
position vectors so that pi 6→ t pi for each i ∈ [n], then A 6→ t2A and we have

− cm(A)

det(A)
6→ 1

t2

(
− cm(A)

det(A)

)
.

This is consistent with the fact that the radius ρ of the circumscribed sphere
scales as ρ 6→ tρ in this case (see remark 6).

Remark 9. Consider an n × n matrix A satisfying the Hebbian conditions
Ai j = Aji ≥ 0 and Aii = 0. If n is large, it is computationally intensive to test
whether A is a nondegenerate square distance matrix using the criteria of
lemma 12, which potentially require computing cm(Aσ ) for all σ ⊂ [n].
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On the other hand, our results imply that in order to test whether a
Hebbian matrix A is a nondegenerate square distance matrix, it is enough
to check the stability of the matrix

−11T + εA for ε = 1
2

∣∣∣∣
cm(A)

det(A)

∣∣∣∣ .

Here the factor of 1/2 was chosen arbitrarily and can be replaced with any
number 0 < c < 1. For large n, this is a computationally efficient strategy,
as it requires checking the eigenvalues of just one matrix.

Appendix D: The Input-Output Relationship of the Network

In this appendix we discuss the relationship between the inputs and outputs
of the network with dynamics given by equation 2.1,

ẋ = −Dx + [Wx + b]+,

with notation as described in section 2. While the inputs correspond to
arbitrary vectors b ∈ Rn, the outputs of the network correspond to stable
fixed points of the dynamics. We consider two types of outputs: firing
rate vectors x∗ ∈ Rn

≥0 and binary patterns σ = supp(x∗), corresponding to
subsets of coactive neurons at the fixed points.

The observations in this section all stem from a prior result (Curto et al.,
2012). Here we also use the notation x < y for vectors x, y ∈ Rn to indi-
cate that xi < yi for each i ∈ [n]. The symbols > and ≤ are interpreted
analogously.

Proposition 4 (Curto et al., 2012, proposition 2.1). Consider the threshold-linear
network W (not necessarily symmetric) with dynamics given by equation 2.1, in
the presence of a particular fixed input b. Let σ ⊂ [n] be a subset of neurons, and
σ̄ its complement. Then a point x∗ ∈ Rn with x∗

σ > 0 and x∗
σ̄ = 0 is a fixed point if

and only if

(i) bσ = (D − W)σ x∗
σ , and

(ii) bσ̄ ≤ −Wσ̄ σ x∗
σ ,

where Wσ̄ σ is the submatrix with rows and columns restricted to σ̄ and σ , respec-
tively. In particular, if det(D − W)σ ̸= 0, then there exists at most one nonnegative
fixed point with support σ and it is given by

x∗
σ = (D − W)−1

σ bσ and x∗
σ̄ = 0,

provided that (D − W)−1
σ bσ > 0 and properties (i) and (ii) hold. Moreover, if x∗

is a fixed point and bσ̄ < −Wσ̄ σ x∗
σ , then x∗ is asymptotically stable if and only if

(−D + W)σ is stable.
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A simple corollary of this proposition is that for a given permitted set
σ ∈ P(W ), the neurons in σ may, depending on the input, be coactivated
via any firing rate vector x∗ ∈ Rn

≥0 that has support σ , although this vector
is unique for a given input b.

Corollary 9. Let σ ∈ P(W) be a permitted set of a threshold-linear network
(not necessarily symmetric) with dynamics given by equation 2.1. Then for any
x∗ ∈ Rn

≥0 with supp(x∗) = σ (i.e., x∗
σ > 0 and x∗

σ̄ = 0), there exists an input b ∈ Rn

such that x∗ is the unique stable fixed point of equation 2.1 whose subset of active
neurons is exactly σ .

Proof. Choose any b ∈ Rn such that bσ = (D − W )σ x∗
σ and bσ̄ < −Wσ̄ σ x∗

σ .
Observe that (D − W )σ is invertible because it is a stable matrix, since
σ ∈ P(W ). Then, by proposition 4, x∗ is the unique fixed point with support
σ in the presence of input b and x∗ is asymptotically stable. (Note, however,
that stable fixed points with other supports may also arise for the same
input b.)

The above results made no special assumptions about W; in particular,
they did not assume symmetricity. Suppose now that −W is nonnegative, as
in the typical output of the encoding rule, and let σ ∈ P(W ) be a permitted
set. Then σ can be activated as an output binary pattern of the network by
choosing any input b ∈ Rn such that bσ = (D − W )σ y, for some y ∈ R|σ |

>0, and
bσ̄ < 0.

The flexibility of possible output firing rate vectors, in contrast to the
sharp constraints on output binary patterns of coactive neurons, suggests
that the input-output relationship of threshold-linear networks should be
regarded as fundamentally combinatorial in nature.

Appendix E: Details Related to Generation
of PF Codes for Figure 4

To produce Figure 4, we generated random k-sparse PF codes with circular
place fields, n = 80–100 neurons, and k = .1n. For each code, n place field
centers were selected uniformly at random from a square box environment
of side length 1, and n place field radii were drawn independently from
an experimentally observed gamma distribution (see Figure 5). We then
computed the 2-skeleton for each PF code, with pairwise and triple overlaps
of place fields determined from simple geometric considerations. The full
PF code was obtained as the Helly completion of the 2-skeleton (see lemma
6). Finally, to obtain the k-sparse PF code, we restricted the full code to its
(k − 1)-skeleton, thereby eliminating patterns of size larger than k.
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Figure 5: Gamma distribution used for generating random place field radii; this
fits the experimentally observed mean and variability (see Figure 4B of Curto
& Itskov, 2008).
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