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Inspired by the sound localization system of the barn owl, we define a new class
of neural codes, called periodic codes, and study their basic properties. Periodic
codes are binary codes with a special patterned form that reflects the periodicity
of the stimulus. Because these codes can be used by the owl to localize sounds
within a convex set of angles, we investigate whether they are examples of convex
codes, which have previously been studied for hippocampal place cells. We find
that periodic codes are typically not convex, but can be completed to convex
codes in the presence of noise. We introduce the convex closure and Hamming
distance completion as ways of adding codewords to make a code convex, and
describe the convex closure of a periodic code. We also find that the probability of
the convex closure arising stochastically is greater for sparser codes. Finally, we
provide an algebraic method using the neural ideal to detect if a code is periodic.
We find that properties of periodic codes help to explain several aspects of the
behavior observed in the sound localization system of the barn owl, including
common errors in localizing pure tones.

1. Introduction

Neural codes are patterns of neural activity, also known as codewords, that arise
from the encoding of environmental stimuli. Understanding neural codes means
understanding both their structure and the relationship between these codewords
and the stimuli they represent. One way to begin understanding this structure is by
considering the neural code as a neural ring and exploring the intrinsic combinatorial
properties as they relate to the structure of the stimulus space in an algebraic
framework [Curto et al. 2013; 2019b]. More recent work has focused specifically
on the relationship between the code and the stimulus space by considering whether
each neuron fires over a convex region of space, motivated by the place cells in the
rat hippocampus [Cruz et al. 2019; Curto et al. 2017; Curto 2017].
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Inspired by the owl auditory system, in this work, we focus on periodic codes,
which have a special structure that may be especially well-suited for encoding
stimuli that are similarly periodic, such as sound waves. Periodic firing patterns
are observed in the nucleus laminaris of the barn owl, the first site of binaural
convergence in the auditory pathway. Similarly, the codewords in a periodic code,
Ck,m(n), have a precise, periodic pattern: they consist of bands of k consecutive
neurons that are firing, alternating with bands of m consecutive neurons that are
silent (see Figure 1). One advantage of binaural hearing is the ability to localize
sounds, and we explore how the structure of periodic codes relates to this ability
to localize a sound to a convex set of angles by asking whether periodic codes are
convex.

First, we show in Theorem 3.3 that, except in trivial cases, periodic codes are
not convex, which may explain the barn owl’s errors in sound localization when
presented with a single-frequency stimulus. This theorem also gives a specific
formulation for adding codewords to make these codes convex, and we define
the convex closure of a code. In the case of periodic codes, the convex closure
involves taking a union with another periodic code, suggesting that owls may
resolve the issues of nonconvexity of single-frequency codes by combining codes
from multiple frequencies higher in the brainstem. Second, we give the precise
probability that the convex closure arises instead from stochasticity, finding that
sparser codes are more likely to be completed to convex codes via stochastic
processes. Third, we give an algorithmic method to determine if an arbitrary code,
with the neurons labeled in a potentially permuted order, is periodic using the neural
ring (Theorem 5.10).

The organization of this paper is as follows. In Section 2, we give a rigorous def-
inition of periodic codes and explore basic combinatorial properties of these codes,
highlighting the differences between periodic codes and cyclic codes [MacWilliams
and Sloane 1977, Chapter 7]. In Section 3, we prove our main result on the convexity
properties of these periodic codes, Theorem 3.3. In Section 4, we explore the role of
stochasticity in creating convex codes from nonconvex periodic codes, deriving the
probability that this transformation occurs. In Section 5, we conclude by analyzing
periodic codes from an algebraic perspective and prove Theorem 5.10.

2. Periodic codes

We define a special class of codes, periodic codes, which have both combinatorial
and biological significance. In this section, we give the basic properties of these
codes and compare them to the more familiar cyclic codes. We end with a description
of sound localization in the barn owl, which is our motivating biological example
of periodic codes, and discuss questions that arise from considering periodic codes
in this context.
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2A. Basic definitions. We first introduce combinatorial neural codes. To relate
continuous firing patterns of a set of n neurons to a discrete object, we associate
a binary string x1 · · · xn to a collection of neuron firing rates f1 · · · fn , where for
each neuron i we assign xi = 1 if and only if fi > t for some threshold t . A neural
code C of length n is the collection of these binary strings, where each binary string
is a codeword c of C. Note that we will interchangeably use c to denote a binary
string and the set of indices in [n], where [n] = {1, . . . , n}, which are 1 in the binary
string representation. For example, c = 10100 is equivalent to {1, 3}. This discrete
formulation allows us to explore combinatorial and topological properties of neural
firing. To relate the codewords to the encoded stimuli, by analogy with place field
codes, we are able to define subsets of the stimulus space for which xi = 1 as the
receptive field of neuron i .

An abstract simplicial complex 1 is a collection of sets which is closed under
the operation of taking subsets, meaning if σ ∈ 1 and τ ⊂ σ , then τ ∈ 1. Each
element of a simplicial complex is called a face, and a face σ has dimension |σ |−1.
If a face is maximal, in the sense that it is not a proper subset of any other element
of 1, then it is called a facet. Every neural code C has a corresponding simplicial
complex 1(C) [Curto et al. 2017], defined as follows.

Definition 2.1. The simplicial complex of a code C, denoted by 1(C), is given by

1(C)= {σ | σ ⊂ c for some c ∈ C}.

Each neuron is viewed as a vertex, and the subsets of neurons which cofire in
each of the different codewords correspond to higher-dimensional simplices. The
simplicial complex of a code provides a useful topological structure but loses much
of the detailed information about the code [Curto et al. 2013].

2B. Periodic codes and their properties. We now formally introduce periodic
codes. For any k, m ∈ N, let sk,m denote the binary string s1 · · · sk+m such that
si = 1 for 1≤ i ≤ k and sj = 0 for k+ 1≤ j ≤ k+m. For example, s2,3 = 11000.

We use the term substring to refer to a subset of bits of consecutive indices,
where an x-substring is a substring of length x . For example, 010 is a 3-substring
of 10101, but 111 is not because the indices are not consecutive.

Definition 2.2. Let k, m, and n be nonnegative integers such that n ≥ k+m. Let
c = c1c2 · · · cn be a codeword of length n. We say c is a k-m periodic codeword on
n neurons if every (k+m)-substring of c is a cyclic permutation of sk,m .

More informally, a k-m periodic codeword on n neurons is a codeword of
length n, consisting of bands of activity and inactivity, where all of the bands of
consecutive 1’s have length k and all the bands of consecutive 0’s have length m
with the possible exceptions of the first and the last band of activity or inactivity,
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Figure 1. k-m periodic codes. Top: A k-m periodic codeword
on n neurons, where k = 2, m = 3, and n = 12. Circles depict
active (filled) and inactive (unfilled) neurons. Each box shows
a (k+m)-substring corresponding to cyclic permutations 10001
and 11000 of the fundamental string s2,3 = 11000. Bottom: The
2-3 periodic code on 12 neurons, C2,3(12). Each codeword begins
with a different permutation of s2,3. Note that |C2,3(12)|=k+m=5.

which may be shorter. This is illustrated in Figure 1, where the periodic pattern
consists of bands of k = 2 active neurons followed by bands of m = 3 inactive
neurons, but in the first band of activity only a single neuron fires.

Recall that the Hamming weight of a binary string b is given by wH (b)=
∑

bi .

Lemma 2.3 (uniform weight property). Let c = c1c2 · · · cn be a k-m periodic
codeword on n neurons. Every substring of length k+m has Hamming weight k.

Lemma 2.3 follows immediately from Definition 2.2 since every (k+m)-substring
of c is a cyclic permutation of sk,m , which has weight k. Observe that, although
each codeword has the uniform weight property, every codeword does not have the
same weight; in Figure 1, bottom, the first codeword has weight 6, the second has
weight 5, and the third has weight 4.

As the name suggests, k-m periodic codewords exhibit a periodic property, where
the first k+m bits of the codeword repeat periodically as formalized in Lemma 2.4
below.

Lemma 2.4 (periodicity property). Let c = c1c2 · · · cn be a k-m periodic codeword
on n neurons. If i ≡ j mod (k+m), then ci = cj .

Proof. We will show that if j = i + (k +m), then ci = cj . From here, it follows
by transitivity that ci = cj for all i, j such that i ≡ j mod (k+m). Recall that
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n≥ k+m. If n= k+m, there is nothing to prove. Suppose n > k+m. Let i, j ∈ [n]
with j = i + (k +m). Consider the (k+m)-substrings s1 = ci · · · ci+(k+m)−1 and
s2 = ci+1 · · · cj . By Lemma 2.3, wH (s1)=wH (s2)= k. Since s1 and s2 overlap on
k+m− 1 bits, we have that wH (s2)= wH (s1)− ci + cj . Thus, we can conclude
ci = cj . □

These two properties yield additional characterizations of k-m periodic code-
words.

Lemma 2.5. Let c be a binary codeword of length n. The following are equivalent:

(1) c is a k-m periodic codeword on n neurons.

(2) Every (k+m)-substring of c is a cyclic permutation of sk,m .

(3) c1 · · · ck+m is a cyclic permutation of sk,m , and every (k+m)-substring has
weight k.

(4) c1 · · · ck+m is a cyclic permutation of sk,m , and for all i, j ∈ [n], if i ≡ j
mod (k+m), then ci = cj .

Proof. (1)⇔ (2) The equivalence between (1) and (2) is given by Definition 2.2.

(2)⇒ (3) The equivalence from (2) to (3) follows directly from Lemma 2.3.

(3)⇒ (4) The proof is the same as that of Lemma 2.4.

(4)⇒ (2) Suppose ci · · · ci+k+m−1 is a cyclic permutation of sk,m and ci = ci+k+m .
Then, ci+1 · · · ci+k+m is a cyclic permutation of sk,m . By hypothesis, c1 · · · ck+m is a
cyclic permutation of sk,m and ci = cj for all i, j ∈ [n] such that i ≡ j mod (k+m).
So, by induction, every (k+m)-substring is a cyclic permutation of sk,m . □

These characterizations show that once the first k +m bits of a k-m periodic
codeword c are given, all other bits of c are determined. This observation makes it
easy to count the number of possible k-m periodic codewords and shows that the
number of possible codewords is independent of n.

Definition 2.6. The k-m periodic code on n neurons, denoted by Ck,m(n), is the
binary code which contains all possible k-m periodic codewords on n neurons and
no other codewords.

Recall that the size of a code C, denoted by |C |, is the number of codewords it
contains.

Proposition 2.7. Let Ck,m(n) be the k-m periodic code on n neurons.

(1) If k = 0 or m = 0, then |Ck,m(n)| = 1.

(2) If k, m ̸= 0, then |Ck,m(n)| = k+m.

Proof. (1) If k = 0 or m = 0, then sk,m is a string of all 0’s or all 1’s. Since there is
only one possible permutation of sk,m , we have |Ck,m(n)| = 1.
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(2) If k, m ̸= 0, there are k+m cyclic permutations of sk,m . There is one codeword
beginning with each of these permutations, so |Ck,m(n)| = k+m. □

Figure 1 shows an example of the firing patterns and corresponding codewords of
a periodic code. The k-m periodic code is completely parametrized by k, m, and n,
which are 2, 3, and 12 in the figure respectively. These five codewords constitute
C2,3(12).

The previous properties resulted from the combinatorial properties of periodic
codes, but the periodic structure of these codes also gives rise to topological
properties in the simplicial complex of the code, which allow us to compare
periodic codes to cyclic codes in the next section. As a result of the periodicity
property (Lemma 2.4) of periodic codewords, we are also able to give a property of
1(Ck,m(n)), which will be useful for proving later results.

Proposition 2.8. Let 1=1(Ck,m(n)). Assume i ≡ j mod (k+m). If vi ∪ σ ∈1,
then vi ∪ vj ∪ σ ∈1. In particular, vi ∪ σ ∈1 if and only if vj ∪ σ ∈1.

Proof. Without loss of generality, assume vi ∪σ ∈1. Since by Lemma 2.4, ci = cj

for all c ∈ C, vj is connected to vi and vj is connected to any face to which vi is
connected. Therefore, vi∪vj∪σ ∈1. Since 1 is a simplicial complex, vj∪σ ∈1. □

2C. Comparison to cyclic codes. One class of highly structured codes that are of
particular relevance to coding theorists are cyclic codes [MacWilliams and Sloane
1977, Chapter 7]. A cyclic code is defined by the property that the set of codewords
is closed under all shifts in coordinates. Since periodic codes have a similar periodic
property (Lemma 2.4), it is natural to ask whether periodic codes are just a special
case of cyclic codes.

Definition 2.9. A cyclic code of length n is a code C with the property that for
every c1c2 · · · cn−1cn ∈ C, the cyclic permutation cnc1c2 · · · cn−1 ∈ C.

Note that cyclic codes are often defined with the additional property that the code
be linear. A linear binary code C is a binary code where for all c, d ∈C, c+d ∈C,
where addition is performed bitwise over F2. Clearly, the all-zeros codeword 00 · · · 0
is in C for any linear code C. We do not require the extra structure imposed by
linearity because most periodic codes are not linear, and in fact, a k-m periodic
code is linear if and only if k = 0 since these are the only k-m periodic codes which
contain the all-zeros codeword.

The following lemma shows that, although they are not linear, many periodic
codes satisfy the cyclic property from Definition 2.9.

Lemma 2.10. Let C = Ck,m(n). The code C is cyclic if and only if , for all c ∈ C,
cn = ck+m .

Proof. Recall n ≥ k+m.
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(⇒) Suppose C is cyclic, and let c1 · · · cn ∈ C. Since C is cyclic, cnc1 · · · cn−1 ∈ C.
By Lemma 2.3, wH (c1 · · ·ck+m)=wH (cnc1 · · ·ck+m−1)=k. This implies cn= ck+m .

(⇐) Let c=c1 · · · cn ∈C. To show C is cyclic, we want to show c′=cnc1 · · ·cn−1∈C.
By assumption cn = ck+m , so cnc1 · · · ck+m−1 is a cyclic permutation of sk,m and
has weight k. All other (k+m)-substrings of c′ are substrings of c, and so they have
weight k. By part (3) of Lemma 2.5, c′ is k-m periodic and hence in C. □

To see why n must be a multiple of k+m, consider C = C2,2(5). Clearly, 11001
is in C, but the cyclic permutation 11100 is not in C.

Proposition 2.11. Let Ck,m(n) be a k-m periodic code on n neurons.

(1) If k = 0 or m = 0, then Ck,m(n) is a cyclic code, independent of n.

(2) If k ̸= 0 and m ̸= 0, then Ck,m(n) is a cyclic code if and only if n is a multiple
of k+m.

Proof. (1) If k = 0 or m = 0, then Ck,m(n) consists only of the all-zeros or all-ones
codeword respectively, and so is trivially cyclic.

(2) Suppose k, m ̸= 0. Let C = Ck,m(n) and recall n ≥ k+m. By Lemma 2.10, it
suffices to prove that cn = ck+m for all c ∈ C if and only if n is a multiple of k+m.

(⇐) Assume n is a multiple of k+m. By Lemma 2.4, cn = ck+m .

(⇒) We prove the contrapositive. Assume n = a(k+m)+ b for integers a, b > 0
and b < k +m. By Lemma 2.4, cn = cb for all c ∈ C. Since there exists a cyclic
permutation of sk,m , and hence a codeword c ∈ C, such that cb ̸= ck+m ; it follows
that cn ̸= ck+m for that codeword. □

Proposition 2.11 tells us which k-m periodic codes are cyclic, so it is natural to ask
which cyclic codes are permutation equivalent to k-m periodic codes, meaning that
there exists a permutation of the vertices of the cyclic code such that the permuted
code is periodic. As seen in Figure 2, some cyclic codes can be made periodic by
applying a permutation of the vertices. Comparing the simplicial complexes of a
cyclic and periodic code allows us to see they are permutation equivalent when
they have the same simplicial complex. By matching the vertices in the simplicial
complexes, we are able to give a permutation which makes the codes the same. In
this example, we can apply the permutation (24)(37)(68) to C2,6(8) to obtain C ′.

We say that a codeword is maximal if it is contained in no other codewords. We
call a code maximal if it contains only maximal codewords. Observe that Ck,m(n)

is always maximal.

Proposition 2.12. Any two maximal codes are permutation equivalent if and only if
they have isomorphic simplicial complexes.

Proof. (⇒) It is clear that if two codes do not have the same simplicial complex,
then they are not permutation equivalent.
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Figure 2. Comparing k-m periodic codes and cyclic codes. The
simplicial complexes of C = C2,6(8) (left), the cyclic code
C ′ = {10010000, 01001000, 00100100, 00010010, 00001001,
10000100, 01000010, 00100001} (middle), and the cyclic code
C̃ = {10100000, 01010000, 00101000, 00010100, 00001010,
00000101, 10000010, 01000001} (right). The codes C and C ′ have
isomorphic simplicial complexes and so are permutation equivalent
(Corollary 2.13) as can be seen by matching vertices in the same
position to obtain the permutation (24)(37)(68). C̃ has a different
simplicial complex and, thus, is not a k-m periodic code.

(⇐) Let C1 and C2 be two maximal codes with isomorphic simplicial complexes.
Since all the codewords in C1 and C2 are maximal, they all correspond to a facet
of the simplicial complex. The isomorphism between 1(C1) and 1(C2) is a
permutation of vertices that takes facets to facets and thus induces an isomorphism
between C1 and C2 by permuting vertices (neurons). □

Observe that two codes with the same simplicial complex need not be permutation
equivalent. This is because two codes have the same simplicial complex if and only
if they have the same maximal codewords, but the codes may differ on nonmaximal
codewords. For example, consider the codes C1 = {11} and C2 = {11, 10}. We
have 1(C1)=1(C2)= {∅, {1}, {2}, {1, 2}}. However, it is clear that the codes are
not equivalent as |C1| ̸= |C2|. Thus, the maximality property is necessary.

As a consequence of Proposition 2.12, we can now assert when a cyclic code is
permutation equivalent to a periodic code.

Corollary 2.13. A cyclic code C of length n is permutation equivalent to Ck,m(n)

if and only if 1(C)∼=1(Ck,m(n)) and |C | = |Ck,m(n)|.

Proof. (⇒) Assume C is permutation equivalent to Ck,m(n). Clearly, |C | =
|Ck,m(n)|. Since Ck,m(n) is maximal, C must also be maximal. By Proposition 2.12,
1(C)∼=1(Ck,m(n)).

(⇐) Assume |C | = |Ck,m(n)| and 1(C)∼=1(Ck,m(n)). Since Ck,m(n) is maximal,
its codewords are all the facets of 1(Ck,m(n)). Since 1(C)∼=1(Ck,m(n)), C must
also contain a codeword corresponding to each facet. Since |C | = |Ck,m(n)|, C must
also be maximal. By Proposition 2.12, C and Ck,m(n) are permutation equivalent. □
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Figure 3. Left: Overview of the barn owl’s auditory pathway. Sound
waves travel to each of the owl’s ears, stimulating the auditory nerve,
which sends a signal to the nucleus magnocellularis (NM). The
NM then projects tonotopically to an isofrequency column in the
ipsilateral (same side) nucleus laminaris (NL), entering on the dorsal
side, and to an isofrequency column in the contralateral (opposite
side) NL, entering on the ventral side. Right: Isofrequency column of
the left nucleus laminaris. A sound wave with period T from a sound
source closer to the left ear arrives at an isofrequency column of the
left NL at a time delay of τℓ from the left (green) and at τr from the
right (purple), with τl < τr . Within the NL, there are different delays
due to the depth the signal has traveled into the nucleus, which vary
linearly with depth but at a different rate for the signals coming from
each side of the brain, shown by changes by a factor of δl on the left
and δr on the right. A neuron in the column fires whenever it receives
stimulation that is in phase from both sides within some error bound,
|(τℓ+aδℓ)−(τr+bδr )| mod T < ε. For example, the second neuron
in the column fires if |(τℓ+9δℓ)−(τr+2δr )| mod T < ε. Due to the
difference in delay, a peak stimulating the left ear must travel deeper
into the column than the same peak stimulating the right ear for the
two peaks to coincide (red). When these peaks coincide, other peaks
will also coincide; an earlier point in the sound wave (blue) on the
right coincides with a later point in the sound wave (yellow) on the left.

2D. Biological motivation: sound localization in the barn owl. From the com-
parison to cyclic codes, we see that the study of periodic codes is interesting
because they share properties with some cyclic codes, but these codes are also
interesting biologically because they give an abstraction of the neural firing in the
barn owl’s auditory system. Barn owls use two cues to localize sounds in space,
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interaural intensity differences to determine the elevation of the sound source and
interaural time differences to determine its azimuth. Here, we give an overview of
the interaural time difference pathway (Figure 3, left) and show how this pathway
results in periodic firing in one of the nuclei (Figure 3, right).

As shown in Figure 3, left, the interaural time difference pathway begins in the
nucleus magnocellularis (NM), which responds in a phase-locked fashion to the
incoming sound waves. The NM projects onto the nucleus laminaris (NL), the first
place of binaural convergence in the time difference pathway (signals from the left
in green, signals from the right in purple). As a result of the tonotopic projections
from the NM, neurons in the NL are arranged tonotopically in isofrequency laminae,
meaning neurons within a column fire only in response to a certain sound frequency.
It is within each of these isofrequency columns that we see periodic codes arise.

Figure 3, right, illustrates an isofrequency column of the NL. The ipsilateral
signal, the signal coming from NM of the same side, enters through the dorsal
surface and the contralateral signal, the signal coming from the NM of the opposite
side, enters through the ventral surface of the NL. A neuron in this column acts as
a coincidence detector, firing when it receives simultaneous stimulation from both
sides, analogous to the model of delay lines proposed by Jeffress for the mammalian
medial superior olive. To show periodic firing in the column, we first compute the
delay to each neuron in the signals from each side of the brain.

A sound source on the horizon travels a different distance to reach each ear and
this signal must be transmitted through the auditory pathway on each side of the
brain before reaching a column of the NL, giving us different time delays from
each side, τℓ and τr , before the signal reaches the NL. Once these signals enter
the NL, experiments show that the conduction delay varies linearly with depth; the
ipsilateral side changes at approximately 0.46 degrees per micrometer (δl), and the
contralateral side changes at approximately 0.68 degrees per micrometer (δr ). Thus,
for a given neuron, the total delay in the signal coming from the left side is τℓ+aδℓ,
and the total delay in the signal coming from the right side is τr + bδr for integers
a and b denoting how many neurons into the column the neuron is from the dorsal
and ventral surfaces respectively. A neuron receives coincident signals and fires
whenever |(τℓ+ aδℓ)− (τr + bδr )|< ε for some error bound ε.

Notice that because a sound wave of a given frequency is periodic with period T,
the signals will also be coincident for |(τℓ + aδℓ)− (τr + bδr )| mod T < ε, and
so neurons will also fire in response to time differences that are integer multiples
of the period away from the true time difference [Carr and Konishi 1988]. Also
observe that the time difference in the signals to each neuron in a column changes at
a constant rate, δℓ+ δr per neuron, which implies that a neuron in the column fires
every T/(δl + δr ) neurons. This gives rise to periodicity in the column. Behavioral
experiments show that when localizing pure tones, owls may make errors in sound
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localization by responding to phantom targets, responding to the location of a
sound at one of the multiples of the period rather than the location of the true time
difference, showing the ambiguity of time difference as a sound localization cue
due to the periodic nature of sound waves [Konishi et al. 1988].

Thus, we have seen that periodic codes arise biologically, so we now ask what
behavioral implications such a code has. The periodic code in the owl’s nucleus
laminaris is part of the system that the owl uses to determine the position of a
sound source on the horizon. It is natural to ask how this code relates to a more
highly studied position code, the place code in the place cells of the mammalian
hippocampus. Each of these place cells fires over a convex set corresponding to the
animal’s position in the environment. We consider whether the cells in the owl’s
nucleus laminaris can be associated to convex subsets of angles on the horizon,
addressed formally in the next section.

3. Convex closures of periodic codes

Inspired by the periodic structure of the neural code in the nucleus laminaris of the
barn owl, we explore the convexity of periodic codes, beginning by formally defining
a convex code and introducing the concept of a convex closure. By considering the
biological relevance of these concepts, we demonstrate that convexity is important
to the owl’s sound localization ability. We then present our main result, Theorem 3.3,
and conclude by proving it.

3A. Convex codes and the convex closure. Here we review the concept of convex
codes and some basic results [Curto et al. 2017; 2019a] before introducing a new
concept, the convex closure.

Given an open cover U of a topological space X , where U is the collection of
open sets {U1, . . . , Un} such that Ui ⊂ X , we can define a code of the cover C(U),

C(U) :=

{
σ ⊆ [n]

∣∣∣∣ ⋂
i∈σ

Ui \
⋃

j∈[n]\σ

Uj ̸=∅
}
.

In C(U), each Ui is called the receptive field of neuron i . We say that a code is
convex if it can be realized as C(U), where each of the Ui is an open convex set.
As an example, see Figure 4. Note that not every code is convex because there are
geometric and topological constraints imposed by convexity [Curto et al. 2017].

An important property that prevents a code from having a convex realization is
based on the links of the simplicial complex of the code. The link of a face σ in a
simplicial complex 1, denoted by Lkσ (1), is

Lkσ (1)= {ω ∈1 | σ ∩ω =∅ and σ ∪ω ∈1}.
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U1 U2
U3

000

100

110

111 011
010

Figure 4. A code of a cover, C(U). This arrangement of
receptive fields U = {U1, U2, U3} corresponds to C(U) =

{100, 110, 111, 010, 011, 000}. Neurons which cofire correspond
to a region of intersection of their corresponding receptive fields.
Observe that C(U) is a convex code since each Ui is a convex set.

To every 1 we associate a unique minimal code consisting of all σ having noncon-
tractible links:

Cmin(1)= {σ ∈1 | Lkσ (1) is noncontractible}.

An example of these concepts for a simplicial complex 1 is shown in Figure 5,
where we see Lk{1}(1) is noncontractible. As a result, 1000 ∈Cmin(1). In contrast,
Lk{2}(1)= {∅, {1}, {3}, {1, 3}}, which is contractible, so 0100 /∈ Cmin(1).

If τ is a facet of 1, then Lkτ (1)=∅, which is noncontractible. It follows that all
facets of 1 are automatically contained in Cmin(1). In fact, these facets correspond
to the maximal codewords of any code with simplicial complex 1 (see [Curto
et al. 2017] for more details). Note that in case of periodic codes, Ck,m(n), every
codeword is maximal and corresponds to a facet of 1 =1(Ck,m(n)). Therefore,
for periodic codes, we always have Ck,m(n)⊆ Cmin(1).

We call the elements of Cmin(1) mandatory codewords because they must all
be included in any convex code C with simplicial complex 1. This follows from
[Curto et al. 2017, Theorem 1.3], with the relevant portion summarized in the
following lemma.

1

2 3

4

Figure 5. A link in a simplicial complex, Lk{1}(1). The simplicial
complex 1 is shown in black and gray. The link of vertex 1,
Lk{1}(1)= {∅, {2}, {3}, {4}, {2, 3}} is highlighted in red, and we
see it is disconnected and hence noncontractible.
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Lemma 3.1. Let C be a code with simplicial complex 1. If C ̸⊇ Cmin(1), then C
is not a convex code.

A counterexample given in [Lienkaemper et al. 2017] illustrates that the converse
is not true; a code may contain all the mandatory codewords but may still not have
a convex realization. To address this, we introduce the concept of a convex closure.

Definition 3.2. A convex closure C of C is a convex code of smallest size such that
C ⊆ C and 1(C)=1(C).

We note that the convex closure is a closure operator on the power set P([n]).1

From Lemma 3.1, it is clear that Cmin(1(C)) ⊆ C, but there are cases where C
must contain additional codewords [Lienkaemper et al. 2017].

3B. Convexity and sound localization. As we will see in the next section, periodic
codes are not generally convex, except in degenerate cases. However, because of
the various advantages of convex codes in associating firing patterns with a specific
region of the stimulus space, we are interested in how we may modify periodic
codes to attain convexity.

Convexity is especially relevant to the periodic codes in the nucleus laminaris
(NL) of the owl as the function of this brain structure is to locate sounds on the
horizon, which is equivalent to determining the convex set of angles from which
the sound originated. When receiving a pure tone, the owl makes predictable errors
in its judgment of the sound’s location. The phantom targets to which the owl
responds are not random but correspond to the location of a sound source where
the time difference reaching the ears is the true time difference plus some multiple
of the period of the sound wave (see Figure 3, right). This suggests that the owl is
able to localize a sound to a choice of several disconnected sets of angles, rather
than a single convex set. This behavior corresponds to the fact that the neural code
in the NL does not have a convex realization as we will show in Theorem 3.3.

However, such behavioral errors are rare and are restricted to the case of single-
frequency tones. When responding to wide bandwidth sounds, the owl’s average
error in sound localization is one third of its average error in responding to a single-
frequency tone [Knudsen and Konishi 1979]. Higher in the brain stem, biologists
have observed space-mapped cells in the external nucleus of the inferior colliculus,
which receives inputs from multiple frequency columns. This suggests that the
biological system somehow forms a convex code from the nonconvex periodic
codes in the NL, a biological convex closure, so that the owl is able to locate wide
bandwidth sounds within an average of 2 degrees [Knudsen et al. 1979]. Such a
convex code may arise by combining the code in multiple isofrequency columns of

1A closure operator, Cl : P(S)→ P(S), maps the power set of S to itself and for X, Y ⊆ S satisfies
(i) X ⊆ Cl(X), (ii) if X ⊆ Y, then Cl(X)⊆ Cl(Y ), and (iii) Cl(Cl(X))= Cl(X).
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the NL or through stochasticity in neural firing. We explore these possibilities in
the combinatorial neural code framework, answering the following questions.

Question 1. Which codes are a convex closure of a periodic code?

We answer this question in Theorem 3.3, showing that the convex closure is
unique. Given this convex closure, we then analyze how this convex closure could
arise, asking the following question.

Question 2. How does stochastic noise in the firing patterns of a k-m periodic code
alter the convexity of the code?

We explore this question in Section 4.

3C. The convex closure of a periodic code. Our main result in this section is
Theorem 3.3, which gives the convex closure of any k-m periodic code for k ≤ m.
We restrict our analysis to the case where k≤m, requiring a certain degree of sparsity
in the code. Such sparse codes better reflect the codes which arise biologically and
decrease the number of nontrivial intersections among neurons.

Theorem 3.3. Let C =Ck,m(n) be a k-m periodic code on n neurons with simplicial
complex 1. For k ≤ m, the convex closure of C is precisely C = Cmin(1), and is
thus unique. Moreover,

(1) C = Cmin(1)= C if k = 0 or k = 1, and

(2) C = Cmin(1)= Ck,m(n)∪Ck−1,m+1(n) if 1 < k ≤ m.

As an example, consider C2,3(5), which contains the codewords 11000 and
01100. The codeword 11000 implies that U1 ∩U2 ̸=∅. Similarly, the codeword
01100 implies that U2 ∩U3 ̸=∅. There are no codewords for which neuron 1 and
neuron 3 cofire, so U1 ∩U3 =∅. However, the codeword 01000 is not in the code,
so U2 is entirely contained in U1 ∪U3. Since U1 and U3 are disjoint, this can only
be true if U2 is disconnected, and hence not convex. As illustrated in Figure 6, the
code C = C2,3(5)∪C1,4(5) has a convex realization and 1(C)=1(C).

This result is particularly interesting because it gives an example of a class of
codes where C =Cmin(1(C)). In general, we do not always have C ⊂Cmin(1(C)),
but we do in the case of periodic codes because every codeword corresponds to a
facet of the simplicial complex. What we also see in these codes is that convexity
is fully determined by containing Cmin(1), which is not always true [Lienkaemper
et al. 2017]. This raises the question of whether there are special properties of
1(Ck,m(n)) which can be used to detect more generally when Cmin(1) is convex
for some 1.

To prove Theorem 3.3, we need the following two propositions:

Proposition 3.4. Let 1=1(Ck,m(n)) and 1 < k ≤ m. Then

Ck,m(n)∪Ck−1,m+1(n)⊆ Cmin(1).
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1
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3

45

1

2

3

45

Figure 6. Convex closure of C2,3(5). Left: The convex closure
of C2,3(5) is C = C2,3(5) ∪ C1,4(5) (Theorem 3.3), which has
a convex realization as shown here. The original code, C2,3(5)

(black dots) has a convex realization with the union of C1,4(5) (gray
diamonds). Right: The convex closure preserves the simplicial
complex, 1(C)=1(C2,3(5)), shown here.

Proposition 3.5. The code Ck,m(n)∪Ck−1,m+1(n) is convex for 1 < k ≤ m.

Given these two propositions, which we will prove in the next subsection, we
can now prove Theorem 3.3.

Proof of Theorem 3.3. Let C = Ck,m(n) for k ≤ m and 1=1(C). By definition,
C ⊇ C, 1(C)=1, and C is convex. By Lemma 3.1, we also have C ⊇ Cmin(1).
Recall that since every codeword in C corresponds to a facet of 1, we also have
C ⊆ Cmin(1) and thus

C ⊆ Cmin(1)⊆ C .

To show that C = Cmin(1), it thus suffices to show that Cmin(1) is convex.
In the cases k = 0 and k = 1, we can see directly that C is convex, and thus

C = Cmin(1)= C. For k = 0, C consists of only the all-zeros codeword, 00 · · · 0,
and is thus trivially convex. For k = 1, all codewords in C are disjoint and, since
they all correspond to facets of 1, we see that all facets of 1 are disjoint. It then
follows from [Curto et al. 2017, Proposition 2.6] that C is convex.

For the remaining cases, 1 < k ≤m, we have Ck,m(n)∪Ck−1,m+1(n)⊆Cmin(1)

(Proposition 3.4), and thus

C ⊆ Ck,m(n)∪Ck−1,m+1(n)⊆ Cmin(1)⊆ C .

We also have that Ck,m(n)∪Ck−1,m+1(n) is convex (Proposition 3.5), which imme-
diately implies C = Cmin(1)= Ck,m(n)∪Ck−1,m+1(n), as desired. □

Biological relevance. Theorem 3.3 implies periodic codes are not convex except in
the cases where k = 0 and k = 1, corresponding respectively to a state of constant
inactivity or perfect precision. Both extremes are unlikely given the inherent
stochasticity in this system (see Section 4 for more details). The second part of the
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theorem, for k > 1, can provide insight into the behavioral errors made by the owl in
locating a single-frequency tone: because the neural code for a single isofrequency
column of the nucleus laminaris (NL) is not convex, the owl cannot determine a
unique open region in space from which the sound must have originated.

Yet, the owl does not always make these behavioral errors, suggesting that the
biology of the system provides a way for the owl to disambiguate the possible
locations of the sound source, thus yielding a convex neural code. Theorem 3.3
shows that a convex closure of a periodic code is formed from the union of two
periodic codes. In particular, these two codes differ by whether a single neuron
is firing in each firing band; the close relationship between these codes suggests
stochasticity in the system could result in the convex closure, which we address in
greater depth in Section 4.

In addition to the possible stochastic relationship between the two codes, the two
periodic codes may also be related by the connections among nuclei in the barn owl’s
brain stem. The NL projects to the central nucleus of the inferior colliculus (IC),
which sends inputs from multiple isofrequency laminae to the external nucleus of
the IC [Wagner et al. 1987]. Recall that each isofrequency column i of the NL with
frequency 1/Ti fires every Ti/(δl+δr ) neurons (Figure 3, right), which corresponds
to a different m value in the periodic code of each column. Thus, receiving input
from multiple columns is analogous to receiving input from different periodic codes,
as is needed for the convex closure of a single column; in fact, it has been observed
that the first space-mapped cells exist in the external nucleus of the IC, where the
signals for multiple frequencies first converge [Wagner et al. 1987].

3D. Proofs of Propositions 3.4 and 3.5.

Proof of Proposition 3.4. As has already been noted, since every codeword in
Ck,m(n) corresponds to a facet, Ck,m(n) ⊆ Cmin(1). To prove Proposition 3.4,
we will show that for any τ ∈ Ck−1,m+1(n), the link Lkτ (1) is noncontractible,
and so τ ∈ Cmin(1). We first consider the special case of k-m periodic codes on
k +m neurons (Lemma 3.6) and then extend this result to a code on n neurons
using Proposition 3.8.

We introduce the notation σi, j (n) for i, j ∈ [n] to be the face of a simplicial
complex on a set of consecutive vertices, where we consider the n-th and first vertex
to be adjacent. More formally, we define

σi, j (n)=

{
{ℓ | i ≤ ℓ≤ j} if i ≤ j,
{ℓ | i ≤ ℓ≤ n} ∪ {ℓ | 1≤ ℓ≤ j} if i > j.

Note that a general simplicial complex may not contain such a face, but we are
interested specifically in 1(Ck,m(n)), which contains σi, j (n) whenever |σi, j (n)|≤ k.
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In the case n = k+m, the collection of all σi, j (k+m) with |σi, j (k+m)| = x for
x ≤ k corresponds to Cx,k+m−x(k+m).

Lemma 3.6. Let 1 =1(Ck,m(k +m)) and m ̸= 0. If |σi, j (k +m)| = k − 1, then
Lkσi, j (k+m)(1) is noncontractible.

Proof. Let σ = σi, j (k+m), where j = (i+k−2) mod (k+m). We have Lkσ (1)=

{h, ℓ}, where h= i−1 mod (k+m) and ℓ= i+k−1 mod (k+m). These vertices
are distinct since they are distance k apart and m ̸= 0, so the set is disconnected
and noncontractible. □

This lemma allows us to show that Ck,m(n) restricted to the first k+m vertices
has noncontractible link for the faces corresponding to Ck−1,m+1(k+m). We want
to show that every τ corresponding to a codeword Ck−1,m+1(n) has noncontractible
link in 1(Ck,m(n)). To do so, we use the following lemma, which requires the
notation for the restricted simplicial complex,

1|σ∪τ = {s ∈1 | s ⊆ σ ∪ τ }.

Lemma 3.7 [Curto et al. 2017, Corollary 4.3]. Suppose v /∈ σ and σ ∩ τ =∅. If
Lkσ (1|σ∪τ ) is noncontractible, then Lkσ (1|σ∪τ∪v), Lkσ∪v(1|σ∪τ∪v), or both are
noncontractible.

One way to demonstrate contractibility is to show that a simplicial complex is
a cone. We will use the fact that a simplicial complex is a cone if and only if the
intersection of all the facets of the simplicial complex is nontrivial in the proof of
the following proposition.

Proposition 3.8. Let 1 = 1(Ck,m(n)). Let τ = {vi | 1 ≤ i ≤ k +m}, σ ⊂ τ , and
j > k+m. Suppose Lkσ (1|τ ) is noncontractible:

(1) If j ≡ i mod (k+m) for some i such that vi ∈ σ , then Lkσ∪vj (1|τ∪vj ) is
noncontractible.

(2) Otherwise, Lkσ (1|τ∪vj ) is noncontractible.

Proof. (1) Assume j ≡ i mod (k+m) for some i such that vi ∈ σ . To show
that Lkσ∪vj (1|τ∪vj ) is noncontractible, it suffices to show that Lkσ (1|τ∪vj ) is
contractible (Lemma 3.7). By Proposition 2.8, for any ω ⊂ τ , if vi ∪ω ∈1, then
vi ∪ vj ∪ ω ∈ 1. Thus, every facet of Lkσ (1|τ∪vj ) contains vj . It follows that
Lkσ (1|τ∪vj ) is a cone and hence contractible.

(2) Assume j ̸≡ i mod (k+m) for any i such that vi ∈ σ . Then j ≡ ℓ mod (k+m)

for some ℓ such that vℓ ∈ τ \ σ . We have two cases.

Case 1: Assume that vℓ /∈ Lkσ (1|τ ). This implies vℓ ∪ σ /∈ 1|τ , and so vℓ ∪ σ /∈

1|τ∪vj ; by Proposition 2.8, vj ∪ σ /∈ 1|τ∪vj . This implies vj /∈ Lkσ (1|τ∪vj ), and
we have Lkσ (1|τ∪vj )= Lkσ (1|τ ), which is noncontractible.
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Case 2: Assume vℓ∈Lkσ (1|τ ). Let 3 be the closure of the set {ρ∈Lkσ (1|τ)|vℓ⊆ρ},
that is, the smallest simplicial complex containing the faces of Lkσ (1|τ ) that
contain vℓ. By Proposition 2.8, for any ω ∈ 1|τ∪vj , if vℓ ∪ ω ∈ 1|τ∪vj then
vj ∪ vℓ ∪ ω ∈ 1|τ∪vj . This implies that Lkσ (1|τ∪vj ) = Lkσ (1|τ ) ∪ conevj (3),
where conevj (3) = {γ ∪ vj | γ ∈ 3}. Observe that 3 itself is a cone since all
the facets contain vℓ, and hence we have coned off a contractible subcomplex of
Lkσ (1|τ ). This implies that the homotopy type of Lkσ (1|τ∪vj ) is the same as the
homotopy type of Lkσ (1|τ ), which is noncontractible. □

We are now able to extend the results of Lemma 3.6 to a code on n neurons,
completing the proof of Proposition 3.4.

Proof of Proposition 3.4. By Lemma 3.6, the link of every σi, j (k + m) with
|σi, j (k + m)| = k − 1 is noncontractible in 1(Ck,m(k + m)). Observe that the
codewords corresponding to σi, j (k+m) of dimension k− 1 are the codewords of
Ck−1,m+1(n) restricted to the first k+m neurons. Each codeword in Ck−1,m+1(n)

is the set of neurons which are equivalent modulo k + m to some σi, j (k + m).
Let ω be a face corresponding to a codeword in Ck−1,m+1(n) with corresponding
σ ′ = σi, j (k+m). By Proposition 3.8, since Lkσ ′(1(Ck,m(n))) is noncontractible,
Lkω(1(Ck,m(n))) is noncontractible. Thus, the link of the face corresponding to
every codeword in Ck−1,m+1(n) is noncontractible, so Ck−1,m+1(n)⊂ Cmin(1). □

Proof of Proposition 3.5. To prove Proposition 3.5, we need to show Ck,m(n)∪

Ck−1,m+1(n) has a convex realization. We first explicitly construct a convex real-
ization for n = k+m (Proposition 3.12) and then show that this realization can be
extended to a code on n neurons (Lemma 3.13).

We first begin with a construction which will help us construct a convex realization
of Ck,m(k+m)∪Ck−1,m+1(k+m).

Definition 3.9. A circular cover, 0, is a collection of open arcs {γi }with γi=γ (a,b)

for−2π ≤ a < b≤ 2π and b−a≤ 2π , where γ (a, b) := {(cos θ, sin θ) | a <θ < b}.

Note that this cover is circular in the sense that it is composed of circular arcs,
but the definition does not require that the union of the arcs cover S1. Analogously
to the way we defined the code of a cover, we can define the code of a circular
cover.

Definition 3.10. The code of a circular cover 0 = {γi } is the neural code

C(0) :=

{
σ ⊆ [n]

∣∣∣∣ ⋂
i∈σ

γi \
⋃

j∈[n]\σ

γj ̸=∅
}
.

An example of the code of a circular cover is shown in Figure 7. Observe that
any point p written in polar coordinates as (r, θ) with r = 1 corresponds to a
codeword c1 · · · cn ∈ C(0), where ci = 1 if (cos θ, sin θ) ∈ γi and ci = 0 otherwise.
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Figure 7. Circular and convex realizations of C =C2,4(6)∪C1,5(6).
Left: A circular realization of C. Each colored open arc γi is an
element of 0 and can be identified with an open sector Ui of the same
color in C(U). Right: A convex realization of C, derived from the
circular realization.

To prove when such circular realizations are convex, we introduce the support of a
codeword c, denoted by supp(c), as the set {i | ci = 1}.

Proposition 3.11. If length(γi )≤ π for all γi ∈ 0, then C(0) has a convex realiza-
tion.

Proof. Let 0 be a circular cover. Define an open cover U = {Ui } in R2 by the
following method. For each open arc γi = γ (ai , bi ) ∈ 0, let Ui be the open sector
{(r cos θ, r sin θ) | 0 < r < 1 and ai < θ < bi }. Since bi − ai = length(γi ) ≤ π ,
each Ui is convex. Observe that the origin is not contained in any Ui . We want to
show that C(U)=C(0) and thus C(0) has a convex realization. Suppose c ∈C(U).
There exists some point p ∈

⋂
i∈supp(c) Ui , which can be written as (r cos θ, r sin θ).

Map p to the corresponding point pθ = (cos θ, sin θ) on the unit circle. We have
pθ ∈

⋂
i∈supp(c) γi , and thus c ∈ C(0) also. This implies C(U)⊆ C(0). To see that

C(0)⊆C(U), let c∈C(0). There exists some point pθ ∈
⋂

i∈supp(c) γi . Write pθ as
(cos θ, sin θ). Map pθ to the point p=

(1
2 cos θ, 1

2 sin θ
)
. We have p∈

⋂
i∈supp(c) Ui ,

and thus c ∈ C(U). This gives C(0)⊆ C(U), and so C(0)= C(U ). □

Figure 7 shows an example of C(U )= C(0) and the correspondence between
the open arcs and open sectors. We can now show that the code Ck,m(k +m)∪

Ck−1,m+1(k + m) is convex by showing that it arises from a circular cover and
applying Proposition 3.11.

Proposition 3.12. The code Ck,m(k+m)∪Ck−1,m+1(k+m) has a convex realization
for k ≤ m.
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Proof. We define an open arc γi for each neuron i in the following manner. If i ≤m,
let

γi = γ

(
i

2π

k+m
, (i + k)

2π

k+m

)
.

If i > m, let

γi = γ

(
i

2π

k+m
− 2π, (i + k)

2π

k+m
− 2π

)
.

This collection of receptive fields gives a circular cover, 0, with

length(γi )= k
2π

k+m
≤ π for all i.

By Proposition 3.11, C(0) is convex. We need only show that C(0)= Ck,m(k+
m) ∪ Ck−1,m+1(k + m). At every angle which is not a multiple of 2π/(k + m),
exactly k of the γi intersect, corresponding to codewords in Ck,m(k+m). At angles
that are a multiple of 2π/(k+m), exactly k− 1 of the γi intersect, corresponding
to codewords in Ck−1,m+1(k+m). Thus, C(0)= Ck,m(n)∪Ck−1,m+1(k+m). □

We want to extend this convex realization on k+m neurons to a code on n neurons.

Lemma 3.13. Let C be a code where for every codeword c1 · · · cn ∈ C, if i ≡
j mod z, then ci = cj . The code C is convex if and only if C restricted to any
z consecutive neurons is convex.

Proof. (⇒) Suppose C is convex. There exists a convex, open cover U = {Ui }i∈[n]

such that C(U)= C. Let C |Z be C restricted to a set Z consisting of z consecutive
neurons. Then U ′ = {Ui }i∈Z is an open cover with C(U)= C |Z , so C |Z is convex.

(⇐) Suppose C |Z is convex on any set Z of z consecutive neurons. Without loss
of generality, there exists a convex, open cover U = {Ui }1≤i≤z . Define a convex,
open cover U ′ = {Uj | Uj = Ui if i ≡ j mod z}. By assumption, if i ≡ j mod z,
then ci = cj in every codeword in C, so C(U ′) = C. Therefore, C has a convex
realization. □

Lemma 3.13 implies that the convexity of a k-m periodic code depends only on
whether the code can be realized convexly on the first k+m neurons. We can now
complete the proof of Proposition 3.5.

Proof of Proposition 3.5. The code Ck,m(n) ∪ Ck−1,m+1(n) has the property
that ci = cj if i ≡ j mod (k+m) for every codeword. By Lemma 3.13, since
Ck,m(k+m)∪Ck−1,m+1(k+m) has a convex realization for k≤m (Proposition 3.12),
Ck,m(n)∪Ck−1,m+1(n) has a convex realization for k ≤ m. □

Observe that for any k and m, we can construct a circular realization of the code
by defining open arcs in the same construction as above. However, for k > m,
the method of constructing sectors as open sets no longer generates convex sets
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because we do not have length(γi )≤ π . The question of how and whether a convex
realization can be constructed for Ck,m(n)∪Ck−1,m+1(n) and k > m remains open,
as some but not all of these codes do not contain Cmin(1(C)). For example, let
C ′ = C3,2(5)∪C2,3(5) and C ′′ = C4,1(5)∪C3,2(5). We have C ′ ⊇ Cmin(1(C ′)).
On the other hand, C ′′ ̸⊇ Cmin(1(C ′′)), as Lk1,4(1) = {23, 35, 25}, which is
noncontractible.

4. Stochastically convex periodic codes

Here we address Question 2 from Section 3B. In Theorem 3.3, we showed that for
1 < k ≤m, the periodic code Ck,m(n) can be completed to a convex code by adding
the set of codewords in Ck−1,m+1(n). One of the possible ways Ck−1,m+1(n) may
arise biologically is through the stochasticity of the neural response, where neurons
fail to fire. This stochasticity arises naturally from our system, the nucleus laminaris
(NL) of the barn owl, in at least two different ways:

(1) Stochasticity in the stimulus. Recall that in our description of the NL (see
Figure 3, right), we assumed that a neuron fires if the difference in the phase of the
signal coming to the neuron is less than ε. We also showed that within a column,
neurons differ by a time difference of δl + δr . This means that for a given ε, up to
⌈ε/(δl + δr )⌉ neurons could fire. Depending on the incoming time difference, one
fewer neuron than this upper bound could fire. Thus, the stochasticity of the signal
in time could give rise to the additional codewords necessary for the convex closure.

(2) Stochasticity in neural firing. In addition to the stochasticity of the incoming
signal, there is stochasticity in the neural response; a neuron may fail to fire when
it should (false negative), or fire when it should not (false positive), based on the
stimulus.

To attain the convex closure and form the words in Ck−1,m+1(n), we clearly need
some neuron to fail to fire, but adding codewords resulting from other neurons failing
to fire could potentially alter the convexity of the code. Lemma 4.1 guarantees
that if the convex closure has been attained, adding codewords that preserve the
simplicial complex, or equivalently result from neurons failing to fire, maintains
the convexity of the convex closure.

Lemma 4.1 [Cruz et al. 2019, Theorem 1.3]. Let C be a convex code. If 1(C)⊇

C̃ ⊇ C, then C̃ is convex.

Thus, we can attain the convex closure of a periodic code by introducing some
probability that neurons fail to fire; let p be the probability that a neuron fires
correctly so 1− p is the probability that the neuron fails to fire. Given this probability
and the fact that other neurons’ failure to fire does not create nonconvexity, we ask
how likely it is to attain the convex closure via failure-to-fire stochasticity.
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Proposition 4.2. Suppose each codeword in Ck,m(k+m) is sampled N times. The
probability of receiving all of the codewords in Ck−1,m+1(k+m) is

P(k, m, N , p)=
(
1−

(
1− 2

k+m
(1− p)pk−1

)N )k+m
.

Before proving this formula in the following section, we use it to estimate the
number of times N that each codeword needs to be sampled to attain a probability
greater than 0.95 of seeing all the codewords in Ck−1,m+1(k +m), rendering the
resulting code convex. The results are plotted in Figure 8, showing that N grows
supralinearly with k but approximately linearly with m. In exploring the convex
closure, we assumed that k ≤ m to reflect the fact that neural codes are generally
sparse. The relationship between sparsity and convexity has only begun to be
investigated [Jeffs et al. 2019]. By comparing the way N grows in comparison
to k and m, we argue that this sparsity is not only a general property of codes
but is necessary for convexity to arise through stochasticity in this system. By
increasing k, the number of consecutive active neurons, the number of times each
codeword must be sampled increases rapidly. In contrast, a code can be expanded
by increasing m, the number of consecutive silent neurons, without the number of
samples of each codeword growing so rapidly that all the codewords in the convex
closure would likely never all be seen. Thus, sparsity allows the convex closure
to be obtained through failure-to-fire stochasticity. The importance of sparsity to
the ability to achieve the convex closure is further seen in Figure 8, right. Here,
we see that there is an optimal value for 1− p, the rate of failure to fire, which
minimizes the number of times each codeword needs to be sampled to achieve the
convex closure. Intuitively, this optimal 1− p results from the fact that there must
be some failure rate so that single neurons misfire, but if the failure rate is too high,
multiple neurons will misfire at the same time. By finding the minimum of N with
respect to p, we are able to see how this relates to the sparsity of the code.

Corollary 4.3. The optimal failure to fire rate 1− p for which both N is minimized
for a given P and P is maximized for a given N is

1− p = 1
k
.

Observe, that this result is not surprising; the number of neurons which fail to fire
is binomially distributed as Bin(k, 1− p), so for the expected number of neurons
that fail to fire to be exactly 1, we need 1− p = 1/k. This provides an additional
argument for sparsity in our code because as k increases, the probability of failure
to fire decreases, meaning that the biological system must be increasingly precise
in its firing as the number of active neurons increases.

4A. Proof of Proposition 4.2. We assume the probability of a neuron firing cor-
rectly is p, so the probability of a 1 being switched to a 0 is 1− p. Here, we
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Figure 8. Number of samples N of each codeword needed for
P > .95. Left: Effect of k on N. For fixed m and p, as k increases,
the number of times, N , that each codeword needs to be sampled
for the probability that each codeword in the convex closure has
been received grows supralinearly. This suggests the importance
of sparsity in keeping N small. The dotted black lines show our
approximation, which closely tracks the exact solutions (colored
lines). Middle: Effect of m on N. For fixed k and p, as m increases,
N grows approximately linearly. Compared with the rapid growth of
N with k, expanding the code with additional silent neurons does not
dramatically increase the number of times that each codeword must
be sampled for a convex realization. As before, the dotted black
lines are our approximation. Right: Effect of failure-to-fire rate 1− p
on N. For fixed k and m, we see that there is an optimal failure rate
1− p for which N is minimized, 1− p = 1/k (solid dots).

consider only the case where neurons fail to fire; neurons have 0 probability of
misfiring (i.e., firing when they should be silent). In addition, we assume that the
stimulus space has a uniform distribution over all possible stimuli, so all codewords
in Ck,m(n) are equally probable to be the correct codeword, and we assume that the
brain always stores the codewords from Ck,m(n) in memory. Let N be the number
of times that each codeword that the brain stores is sampled.

In Theorem 3.3, we showed that for 1 < k ≤ m, the convex closure is Ck,m(n)∪

Ck−1,m+1(n). We give the probability of this convex closure for n = k +m. We
first consider the probability of seeing one of the needed mandatory codewords.

Lemma 4.4. Let c ∈ Ck−1,m+1(k +m). Assuming that neurons never misfire and
that the stimulus space is uniform such that all codewords in Ck,m(k + m) are
equally probable to be the true sent codeword, the probability that c is received on
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a given trial is
2

k+m
(1− p)pk−1.

Proof. Without loss of generality, let c= 11 · · · 1k−10k · · · 0k+m . Observe that, since
we assume that neurons never misfire, c can only be formed by the failure of one
of the neurons in a codeword in Ck,m(k + m) failing to fire. There are exactly
two codewords in Ck,m(k +m) where the failure of one neuron produces c, the
codewords

c1 = 11 · · · 1k0k+1 · · · 0k+m,

c2 = 11 · · · 1k−10k · · · 0k+m−11k+m .

We have
Pr(c received | c1 or c2 sent)=

Pr(c received)

Pr(c1 or c2 sent)
.

Since we assumed the stimulus space was uniform, each codeword is equally likely
to have been sent, so Pr(c1 or c2 sent) = 2/(k + m). If c1 or c2 was sent and
c was received, then exactly one neuron failed to fire and all the other neurons
fired correctly, so Pr(c received | c1 or c2 sent)= (1− p)pk−1. Therefore, we have
Pr(c received)= 2/(k+m)(1− p)pk−1. □

We now consider the set of codewords in Ck−1,m+1(k+m).

Lemma 4.5. Let q be the probability of seeing a codeword in Ck−1,m+1(k +m)

on a given trial. If each of the codewords in Ck,m(k+m) is sampled N times, the
probability of seeing all the codewords in Ck−1,m+1(k+m) is (1− (1− q)N )k+m.

Proof. Let x be the probability of seeing a codeword at least once. There are k+m
codewords in Ck,m(k+m), so the probability of seeing all k+m codewords at least
once is xk+m. We have

x = 1−Pr(never seeing a codeword in N trials).
We also have

Pr(never seeing a codeword in N trials)= (1− q)N .

Thus, the probability of seeing all the codewords is

xk+m
= (1− (1− q)N )k+m . □

We are able to combine the results of Lemmas 4.4 and 4.5 to give us the probability
of receiving the convex closure,

P(k, m, N , p)=
(
1−

(
1− 2

k+m
(1− p)pk−1

)N )k+m
.

From this formula for the probability, it is natural to ask how many times each
codeword needs to be sampled to achieve some probability that all the codewords
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in the convex closure have been received. Using this formula, we derive the number
of times N which each codeword needs to be sampled in order to achieve some
probability bound P of receiving all the codewords in the convex closure, finding

N = log1−(2/(k+m))(1−p)pk−1 (1−P1/(k+m))=
ln(1−P1/(k+m))

ln
(
1− 2

k+m (1− p)pk−1
) .

To develop better intuition about the dependence of N on k and m, we can
approximate

ln
(
1− 2

k+m
(1− p)pk−1

)
as

−
2

k+m
(1− p)pk−1.

Using this approximation, we find

N ≈
ln(P)+ (k+m) ln(1/(P1/(k+m))− 1)

−2(1− p)pk−1 = f (k)+mg(k) ln
(

1
P1/(k+m)

− 1
)

,

where

f (k)=
lnP + k

−2(1− p)pk−1 , g(k)=
1

−2(1− p)pk−1 .

The plots show that this approximation closely follows the analytic solution. Through
this approximation, we are able to see why we might expect N to depend almost
linearly on m, as seen in the plot in Figure 8.

Recall our expression for P from Proposition 4.2. By optimizing this expression
for fixed k, m, and N , we are able to solve for the p which gives the highest
probability of observing the convex closure (Corollary 4.3). The probability of
observing the convex closure P has a minimum of 0 at p = 1 and a maximum at
p = (k− 1)/k. Similarly, by optimizing N for fixed k, m, and P , we find that N is
minimized at p = (k− 1)/k.

These results are limited to the case where the stochasticity is only for neurons
failing to fire with the assumption that neurons never fire when they should not. The
more challenging question combinatorially is what the probability is that a code
becomes convex when there is some nonzero probability that neurons fire when
they should not because this additional firing changes the simplicial complex and
hence which codewords are mandatory. This combinatorial question remains open
and is further complicated by the fact that for n > k+m, receiving a (k−1)-(m+1)

codeword requires a pattern of repeated errors at each firing band.

4B. Convex completions of Hamming distance d. While less probable, it is also
possible for neurons to fire incorrectly, which would correspond to codewords
of greater weight that no longer preserve the simplicial complex. Observe that
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while multiple errors in firing are possible, the probability of each additional error
decreases. We use Hamming distance as a measure of the degree to which two
codewords differ, counting the number of errors that would be needed for one
codeword to be transmitted as another. Recall that the Hamming distance between
two codewords a and b, denoted by dH (a, b), is given by dH (a, b)= wH (a− b),
where subtraction is performed over F2. Unlike in Theorem 3.3, we no longer require
that the new code preserve 1(C), but instead require that the added codewords
have small Hamming distance from the original codewords.

Definition 4.6. A Hamming-distance-d convex completion of C is a code Ĉ ⊇ C
such that Ĉ is convex, and for all a ∈ Ĉ \C there exists c∈C such that dH (a, c)≤ d .
We say Ĉ is minimal if |Ĉ | is minimal.

From [Curto et al. 2017, Lemma 2.5], we know that any code which contains the
all-ones codeword, 11 · · · 1, is convex. Thus, for any code on n neurons where the
maximal weight codeword has weight w, we have a minimal Hamming-distance-
(n−w) convex completion given by simply adding the all-ones codeword to the
code. In particular, for the case of a k-m periodic code on k+m neurons, we have
a minimal Hamming-distance-m convex completion given by adding the all-ones
codeword. We can also guarantee a Hamming-distance-(k−1) convex completion
by adding all codewords which are subsets of some codeword in Ck,m(k+m), but
this method is rarely minimal.

As d increases, the probability of a codeword of Hamming distance d from
an original codeword being received decreases, so while codewords of Hamming
distance k−1 and m are possible, these convex completions are often less probable.
For this reason, we give special attention to the cases of a Hamming-distance-1
convex completion of a k-m periodic code.

Observe that for k ≤ m, the convex closure of Ck,m(k + m) is a Hamming-
distance-1 convex completion, where the codewords of Ck−1,m+1(k +m) result
from a single neuron in a codeword in Ck,m(k+m) failing to fire (Theorem 3.3). On
the other hand, for k ≤m−2, the code obtained by adding higher-weight codewords
Ck,m(k+m)∪Ck+1,m−1(k+m) is a Hamming-distance-1 convex completion, since
this code is precisely the convex closure of Ck+1,m−1(k+m). Both of these examples
of Hamming-distance-1 convex completions require k+m additional codewords,
so it is natural to ask whether the convex closure is a minimal Hamming-distance-1
convex completion.

Theorem 4.7. For k ≤m, the convex closure of Ck,m(k+m) is a minimal Hamming-
distance-1 convex completion.

Proof. Let Ĉ be a Hamming-distance-1 convex completion. Define A = Ĉ \C, so
proving Ĉ is minimal is equivalent to proving |A| is minimal.
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Let C=Ck,m(k+m) for k≤m and let 1=1(C). For the cases of k=0 and k=1,
C = C (Theorem 3.3), so A is the empty set and must be minimal. Now consider
the case 1 < k ≤ m. We know that the convex closure is the minimal Hamming-
distance-1 convex completion which also preserves the simplicial complex of the
code, where A=Ck−1,m+1(k+m) and |A| = k+m. Thus, in order to show that the
convex closure is minimal, we will prove that there is no smaller A′ of Hamming-
distance-1 codewords such that Cmin(1(C ∪ A′))⊆ C ∪ A′. Define 1̂=1(C ∪ A′)
and A∗ = Cmin(1̂) \C. For C ∪ A′ to be convex, we must have A∗ ⊂ A′.

For any A′ such that 1̂=1, we have A∗ = Ck−1,m+1(k+m). We want to show
that by adding a single Hamming-distance-1 codeword to A′, we can reduce |A∗|
by at most 1. Without loss of generality, consider the face τ ∈ Ck−1,m+1(k +m)

with τ = σ2,k(k+m), using our notation from Section 3B. Recall from the proof
of Lemma 3.6 that Lkτ (1)= {1, (k+ 1)}. To form a convex completion, we must
either have τ ∈ A′ or choose A′ such that Lkτ (1(C ∪ A′)) is contractible. Since
Lkτ (1)⊆ Lkτ (1̂), in order for Lkτ (1̂) to be contractible, we must have that either
the edge {1(k + 1)} is in Lkτ (1̂) or the edges {1 j} and {(k + 1) j} are both in
Lkτ (1̂) for some j > k + 1. The only way we can add the edge {1(k + 1)} to
Lkτ (1̂) by adding a Hamming-distance-1 codeword is if σ1,k+1(k+m) ∈ A′. The
only way we can add the edges {1 j} and {(k + 1) j} using Hamming-distance-1
codewords is if 1 · · · 1k0 · · · 01j 0 · · · 0∈ A′ and 01 · · · 1k+10 · · · 01j 0 · · · 0∈ A′. The
addition of these codewords does not change the link of any of the other codewords
in Ck−1,m+1(k+m), and hence

A∗ = ((Ck−1,m+1(k+m)−{τ })∪Cmin(1̂)) \C.

This gives us |A∗| ≥ |Ck−1,m+1(k+m)| − 1. So for A′ to be a convex completion,
we must have A′ ⊇ σ1,k+1(k+m)∪ A∗, giving us |A′| ≥ 1+ |A∗| ≥ k+m. Thus,
there exists no smaller A′ such that Cmin(1̂)⊆ C ∪ A′. □

5. Algebraic signatures of k-m periodic codes

We defined k-m periodic codes as the codes containing all k-m periodic codewords,
relying on a specific ordering of the vertices. We showed that we could determine
whether another maximal code is permutation equivalent to a periodic code by
comparing the simplicial complexes of the codes (Proposition 2.12). In this section,
we prove Theorem 5.10, which gives an algebraic description of periodic codes and
allows us to check if any code is permutation equivalent to a periodic code.

5A. The neural code as an algebraic ideal. The code may also be viewed from
an algebraic perspective as an ideal. To encode a neural code C as an ideal, we
associate to each neuron an indeterminant xi . The neural ideal is defined by

JC = { f ∈ F2[x1, . . . , xn] | f (c)= 0 for all c ∈ C} \β,
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where F2[x1, . . . , xn] is the ring of polynomials with coefficients in F2, the finite
field with two elements {0, 1}, and β ={xi (1−xi )}

n
i=1 the set of Boolean generators.

The neural ideal gives us information about the relationships among the receptive
fields of the neurons as explained in the following lemma.

Lemma 5.1 [Curto et al. 2013, Lemma 4.2]. Let C be a neural code and U a
collection of open sets (not necessarily convex) such that C = C(U). Then for any
σ, τ ⊂ [n] such that σ ∩ τ =∅∏

i∈σ

xi

∏
j∈τ

(1− x j ) ∈ JC ⇐⇒

⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj .

For example, in Figure 4, we see U3 ⊂U2, so x3(1− x2) ∈ JC . In the previous
lemma, the generators of the neural ideal are given as polynomials of the form
xσ

∏
i∈τ (1− xi ), which we call pseudomonomials when σ ∩ τ =∅.

Viewing the generators of the neural ideal from the perspective of receptive
fields, we are able to observe some special properties in JCk,m(n) that result from
the periodicity property (Lemma 2.4). In particular, since for i ≡ j mod (k+m)

we have xi = x j , we know that xi and x j are interchangeable in the elements of
the ideal of a k-m periodic code. We define a map Ti j between pseudomonomials,
where Ti j ( f ) is f with xi and x j interchanged. For example,

Ti j (xi xℓ(1− x j ))= x j xℓ(1− xi ),

Ti j (xi (1− xℓ))= x j (1− xℓ).

Lemma 5.2. Let C = Ck,m(n) be k-m periodic with n > k+m. For any i, j ∈ [n],
i≡ j mod (k+m) if and only if xi (1−x j )∈ JC . Furthermore, if i≡ j mod (k+m),
then for every f ∈ JC , we also have Ti j ( f ) ∈ JC .

Proof. (⇐) Assume xi (1− x j ) ∈ JC , so Ui ⊂ Uj . Suppose i ̸≡ j mod (k+m),
and i ≡ ĩ mod (k+m) and j ≡ j̃ mod (k+m) for ĩ and j̃ less than k +m. We
can choose a permutation of sk,m such that ĩ = 1 and j̃ ̸= 1, so there exists a
codeword where 1 = i = ĩ ̸= j̃ = j . Thus, Ui ̸⊂ Uj , a contradiction, so we must
have i ≡ j mod (k+m).

(⇒) Assume that i ≡ j mod (k+m). By Lemma 2.4, ci = cj for all codewords in
Ck,m(n). This implies that neuron i and neuron j fire over exactly the same set, so
equivalently Ui ⊂Uj and Uj ⊂Ui . These receptive field relationships correspond
to the generators xi (1− x j ) and x j (1− xi ). Moreover, since Ui and Uj are the same
set, xi and x j are interchangeable in the generators of the canonical form, as occurs
under the operation Ti j . □

From this result, we are able to define an equivalence relation on [n] from the
generators of JC .
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Lemma 5.3. Let C =Ck,m(n) with n ≥ k+m. The relation i ∼ j if xi (1− x j ) ∈ JC

defines an equivalence relation on [n].

Proof. We trivially have xi (1− xi ) ∈ JC , so ∼ is reflexive. By Lemma 5.2, if
xi (1 − x j ) ∈ JC , then i ≡ j mod (k+m), so we also have j ≡ i mod (k+m),
giving us x j (1− xi ) ∈ CF(C) and ∼ is symmetric. Again applying Lemma 5.2, if
xi (1−x j )∈ JC and x j (1−xℓ)∈ JC , then i ≡ j mod (k+m) and j ≡ ℓ mod (k+m),
which implies i ≡ ℓ mod (k+m), so we must have xi (1− xℓ) ∈ JC , giving us the
transitivity of ∼. □

Observe that this equivalence relation is not true for a general receptive field
code. In our example from Figure 4, x3(1− x2) ∈ JC(U) but x2(1− x3) is not.

We also observe that we can find the neural ideal of the k-m periodic code for
m > k from the neural ideal of the k-m periodic code with k ≤ m.

Lemma 5.4. If xσ

∏
i∈τ (1− xi ) ∈ JCk,m(n), then xτ

∏
j∈σ (1− x j ) ∈ JCm,k(n).

Proof. To form the neural ideal, we take the set of functions that evaluate to zero on
all codewords in the code. Given a codeword c ∈ Ck,m(n), there is a corresponding
codeword c′ ∈ Cm,k(n) such that ci ̸= c′i for all i . This implies that any function
that evaluates to 1 on all codewords in Ck,m(n) evaluates to 0 on some codeword in
Cm,k(n). □

Observe that the m-k periodic code can be formed from the k-m periodic code
by flipping every bit in every codeword. Lemma 5.4 shows that combinatorially the
information represented by bits which are 1’s and bits which are 0’s has a certain
equivalence. Yet, this information is not equivalent topologically. For example, for
all x > 1, C1,x(1+ x) is convex but Cx,1(1+ x) is not in general. This implies that
the information represented by 1’s in a code is fundamentally different than that
represented by 0’s.

In order to compare different codes, it is convenient to use a convention to
represent the ideal of a code. In [Curto et al. 2013] an algorithm is developed which
allows the neural ideal to be expressed in canonical form.

Definition 5.5. Let C be a neural code and JC its neural ideal. The canonical form
of the neural ideal is the set of all minimal pseudomonomial elements in JC , where
an element f ∈ JC is minimal if f ̸= gh for any pseudomonomial g ∈ JC with
deg(g) < deg( f ) and some h ∈ F2[x1, . . . , xn].

From this canonical form, a description of the receptive field structure can be
extracted from knowledge only of the code [Curto et al. 2013]. The canonical form
of the code in Figure 4 is given by {x3(1− x2)}, corresponding to the receptive field
relationship U3 ⊂U2.
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5B. The canonical form of k-m periodic codes. One question of algebraic interest
is whether the canonical forms of k-m periodic codes have any significant properties.
In particular, can the canonical form be used to detect whether a code is periodic? In
this section, we first give the canonical form for a periodic code on k+m neurons. We
then prove several lemmas which extend these results from codes on k+m neurons
to codes on n neurons, allowing us to present the canonical form of any k-m periodic
code in Theorem 5.10.

We first introduce the definition of the interval mod n between two indices, which
will be useful in our formulation of the canonical form of a periodic code. Recall
our notation,

σi, j (n)=

{
{ℓ | i ≤ ℓ≤ j} if i ≤ j,
{ℓ | i ≤ ℓ≤ n} ∪ {ℓ | 1≤ ℓ≤ j} if i > j.

Definition 5.6. The interval mod n between indices i and j , denoted by Intn[i, j],
is the set σi, j (n) or σ j,i (n), whichever is smaller. If |σi, j (n)| = |σ j,i (n)|, we choose
Intn[i, j] = σi, j (n) such that i < j by convention.

For example, we have Int5[1, 2] = {1, 2}, and Int5[1, 5] = {1, 5}.
For simplicity, we include the all-zeros codeword when we give the general

structure of the canonical form. The addition of the all-zeros codeword removes
generators of the form

∏
i∈τ (1− xi ) with no changes to any of the other generators.

This observation, combined with our interval notation, allows us to define four
natural classes of pseudomonomial generators of the canonical form of the periodic
code Ck,m(n). We define

A1 = {xi x j | k < |Intk+m[i, j]|}.

The set A1 consists of generators of the form xi x j . A generator xi x j corresponds
to Ui ∩Uj =∅. We know that the receptive fields of two neurons intersect if and
only if they both fire in the same codeword. In Ck,m(k+m), neurons i and j only
cofire if |Intk+m[i, j]| ≤ k, so for Ui ∩Uj =∅, |Intk+m[i, j]|> k. Thus, A1 consists
of generators of the neural ideal. We define

A2 = {xi x j (1− xz) | z ∈ Intk+m[i, j] and k ≥ |Intk+m[i, j]|},

A3 = {xz(1− xi )(1− x j ) | z ∈ Intk+m[i, j] and k ≥ |Intk+m[i, j]|}.

We observe that A2 also consists of generators of the neural ideal. If both
neurons i and j are firing and |Intk+m[i, j]| ≤ k, then any neuron contained in
Intk+m[i, j] must also fire or there would be a band of firing neurons of size less
than k. Analogously, A3 also consists of generators of the neural ideal since if both
neurons i and j are not firing, then any neuron contained in Intk+m[i, j] must also
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not fire or there would be a band of firing neurons of size less than k. We define

A4 = {xi x j xz | z /∈ Intk+m[i, j], j /∈ Intk+m[i, z], i /∈ Intk+m[ j, z],

and k ≥max(|Intk+m[i, j]|, |Intk+m[i, z]|, |Intk+m[ j, z]|)}.

The set A4 also consists of generators of the neural ideal. A generator xi x j xz

corresponds to Ui ∩Uj ∩Uz =∅. For this generator to be minimal, we must have
that the pairwise intersections are nontrivial, so |Intk+m[i, j]| ≤ k, |Intk+m[i, z]| ≤ k,
and |Intk+m[ j, z]| ≤ k, but for the triple intersection to be trivial, we must have that
the third vertex is not contained in these pairwise intervals. Using these sets, we
can construct the canonical form of the k-m periodic code on k+m neurons.

Proposition 5.7. Let k ≤ m. The canonical form of a k-m periodic code on
k+m neurons is given by

CF(Ck,m(k+m)∪ {0})= A1 ∪ A2 ∪ A3 ∪ A4.

Proof. From the discussion above, we have seen that all of the described sets must
be generators of the neural ideal. It remains to show that this set is minimal and
that there are no other generators. It is clear that none of the generators in A2 or A4

are multiples of the generators of A1 since in A1, we have |Intk+m[i, j]|> k and
in A2 and every pair in A4, the interval has size less than or equal to k. Thus the
generators in A1, A2, and A4 are minimal. To see that A3 is minimal, we note that
there can be no generators of the form xi (1− x j ) corresponding to Ui ⊂Uj since
the cyclic nature of the code makes it so that no neuron always fires when another is
firing. We show that this set is complete by showing that it generates no codewords
not in Ck,m(k+m)∪ {0}. The all-zeros codeword clearly satisfies the conditions of
the minimal generators and is included in C, so any other codeword must have a 1
at some bit. Let c1 · · · cn be a binary string which vanishes on all of the generators.
Without loss of generality, let c1= 1. We can choose c2 to be 0 or 1. If we choose it
to be zero, then we must choose cn−k+2 = · · · = cn = 1 to vanish on the generators
in A2 and A3. We also must have that all other bits are 0 to vanish on the generators
in A1. Thus, we generate a k-m periodic codeword. If we choose c2 = 1, then we
can choose c3 to be 0 or 1, and if we choose it to be 0, we introduce analogous
restrictions on the remaining bits in the codewords as when we chose c2 = 0, so
we form another k-m periodic codeword but shifted by one bit. Thus, whenever
we choose cj = 0 for j < k, given that c1 = 1, we have fixed the remaining bits of
the code so that we have a k-m periodic codeword. Thus, we do not generate any
codewords other than those in C. Therefore, the set A1 ∪ A2 ∪ A3 ∪ A4 is complete
and consists of minimal generators of the neural ideal of Ck,m(k+m). □

Given that the convex closure is closely related to the original code by the union
with another periodic code, it is natural to ask if we can also find the canonical form
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of the convex closure. To do this we will use Algorithm 1 of [Petersenn et al. 2018],
which describes a method to update the canonical form of a code, CF(C), when
a new codeword c is added. For f ∈ CF(C), if f (c) = 0, add f to a set L , and
otherwise, add f to a set M. For every g ∈ M and every ci , define h = (xi − ci )g.
If h is not a multiple of an element of L and g is not a multiple of (xi −ci −1), add
h to a set W. The canonical form of the new code is given by CF(C ∪ c)= L ∪W.

We also require defining a subset of the generators in A3 which are not generators
of the neural ideal of the closure,

Ã3 = {xz(1− xi )(1− x j ) | z ∈ Intk+m[i, j] and k = |Intk+m[i, j]|}.

Lemma 5.8. Let C = Ck,m(k +m) for k ≤ m. The canonical form of the convex
closure C ∪ {0} is

CF(C ∪ {0})= CF(C ∪ {0}) \ Ã3.

Proof. We have C ∪ {0} = Ck,m(k+m)∪Ck−1,m+1(k+m)∪ {0}. Algorithm 1 of
[Petersenn et al. 2018] allows us to determine the canonical form of a code that is
modified by adding a single codeword. Let c∈Ck−1,m+1(k+m). Since c vanishes on
every generator in A1, A2, and A4, we have L= A1∪A2∪A4. Since Ck−1,m+1(k+m)

is periodic, we know that c also vanishes on every generator in A3 \ Ã3. It remains
to show that for every f ∈ Ã3, there exists c ∈ Ck−1,m+1(k +m) which does not
vanish on f (c). Note that since |Intk+m[i, j]| = k, we have j = i + k− 1. Take the
codeword σ = σi,i+k−2(k+m). We have f (σ )= 1. So we add xz(1− xi )(1− x j )

to M. We have cℓ = 1 for ℓ ∈ Intn[i, i + k− 2], but xz(1− xi )(1− x j )(1− xℓ) is a
multiple of a generator in A3 \ Ã3 ⊂ L . We have cℓ = 0 for ℓ ̸∈ Intk+m[i, i + k−2].
For ℓ= i + k− 1, xzxℓ(1− xi )(1− x j ) is a multiple of a generator in A2 ⊂ L , and
otherwise we have xzxℓ(1−xi )(1−x j ) is a multiple of a generator in A1⊂ L . Thus,
we have CF(C ∪ {0})= L = (A1 ∪ A2 ∪ A3 ∪ A4) \ Ã3 = CF(C ∪ {0}) \ Ã3. □

Thus, we have the canonical form of a k-m periodic code and its closure on
k+m neurons, and we want to extend this to a k-m periodic code on n neurons. In
particular, Lemma 5.2 gives us the key result that allows us to do so. Observe that
by Lemma 2.4, the convex closure also satisfies that ci = cj for i ≡ j mod (k+m),
so the same lemma allows us to extend the results of Lemma 5.2 to the canonical
form of the convex closure. Lemma 5.2 also allows us to define an equivalence
relation on the generators of the neural ideal of a k-m periodic code.

More significantly, Lemma 5.2 in combination with Proposition 5.7 allows us
to detect if a code of arbitrary length is periodic, as we will show in the following
section. To do so we will introduce a concept of equivalence of pseudomonomials.

Definition 5.9. Let f and g be pseudomonomials, f = xσ

∏
i∈τ (1− xi ) and g =

xσ ′
∏

i∈τ ′(1− xi ). We say f ≡ g mod a if there exist bijections s : σ → σ ′ and
t : τ → τ ′ such that s(i)≡ i mod a and t ( j)≡ j mod a for some integer a.
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Observe that g ≡ g mod (k+m) trivially by taking both s and t as the identity.
We note that the canonical form of the neural ideal fully characterizes the

code [Curto et al. 2013]. If two codes are permutation equivalent, we can sim-
ilarly permute the indeterminants, xi , that appear in the canonical form, so if
one canonical form, CF(C), can be attained from the other, CF(C ′), through a
permutation of the indeterminants, we say that the canonical forms are permutation
equivalent, denoting this equivalence as CF(C)∼=CF(C ′). Combining the results of
Proposition 5.7, Lemma 5.8, and Lemma 5.2 allows us to give the canonical form of
a k-m periodic code on n neurons and that of its convex closure, hence allowing us
to determine if any code is permutation equivalent to a periodic code. We see that
CF(Ck,m(n)∪{0})⊃CF(Ck,m(k+m)∪{0}). The canonical form CF(Ck,m(n)∪{0})
also contains the generators which define the equivalence relation, and as a result
of this equivalence, contains generators equivalent modulo k+m to the generators
of CF(Ck,m(k+m)∪ {0}).

Theorem 5.10. Let Ck,m(n) be a k-m periodic code on n neurons and Ck,m(n) be
its convex closure. Define B = {xi (1− x j ) | i ≡ j mod (k+m) and i ̸= j}. Then

CF(Ck,m(n)∪{0})={ f | f ≡ g mod(k+m) for some g∈CF(Ck,m(k+m)∪{0})}∪B,

CF(Ck,m(n)∪{0})={ f | f ≡ g mod(k+m) for some g∈CF(Ck,m(k+m)∪{0})}∪B.

Moreover, a code C of length n which does not contain the all-zeros codeword is
permutation equivalent to Ck,m(n) if and only if

CF(C ∪ {0})∼= CF(Ck,m(n)∪ {0})

for some permutation of the neurons in C. Similarly, C is permutation equivalent to
the convex closure if and only if

CF(C ∪ {0})∼= CF(Ck,m(n)∪ {0}).

The canonical forms follow immediately from Proposition 5.7, Lemma 5.8, and
Lemma 5.2. From the results in [Curto et al. 2013], we know that CF(C) fully deter-
mines JC, which, in turn, fully determines C. Thus, CF(C∪{0})∼=CF(Ck,m(n)∪{0})
if and only if C and Ck,m(n) are permutation equivalent. Thus, we are able to provide
three simple checks to detect that a code is not periodic.

Lemma 5.11. Let C be a neural code with canonical form CF(C ∪ {0}). If any of
the following conditions hold, C is not periodic:

(1) There exists f ∈ CF(C ∪ {0}), where f =
∏

i∈σ xi
∏

j∈τ (1− x j ) such that
|τ |> 2 or |σ ∪ τ |> 3.

(2) For i ̸= j and xi (1− x j ) ∈ CF(C ∪{0}), there exists g ∈ CF(C ∪{0}) such that
Ti j (g) /∈ CF(C ∪ {0}).
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(3) For i ̸= j and j ̸= ℓ, both xi (1−x j )∈CF(C∪{0}) and x j (1−xℓ)∈CF(C∪{0}),
but xi (1− xℓ) /∈ CF(C ∪ {0}).

Lemma 5.11 follows immediately from Proposition 5.7 and Lemma 5.3. Observe
that this guarantees that if xi (1− x j ) is in the canonical form, x j (1− xi ) is also
in the canonical form, as required by Lemma 5.2, since either pseudomonomial
is obtained from the other by applying Ti j . This lemma provides a simple way to
determine when a code is not periodic. Next, we will show that for arbitrary codes
of length n which satisfy these simple criteria, there is still a method which will
allow us to determine k and m and hence the permutation equivalence of the code
to a periodic code.

5C. Identifying periodic codes algebraically. Our formulation of the canonical
form of a k-m periodic code requires knowledge of k and m. For a given code, it
may not be immediately obvious whether it is periodic as the neurons may have
been permuted as we saw in Figure 2, where

C ′ = {10010000, 01001000, 00100100, 00010010,

00001001, 10000100, 01000010, 00100001},

C̃ = {10100000, 01010000, 00101000, 00010100,

00001010, 00000101, 10000010, 01000001},

which have corresponding canonical forms,

CF(C ′∪{0})
=

{
x1x2, x2x4, x1x5, x4x5, x1x3, x2x3, x3x4, x3x5, x2x6, x4x6, x5x6, x1x7,

x3x7, x5x7, x6x7, x4(1−x1)(1−x7), x1x8, x2x8, x4x8, x6x8, x7x8,

x5(1−x2)(1−x8), x1(1−x4)(1−x6), x6(1−x1)(1−x3),

x2(1−x5)(1−x7), x7(1−x2)(1−x4), x3(1−x6)(1−x8), x8(1−x3)(1−x5)
}

and

CF(C̃∪{0})
=

{
x1x2, x2x3, x1x4, x3x4, x1x5, x2x5, x4x5, x3(1−x1)(1−x5), x1x6,

x2x6, x3x6, x5x6, x4(1−x2)(1−x6), x2x7, x3x7, x4x7, x6x7,

x5(1−x3)(1−x7), x1x8, x3x8, x4x8, x5x8, x7x8, x6(1−x4)(1−x8),

x1(1−x3)(1−x7), x7(1−x1)(1−x5), x2(1−x4)(1−x8), x8(1−x2)(1−x6)
}
.

In this case, it is not immediately obvious even from the canonical form whether
the code is periodic as all of the generators of CF(C ′) and CF(C̃) have the form
xi x j or xi (1− x j )(1− xz), consistent with Lemma 5.11, but only C ′ is periodic.
The information we do gain from the canonical form is that there are no generators
of the form xi (1− x j ), so we know that if the code is periodic, then n = k +m
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(Lemma 5.2), which also allows us to determine k by taking the weight of each
codeword, but the question remains how to determine k and m in a general case.

For a code which satisfies the easy-to-check conditions in Lemma 5.11, we
present an algorithm that allows us to determine k and m, and hence whether an
arbitrary code C of length n is k-m periodic for some permutation of the neurons.

(1) Determine k+m by determining equivalence classes of vertices: In Lemma 5.3,
we showed that the relation i ∼ j if xi (1− x j ) ∈ JC is an equivalence relation, so
we can partition [n] into k+m equivalence classes. If |C | ̸= k+m, then C is not
periodic (Proposition 2.7).

(2) Determine k by forming C |k+m : Let C |k+m be the code formed by restricting C
to k+m vertices, where there is one vertex from each equivalence class. If C |k+m

is not a constant-weight code, then C is not periodic. Otherwise, k = wH (c) for
c ∈ C |k+m .

(3) Check for permutation equivalence given k and m: Given k and m, apply
Theorem 5.10 to determine if C is permutation equivalent to Ck,m(n).

We apply this algorithm to C ′ and C̃ to show that C ′ is periodic and C̃ is not.
In the first step of the algorithm, we find that each neuron is its own equivalence
class for both codes, giving us k+m = 8 and both codes contain eight codewords.
Since each neuron is its own equivalence class, we have that C |k+m is the original
code for both cases in the second step of our algorithm. Each codeword in both
codes has weight 2, giving us k = 2 for both codes. In the third step, we check for
permutation equivalence of the canonical forms of C ′ and C̃ with the canonical
form of C2,6(8). We have

CF(C2,6(8)∪{0})
=

{
x1x3, x1x4, x2x4, x1x5, x2x5, x3x5, x2(1−x1)(1−x3), x4(1−x3)(1−x5),

x1x6, x2x6, x3x6, x4x6, x3(1−x2)(1−x4), x5(1−x4)(1−x6),

x1x7, x2x7, x3x7, x4x7, x5x7, x6(1−x5)(1−x7), x2x8, x3x8,

x4x8, x5x8, x6x8, x7(1−x6)(1−x8), x1(1−x2)(1−x8), x8(1−x1)(1−x7)
}
.

We see by applying the permutation (24)(37)(68) to C ′ that we attain the same
canonical form, so C ′ is permutation equivalent to a periodic code. There is no
such permutation for C̃, so this code is not periodic.

6. Discussion

We showed that periodic codes Ck,m(n) with 1 < k ≤ m do not have a convex real-
ization, potentially explaining the behavioral errors which owls make in localizing
sounds of a single frequency. However, for sounds with greater bandwidth, the owl
is able to locate sounds with high precision, which suggests that there is a convex
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realization of these codes. In particular, we showed that the convex closure of a
single periodic code is its union with another periodic code. Such a code could arise
by combining the code from many isofrequency columns as occurs in the inferior
colliculus, perhaps explaining why the first space-mapped cells exist in this nucleus.
Alternatively, we discussed that this could arise biologically through stochasticity,
suggesting that both stochasticity and sparsity might be advantageous biologically.

Here we have framed our questions in terms of the system of sound localization
in the owl, but we note that there are other systems which may be a natural extension
of periodic codes. For example, the receptive fields of rats’ grid cells are centered
at the vertices of a hexagonal lattice, and so are themselves periodic [Moser et al.
2008]. This two-dimensional system of grid cells raises the question of how to
define periodic codes in higher dimensions, which we leave for further research.
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