
SIAM J. APPLIED DYNAMICAL SYSTEMS © 2022 Society for Industrial and Applied Mathematics
Vol. 21, No. 2, pp. 1597–1630

Sequential Attractors in Combinatorial Threshold-Linear Networks∗

Caitlyn Parmelee† , Juliana Londono Alvarez‡ , Carina Curto‡ , and Katherine Morrison§

Abstract. Sequences of neural activity arise in many brain areas, including cortex, hippocampus, and central
pattern generator circuits that underlie rhythmic behaviors like locomotion. While network archi-
tectures supporting sequence generation vary considerably, a common feature is an abundance of
inhibition. In this work, we focus on architectures that support sequential activity in recurrently con-
nected networks with inhibition-dominated dynamics. Specifically, we study emergent sequences in a
special family of threshold-linear networks, called combinatorial threshold-linear networks (CTLNs),
whose connectivity matrices are defined from directed graphs. Such networks naturally give rise to
an abundance of sequences whose dynamics are tightly connected to the underlying graph. We find
that architectures based on generalizations of cycle graphs produce limit cycle attractors that can be
activated to generate transient or persistent (repeating) sequences. Each architecture type gives rise
to an infinite family of graphs that can be built from arbitrary component subgraphs. Moreover, we
prove a number of graph rules for the corresponding CTLNs in each family. The graph rules allow
us to strongly constrain, and in some cases fully determine, the fixed points of the network in terms
of the fixed points of the component subnetworks. Finally, we also show how the structure of certain
architectures gives insight into the sequential dynamics of the corresponding attractor.

Key words. threshold-linear networks, attractor dynamics, network architectures, neuronal sequences

AMS subject classifications. 92C20, 34A34

DOI. 10.1137/21M1445120

1. Introduction. Sequences of neural activity arise in many brain areas, including cor-
tex [26, 7, 37], hippocampus [33, 31, 24], and central pattern generator circuits that underlie
rhythmic behaviors like locomotion [27, 19]. Moreover, fast sequences during sharp wave
ripple events in hippocampus are believed to be critical for memory processing and cortico-
hippocampal communication [8, 18, 16]. Such sequences are examples of emergent or internally
generated activity, that is, neural activity that is shaped primarily by the structure of a recur-
rent network rather than inherited from a changing external input. A fundamental question is
to understand how a network’s connectivity shapes neural activity, and what types of network
architectures underlie emergent sequences.

Inhibition has long been viewed as a key component of sequence generation in central
pattern generators. It also plays an important role in generating rhythmic and sequential

∗Received by the editors September 8, 2021; accepted for publication (in revised form) by K. Josic February 1,
2022; published electronically June 24, 2022. The third and fourth authors contributed equally to this work.

https://doi.org/10.1137/21M1445120
Funding: The work of the third author was partially supported by NIH R01 NS120581 and NSF DMS-1951165.

The work of the third and fourth authors was partially supported by NIH R01 EB022862. The work of the fourth
author was partially supported by NSF DMS-1951599.

†Keene State College, Keene, NH 03431 USA (caitlyn.parmelee@keene.edu).
‡Pennsylvania State University, University Park, PA 16802 USA (jbl5958@psu.edu, ccurto@psu.edu).
§University of Northern Colorado, Greeley, CO 80639 USA (katherine.morrison@unco.edu).

1597

https://doi.org/10.1137/21M1445120
mailto:caitlyn.parmelee@keene.edu
mailto:jbl5958@psu.edu
mailto:ccurto@psu.edu
mailto:katherine.morrison@unco.edu
mailto:katherine.morrison@unco.edu

1598 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

activity in cortex and hippocampus [37, 27, 6, 20, 17, 25, 2]. Roughly speaking, inhibition
creates competition among neurons, resulting in a tendency for neurons to take turns reaching
peak activity levels and thus to fire in sequence. In particular, inhibition-dominated networks
exhibit emergent sequences even in the absence of an obvious chain-like architecture, such
as a synfire chain [35, 28]. In this work, we analyze a variety of network architectures that
give rise to sequential neural activity in a simple nonlinear model of recurrent networks with
inhibition-dominated dynamics.

Mathematical setup. We study sequential dynamics in a family of threshold-linear networks
(TLNs). The firing rates x1(t), . . . , xn(t) of n recurrently connected neurons evolve in time
according to the standard TLN equations:

dxi
dt

= −xi +

 n∑
j=1

Wijxj + bi

+

, i = 1, . . . , n,(1)

where [·]+ = max{0, ·} is the threshold nonlinearity. A given TLN is specified by the choice
of a connection strength matrix W and a vector of external inputs b ∈ Rn. TLNs have
been widely used in computational neuroscience as a framework for modeling recurrent neural
networks, including associative memory networks [34, 23, 22, 36, 14, 13, 12, 5].

In order to investigate how network architectures support sequential dynamics, we consider
the special family of combinatorial threshold-linear networks (CTLNs). These are inhibition-
dominated TLNs where the matrix W = W (G, ε, δ) is determined by a simple1 directed graph
G, as follows:

Wij =

0 if i = j,

−1 + ε if j → i in G,
−1− δ if j ̸→ i in G.

(2)

Note that j → i indicates the presence of an edge from j to i in the graph G, while j ̸→ i
indicates the absence of such an edge. Additionally, CTLNs typically have a constant external
input bi = θ in order to ensure the dynamics are internally generated and not inherited from a
changing or spatially heterogeneous input. We require the three parameters to satisfy θ > 0,
δ > 0, and 0 < ε < δ

δ+1 ; when these conditions are met, we say that the parameters are

within the legal range.2 Note that the upper bound on ε implies ε < 1, and so the W matrix
is always effectively inhibitory.

One of the most striking features of CTLNs is the strong connection between dynamic
attractors and unstable fixed points [29, 32]. A fixed point x∗ of a TLN is a solution that
satisfies dxi/dt|x=x∗ = 0 for each i ∈ [n]. The support of a fixed point is the subset of
active neurons, suppx = {i | xi > 0}. For a given network, there can be at most one fixed
point per support. Thus, we can label all the fixed points of a network by their support,

σ = suppx∗ ⊆ [n], where [n]
def
= {1, . . . , n}. We denote this collection of supports by

1A graph is simple if it does not have self-loops or multiple edges (in the same direction) between a pair of
nodes.

2The upper bound on ε is motivated by a theorem in [30]. It ensures that subgraphs consisting of a single
directed edge i → j are not allowed to support stable fixed points.

SEQUENTIAL ATTRACTORS IN CTLNs 1599

FP(G) = FP(G, ε, δ)
def
= {σ ⊆ [n] | σ is a fixed point support of W (G, ε, δ)}.

In prior work, a series of graph rules were proven that can be used to determine fixed points
of a CTLN by analyzing the structure of the graph G [11, 10]. These rules are all independent
of the choice of parameters ε, δ, and θ.

Sequences from limit cycles. Limit cycles are dynamic attractors corresponding to periodic
solutions. A sequential limit cycle produces a repeating sequence of neural activations. Limit
cycles thus provide a basic mechanism for generating sequences in the context of attractor
neural networks.

It is easy to see computationally that a CTLN corresponding to a cyclic graph produces
a sequential attractor. Figures 1A–C show limit cycles corresponding to the graph G being
a 3-cycle (panel A), a 4-cycle (panel B), or a 5-cycle (panel C). In each case, the solution
exhibits a sequence of peak activations that matches the order of neurons in the cycle of the
graph. Note that although all connections are effectively inhibitory, the activity appears to
follow the edges in the graph. A rigorous proof for the existence of these limit cycles was
given in [4].

1 2

34

1

34

5 2
1

23

time

fir
in

g
ra

te

sequence 123

0 25 50 75 100
time

0 25 50 75 100

fir
in

g
ra

te

sequence 1234 sequence 12345

time
0 25 50 75

fir
in

g
ra

te

A B C

D
1

34

5 2

6

7

1 12345 pulse 456 pulse 1237 pulse

0 50 100 250200150
time

fir
in

g
ra

te

2

4

6

ne
ur

on
 n

um
be

r 1

3

5

7

Figure 1. Sequential attractors from cycle graphs. (A)–(C) CTLNs corresponding to a 3-cycle, a 4-cycle,
and a 5-cycle each produce a limit cycle where the neurons reach their peak activations in the expected sequence.
Colored curves correspond to solutions xi(t) for matching node i in the graph. (D) Attractors corresponding
to the embedded 3-cycle, 4-cycle, and 5-cycle of the network are transiently activated to produce sequences
matching those of the isolated cycle networks in (A)–(C). For each network in (A)–(D), FP(G) is shown, with
the minimal fixed points bolded. To simplify notation for FP(G), we denote a subset {i1, . . . , ik} by i1 · · · ik.
For example, 12345 denotes the set {1, 2, 3, 4, 5}. Unless otherwise noted (as in section 4), all simulations have
CTLN parameters ε = 0.25, δ = 0.5, and θ = 1.

1600 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

To obtain shorter sequences, these attractors may be transiently activated by an external
drive that is time dependent. Figure 1D shows the solution for a CTLN with a graph on seven
neurons (left). Here we have chosen θ = 0 as a baseline, with step function pulses of θi = 1
for different subsets of neurons. A single simulation is shown, with localized pulses activating
the 5-cycle, the 3-cycle, and finally the 4-cycle. Although these cycles overlap, each pulse
activates a sequence involving only the neurons in the stimulated subnetwork. Depending on
the duration of the pulse, the sequence may play only once or repeat two or more times.

Notice that the minimal fixed points of the network in Figure 1D reflect the subsets of
neurons active in the attractors. In related work, we have seen a close correspondence between
certain minimal fixed points, called core motifs, and the attractors of a network [32]. Thus,
FP(G) is often predictive of limit cycles and other dynamic attractors of a network.

The above mechanism for sequence generation differs from that observed in synfire chains
[1, 3, 21] where neural activity flows through a feedforward network, transiently activating
neurons in sequence. In section 2.3, we provide a generalization of synfire chain structure,
known as directional chains, that allow for some local recurrence while still yielding sequences
from their transient activity. But the primary focus of this work is on architectures that
support sequential attractors, such as limit cycles, with transient sequences emerging from
transient activation of these networks.

Graphs that are cycles were the most obvious candidate to produce sequential attractors.
But not all CTLN attractors are limit cycles, and not all limit cycles generate sequences.
What other architectures can support sequential attractors? This is the main question we
address in this paper. We investigate four architectures that generalize the cyclic structure of
graphs that are cycles. These are cyclic unions, directional cycles, simply-embedded partitions,
and simply-embedded directional cycles. A common feature of all these architectures is that
the neurons of the network are partitioned into components τ1, . . . , τN , organized in a cyclic

manner, whose disjoint union equals the full set of neurons [n]
def
= {1, . . . , n}. The induced

subgraphs G|τi are called component subgraphs. We will prove a series of theorems about these
architectures connecting the fixed points of a graph G to the fixed points of the component
subgraphs G|τi . As shown in [32], there is a striking correspondence between certain unstable
fixed points of a network and its dynamic attractors. Our theorems about the fixed points
thus provide valuable insight into the dynamics associated to these network architectures.

Cyclic unions. The most straightforward generalization of a cycle is the cyclic union, an
architecture first introduced in [11]. Given a set of component subgraphs G|τ1 , . . . , G|τN , on
subsets of nodes τ1, . . . , τN , the cyclic union is constructed by connecting these subgraphs in
a cyclic fashion so that there are edges forward from every node in τi to every node in τi+1

(cyclically identifying τN with τ0), and there are no other edges between components (see
Figure 2A).

The top graphs in Figures 2B–D are examples of cyclic unions with three components.
All the nodes at a given height comprise a τi component, and we see that there are edges
forward from every node in one component to each node in the next one. Next to each graph
is a solution to a corresponding CTLN, which is a global attractor of the network. Note that
the activity traverses the components in cyclic order. Cyclic unions are particularly well-
behaved architectures where the fixed point supports can be fully characterized in terms of

SEQUENTIAL ATTRACTORS IN CTLNs 1601

C1

C2

1

2 3

4

B1

1

2 3

4

sequence 1(23)4

time

fir
in

g
ra

te

0 10 6050403020 70

sequence 1(23)4

time

fir
in

g
ra

te

0 10 6050403020 70

B2

1

2 3

4 5

sequence 1(23)(45)

time

fir
in

g
ra

te

0 10 6050403020

1

2 3

4 5

sequence 1(23)(45)

time

fir
in

g
ra

te

0 10 6050403020

D2

D1 1

42 3

6 5
1

42 3

6 5
fir

in
g

ra
te

time
0 10 6050403020

sequence 1(234)(56)

fir
in

g
ra

te
time

0 10 6050403020

sequence 1(234)(56)

x

A cyclic union

Figure 2. Cyclic unions and related variations. (A) A cyclic union has component subgraphs with subsets
of nodes τ1, . . . , τN , organized in a cyclic manner. While edges within each G|τi can be arbitrary, edges between
components are determined as follows: every node in τi sends an edge to every node τi+1, with τN sending edges
to τ1. (B1), (C1), (D1) Three cyclic unions with firing rate plots showing solutions to a corresponding CTLN.
Above each solution the associated sequence of firing rate peaks is given, with synchronously firing neurons
denoted by parentheses. (B2), (C2), (D2) These graphs are all variations on the cyclic unions above them,
with some edges added or dropped (highlighted in magenta). Solutions of the corresponding CLTNs qualitatively
match the solutions of the corresponding cyclic unions. In each case, the sequence is identical.

those of the components. Specifically, in [11] it was shown that the fixed points of a cyclic
union G are precisely the unions of supports of the component subgraphs, exactly one per
component.

Theorem 1.1 (cyclic unions, Theorem 13 in [11]). Let G be a cyclic union of component

subgraphs G|τ1 , . . . , G|τN . For any σ ⊆ [n], let σi
def
= σ ∩ τi. Then

σ ∈ FP(G) ⇔ σi ∈ FP(G|τi) for all i ∈ [N].

The bottom graphs in Figures 2B–D have very similar dynamics to the ones above them,
but do not have a perfect cyclic union structure (each graph has some added back edges
or dropped forward edges highlighted in magenta). Despite deviations from the cyclic union
architecture, these graphs produce sequential dynamics that similarly traverse the components
in cyclic order. In fact, they are examples of a more general class of architectures: directional
cycles.

1602 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

Directional cycles. In a cyclic union, if we restrict to the subnetwork consisting of a pair
of consecutive components, G|τi∪τi+1 , we find that activity initialized on τi flows forward
and ends up concentrated on τi+1. Thus, there appears to be a directionality to the flow
τi → τi+1. Moreover, the fixed points of G|τi∪τi+1 are all confined to live in τi+1, and so the
concentration of neural activity coincides with the subnetwork supporting the fixed points.
This is a phenomenon we have observed more generally that motivates us to define directional
graphs.

We say that a graph is directional whenever we have FP(G) ⊆ FP(G|τ) for some τ ⊊ [n]. In
this case, we denote the complementary set as ω = [n]\τ and say that G has direction ω → τ .
We additionally require a more technical condition that allows us to prove that certain natural
compositions, like chaining directional graphs together, produce a new directional graph (see
Definition 2.3 for the full definition). In simulations, we have seen that directional graphs
have the desired directionality of neural activity, so that activity initialized on ω will flow
through the network and become concentrated on the nodes of τ .

Note that while we predict that directional graphs have feedforward dynamics, they need
not have a feedforward architecture. In Figure 2, each subgraph consisting of a pair of consec-
utive components is directional. For example, the subgraph G|{1,2,3} in B2 is directional with
direction {1} → {2, 3}, so that activity initialized on node 1 tends to flow forward to nodes 2
and 3, despite the presence of the back edge 2 → 1. Similarly, in C2, the subgraph G|{2,3,4,5}
is directional with direction {2, 3} → {4, 5} despite the back edges 5 → 2 and 5 → 3. The
subgraph G|{2,3,4,5,6} in D2 is also directional with direction {2, 3, 4} → {5, 6}. Note that it is
not necessary to have edges forward from every node in ω to every node in τ .

With this broader notion of directional graph, we obtain our first generalization of cyclic
unions, known as directional cycles. We define a directional cycle as a graph with a partition of
its nodes such that each G|τi∪τi+1 is directional with direction τi → τi+1 (cyclically identifying
τN with τ0). We predict that these graphs will have a cyclic flow to their dynamics, hitting
each τi component in cyclic order. Figures 2B–D (bottom) give examples of directional cycles
and their dynamics, as do Figures 3B,D. While we have not been able to explicitly prove this
property of the dynamics, we can prove that all the fixed point supports have such a cyclic
structure.

Theorem 1.2 (cyclic fixed points of directional cycles). Let G be a directional cycle with
components τ1, . . . , τN . Then for any σ ∈ FP(G), the graph G|σ contains an undirected cycle3

that intersects every τi in cyclic order.

Observe that unlike the case of cyclic unions, in directional cycles we do not have the

property that fixed points σ of the full network restrict to fixed points σi
def
= σ ∩ τi of

the component subnetworks G|τi . For example, in Figure 3B, σ = {1, 3, 5} ∈ FP(G2), but
σ2 = {3} /∈ FP(G2|τ2), since the only fixed point of G2|τ2 is the full support {2, 3, 4}. But
Theorem 1.2 does guarantee that σi ̸= ∅ for all i ∈ [N]. It turns out that there is a key
structural property of cyclic unions that guarantees the fixed points are unions of component
graph fixed points: such networks have what we call a simply-embedded partition.

3An undirected cycle is a sequence of nodes connected by edges that form a cycle within the underlying
undirected graph, in which the direction of edges is simply ignored.

SEQUENTIAL ATTRACTORS IN CTLNs 1603

1

42
3

5

1

42

3

5

1

42
3

5

1

42
3

5

1

42
3

5

1

42
3

5

1

42
3

5

directional cycles

simply-embedded partitions simply-embedded directional cycles

cyclic unionA B

C D

0.7

0 20 806040
time

fir
in

g
ra

te

0.7

0 20 806040
time

fir
in

g
ra

te

0.7

0 20 806040
time

fir
in

g
ra

te

0.7

0 20 806040
time

fir
in

g
ra

te

0.7

0 20 806040
time

fir
in

g
ra

te

0.7

0 20 806040
time

fir
in

g
ra

te

0.7

0 20 806040
time

fir
in

g
ra

te

Figure 3. Example graphs generalizing cyclic union structure. (A) A cyclic union of component subgraphs
G|τ1 , . . . , G|τ3 together with its FP(G) and the global attractor of its corresponding CTLN. (B)–(D) Different
generalizations of the cyclic union structure of the graph in A. Each graph has the same component subgraphs
G|τ1 , . . . , G|τ3 , but different conditions on the edges between these components. For each graph, FP(G) and the
global attractor are shown.

Simply-embedded partitions. The notion of simply added splits was introduced in [11],
where it was shown that fixed points behave particularly nicely in networks that have this
structure. Given a graph G and a partition of its nodes into two components, {ω|τ}, we say
that ω is simply added onto τ if for each k /∈ ω, either k → j for all j ∈ τ or k ̸→ j for
all j ∈ τ . In this case, we say that τ is simply-embedded in G. Here we introduce the more
general notion of a simply-embedded partition. The key idea is that all nodes in a component
τi are simply-embedded and thus treated identically by each node outside that component.

Definition 1.3 (simply-embedded partition). Given a graph G, a partition of its nodes
{τ1| · · · |τN} is called a simply-embedded partition if every τi is simply-embedded in G. In
other words, for each τi and each k /∈ τi, either k → j for all j ∈ τi or k ̸→ j for all j ∈ τi.

For the pair of graphs in Figure 3C, {1 | 2, 3, 4 | 5} is a simply-embedded partition: in each
graph, the nodes 2, 3, and 4 receive identical inputs from node 1 as well as from node 5. For
singleton components, the simply-embedded partition does not impose any constraints. It
turns out that this simply-embedded partition structure is sufficient to guarantee that all the

1604 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

fixed points of G restrict to fixed points of the component subgraphs. This means that the
fixed points of the components provide a kind of “menu” from which the fixed points of G are
made: each fixed point of the full network has support that is the union of component fixed
point supports.

Theorem 1.4 (FP(G) menu for simply-embedded partitions). Let G have a simply-embedded

partition {τ1| · · · |τN}. For any σ ⊆ [n], let σi
def
= σ ∩ τi. Then

σ ∈ FP(G) ⇒ σi ∈ FP(G|τi) ∪ {∅} for all i ∈ [N].

In other words, every fixed point support of G is a union of component fixed point supports
σi, at most one per component.

Simply-embedded directional cycles. While the simply-embedded partition generalizes one
key property of FP(G) from cyclic unions, it does not guarantee that every fixed point in-
tersects every component, nor does it guarantee the cyclic flow of the dynamics through the
components, as we see in Figure 3C. But combining Theorems 1.2 and 1.4, we immediately
see that a simply-embedded directional cycle has the desired fixed point properties while main-
taining cyclic dynamics.

Theorem 1.5 (simply-embedded directional cycles). Let G be a directional cycle whose

components form a simply-embedded partition {τ1| · · · |τN}. For any σ ⊆ [n], let σi
def
= σ ∩ τi.

Then
σ ∈ FP(G) ⇒ σi ∈ FP(G|τi) for all i ∈ [N].

In other words, every fixed point support of G is a union of (nonempty) component fixed point
supports, exactly one per component.

Figure 4 provides a simple visual summary of the different architectures generalizing the
cyclic union, together with the main results on their fixed point supports.

We conjecture that the backward direction of the statement in Theorem 1.5 also holds,
yielding an if and only if characterization of the fixed point supports.

Conjecture 1.6. Let G be a directional cycle whose components form a simply-embedded
partition {τ1| · · · |τN}. Then

σ ∈ FP(G) ⇔ σi ∈ FP(G|τi) for all i ∈ [N].

In other words, FP(G) consists of all possible unions of (nonempty) component fixed point
supports taking exactly one per component.

If the conjecture is true, then FP(G) for a simply-embedded directional cycle is identical
to that of the cyclic union with the same component subgraphs. While we cannot prove
this conjecture in general, we have observed that it holds in computational analyses of over
10,000 simply-embedded directional cycles. For example, Figure 5 shows a larger example of a
cyclic union and a simply-embedded directional cycle on the same component subgraphs, and
FP(G) is identical for both networks. Figure 5 also shows an attractor for each network, and
we see that the dynamics are qualitatively the same between the cyclic union and the simply-
embedded directional cycle. Interestingly, the activity of the simply-embedded directional

SEQUENTIAL ATTRACTORS IN CTLNs 1605

directional

directional

A cyclic union B directional cycle

C simply-embedded partition D simply-embedded directional cycle

conjecture:

Theorem 1.1 Theorem 1.2

Theorem 1.4 Theorem 1.5

Figure 4. Summary of main results. In each graph, colored edges from a node to a component indicate
that the node projects edges out to all the nodes in the receiving component, as needed for a simply-embedded
partition. Thick gray edges indicate directionality of the subgraph G|τi∪τi+1 .

cycle is significantly slower (see the differing time axes), with a period approximately twice
as long as that of the perfect cyclic union.

In the special case where G is a simply-embedded directional cycle with a unique fixed
point per component, Theorem 1.5 shows that the only candidate fixed point support in FP(G)
is the union of these component fixed point supports. Since any network must have at least
one fixed point [11, Theorem 1], we immediately obtain the following result.

Proposition 1.7. Let G be a directional cycle whose components form a simply-embedded
partition {τ1| · · · |τN}, and suppose FP(G|τi) has a unique fixed point for every τi. Then FP(G)
has a unique fixed point with support σ = ∪N

i=1σi, where σi is the unique fixed point support
in FP(G|τi).

In particular, observe that Proposition 1.7 implies that the conjecture holds in the special
case where the components each have a unique fixed point. As an illustration of this result,
notice that the graphs in Figures 2B–D and Figure 3D are all simply-embedded directional
cycles that have a unique fixed point with full support, which is the union of the unique

1606 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

C

A B

6 5

4

1 3

2

13

1110

12

9 7

8

6 5

4

1 3

2

13

1110

12

9 7

8

cyclic union simply-embedded directional cycle

2
4
6
8

10
12ne

ur
on

 n
um

be
r

2
4
6
8

10
12ne

ur
on

 n
um

be
r

time

fir
in

g
ra

te

0 10 20 30 400

0.5

0 20 40 60 80

fir
in

g
ra

te

0

0.5

directional

Figure 5. Cyclic union, simply-embedded directional cycle, their dynamics and FP(G). (A) (Top) A cyclic
union G1 with component subgraphs G|τ1 , . . . , G|τ4 . Thick colored edges from a node to a component indicate
that the node projects edges out to all the nodes in the receiving component. (Bottom) A solution for the
corresponding CTLN. (B) (Top) A simply-embedded directional cycle G2 with the same component subgraphs
as G1. (Bottom) A solution for the corresponding CTLN with the same initial condition as the network in
panel A. The solution of this network is qualitatively the same as that for the network in A except that the
period is twice as long (note the different time axes). (C) (Left) The fixed point supports FP(G|τi) of each
component subgraph. (Right) FP(G) is identical for both G1 and G2: it consists of unions of component fixed
point supports, exactly one per component. To highlight this structure of all the fixed point supports, the portion
of each support that each τi is color-coded.

full-support fixed points of each component. For each of these graphs, their FP(G) coincides
with that of the corresponding perfect cyclic union, and their dynamics are qualitatively
identical.

Roadmap. The remainder of the paper is organized as follows. Section 2 focuses on con-
structions involving directional graphs. This includes directional chains, which generalize
synfire chains, as well as directional cycles. The proof of Theorem 1.2 characterizing FP(G)
for directional cycles is given in section 2.4.

Section 3 is focused on simply-embedded partitions and the constraints they impose on
FP(G). The first section recaps Theorem 1.4 and illustrates it with some examples, then
highlights some other interesting consequences about when a node is removable from a net-
work. The remaining sections focus on graphs that have a simply-embedded partition together
with some additional structure. Section 3.2 examines simply-embedded directional cycles and
provides the proof of Theorem 1.5. Section 3.3 explores simple linear chains, which have a

SEQUENTIAL ATTRACTORS IN CTLNs 1607

purely feedforward chain-like architecture, but without a guarantee of intrinsically feedforward
activity (in contrast to directional chains). Section 3.4 characterizes FP(G) for graphs with
a strongly simply-embedded partition. The proofs of all the results in section 3 require signifi-
cant technical machinery and are thus given in the appendix in the supplementary material,
sections SM1.2–SM1.6 (except for the straightforward proof of Theorem 1.5).

Finally, in section 4, we analyze a number of networks of size n = 5 to show how directional
cycle graph architecture is predictive of the structure of corresponding sequential attractors,
particularly when a graph has a simply-embedded directional cycle representation. From this
analysis, we see that these architectures give insight into the sequences of neural activity that
emerge, and not only the structure of fixed point supports.

2. Directional graphs, chains, and cycles. In this section, we focus on generalizing cyclic
unions in a way that preserves the cyclic dynamics of the associated attractor. We refer to
these networks as directional cycles, which are built from component subgraphs where each
consecutive pair forms a directional graph. In order to make these notions more precise, we
first provide a brief overview of key concepts about fixed points of CTLNs and some graph
rules constraining the fixed point supports.

2.1. Preliminaries and prior graph rules. In this subsection we recall the results from
[11] that are relevant for this work. A fixed point of a CTLN is simply a fixed point of the
network equations (1). In other words, it is a vector x∗ ∈ Rn

≥0 such that dxi
dt |x=x∗ = 0 for all

i ∈ [n]. The fixed points of CTLNs can be labeled by their supports, and for a given G the
set of all fixed point supports is denoted FP(G) = FP(G, ε, δ).4

In [11], multiple characterizations of FP(G) were developed for nondegenerate5 inhibitory
threshold-linear networks in general as well as CTLNs specifically, including a variety of graph
rules for CTLNs. As an immediate consequence of one of these characterizations, it was shown
that σ is the support of a fixed point, i.e., σ ∈ FP(G), precisely when

1. σ ∈ FP(G|σ), and
2. σ ∈ FP(G|σ∪{k}) for every k /∈ σ.

(See the appendix section SM1.1 and Corollary SM1.3 for more details). We say that σ is a
permitted motif of G when it is a fixed point of its restricted subnetwork, so that condition
1 holds. And we say that a permitted motif σ survives to support a fixed point in the full
network when condition 2 is satisfied. Note that whether a subset σ is permitted depends only
on the subgraph G|σ (and potentially the choice of parameters ε and δ), while its survival will
depend on the embedding of this subgraph in the full graph. Importantly, condition 2 shows
that survival can be checked one external node k at a time. Moreover, it turns out that the
only aspect of the embedding that is relevant to survival is the edges from σ out to node k;
the edges from k back to σ or to any other nodes in G do not affect the survival of σ.

As our first example of permitted motifs, we consider uniform in-degree graphs. This
family is particularly nice because the survival rules are parameter independent and can be
easily checked directly from the graph.

4As a slight abuse of notation, we typically omit the dependence of FP(G) on ε and δ for simplicity.
Whenever a fixed point support can be determined using graph rules, its existence is independent of parameters,
and thus this simplified notation is appropriate.

5See section SM1.1 for the precise definition of nondegeneracy.

1608 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

1

23

A

d=0 d=2 d=1
independent set

d=1

1

23

1

23

cycle

1

23

clique other survives
if and only if d ≤ dk

d

k
dk

B

Figure 6. Uniform in-degree graphs. (A) All n = 3 graphs with uniform in-degree. (B) Cartoon showing
survival rule for an arbitrary subgraph with uniform in-degree d.

Definition 2.1. Let G be a graph on n nodes and σ ⊆ [n]. We say that G|σ has uniform
in-degree d if every i ∈ σ has in-degree dini = d within G|σ, i.e., every node i ∈ σ has d
incoming edges from other nodes in σ.

Rule 1 (uniform in-degree [11]). Let G be a graph and suppose G|σ has uniform in-degree

d. For k /∈ σ, let dk
def
= |{i ∈ σ | i → k}| be the number of edges k receives from σ. Then

σ ∈ FP(G) ⇔ dk ≤ d for all k ̸∈ σ.

Figure 6A shows all the uniform in-degree graphs of size n = 3 together with some general
graph theory terminology. Specifically, an independent set is a graph with uniform in-degree
d = 0. A k-clique is an all-to-all bidirectionally connected graph with uniform in-degree
d = k − 1. An n-cycle is a graph with n edges, 1 → 2 → · · · → n → 1, which has uniform in-
degree d = 1. Note that these families of uniform in-degree graphs are all cyclically symmetric;
however, this is not necessary for uniform in-degree graphs in general, as the last graph in
Figure 6A shows. Rule 1 guarantees that independent sets, cliques, and cycles all have a
full-support fixed point. In fact, this fixed point is symmetric, with x∗i = x∗j for all i, j ∈ [n].
This is true even for uniform in-degree graphs that are not symmetric. Moreover, Rule 1
guarantees that these fixed points survive within a larger network whenever each external
node receives only a limited number of inputs from the subnetwork.

More generally, fixed points can have very different values across neurons and their survival
cannot be determined simply by the number of outgoing edges. However, there is some level
of “graphical balance” that is required of G|σ for any fixed point support σ. For example, if σ
contains a pair of nodes j, k that have the property that all nodes sending edges to j also send
edges to k, and j → k but k ̸→ j, then σ cannot be a fixed point support. This is because k
is receiving strictly more inputs than j, and this imbalance rules out their ability to coexist
in the same fixed point support. A similar analysis of relative inputs to different nodes can
be used to determine fixed point survival in certain cases. These ideas are made more precise
below with the notion of graphical domination, first introduced in [11].

Definition 2.2. We say that k graphically dominates j with respect to σ, and write k >σ j,
if σ ∩ {j, k} ≠ ∅ and the following three conditions all hold:

1. for each i ∈ σ \ {j, k}, if i → j then i → k,
2. if j ∈ σ, then j → k, and
3. if k ∈ σ, then k ̸→ j.

SEQUENTIAL ATTRACTORS IN CTLNs 1609

inside-in
domination

outside-in
domination

inside-out
domination

A CB

Figure 7. The three cases of graphical domination in Rule 2. In each panel, k graphically dominates j with
respect to σ (the outermost shaded region). The inner shaded regions illustrate the subsets of nodes that send
edges to j and k. Note that the vertices sending edges to j are a subset of those sending edges to k, but this
containment need not be strict. Dashed arrows indicate optional edges between j and k.

Figure 7 shows the three cases of domination in which we can conclude whether σ supports
a fixed point of the network. Specifically, if there is inside-in domination (panel A), then σ
will not be a permitted motif, and thus σ /∈ FP(G). If there is outside-in domination by
node k (panel B), then σ does not survive the addition of node k, and so again σ /∈ FP(G).
In contrast, if there is inside-out domination (panel C), then σ is guaranteed to survive the
addition of node j whenever σ is a permitted motif. These cases were proven in [11, Theorem
4] and are summarized below in Rule 2.

Rule 2 (graphical domination [11]). Suppose k graphically dominates j with respect to σ.
Then the following statements all hold:

a. (inside-in) If j, k ∈ σ, then σ /∈ FP(G|σ), and thus σ /∈ FP(G).
b. (outside-in) If j ∈ σ and k /∈ σ, then σ /∈ FP(G|σ∪{k}), and thus σ /∈ FP(G).
c. (inside-out) If k ∈ σ and j /∈ σ, then σ ∈ FP(G|σ∪{j}) if and only if σ ∈ FP(G|σ).

One case where graphical domination is guaranteed to exist is when σ has a target. We
say that k is a target of σ if i → k for all i ∈ σ \ {k}. Whenever σ has a target node k, if
k /∈ σ, then we are guaranteed that σ /∈ FP(G) by outside-in domination. On the other hand,
for k ∈ σ, if there is any node j ∈ σ such that k ̸→ j, then we have inside-in domination
k >σ j and so again σ /∈ FP(G).

At the other extreme, if there is a j /∈ σ such that j does not receive any edges from σ,
then we are guaranteed that every k ∈ σ inside-out dominates node j. Thus, by Rule 2c, σ
survives the addition of node j whenever σ is a permitted motif.

Rules 1 and 2 provide some graphical constraints on possible fixed point supports and on
when a fixed point of a subnetwork survives to the full network. Rule 3 provides one more
constraint on FP(G). Rule 3 is particularly useful for figuring out if there is a full-support
fixed point whenever we know which proper subgraphs are permitted and which yield surviving
fixed points. Recall that these graph rules are for nondegenerate CTLNs.

Rule 3 (parity [11]). For any graph G, the total number of fixed points |FP(G)| is odd.

2.2. Directional graphs. With this background in place, we can now precisely define
directional graphs.

1610 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

31

2

4

31

2

4

42

3

1

1 2

3 4

31
2

4 5

1 2

53

4

A1 A2 A3

A4 A5 A6

31

2

4

1 2

3 4

B1 B2 B3 1 2

53

4

Directional graphs

Graphs that are not directional

Rate curves

Attractor for A3

Attractor for A6

Attractors for B2

Attractor for B3

time
0 10 403020

fir
in

g
ra

te

time
0 20 806040

fir
in

g
ra

te

0 20 402040

fir
in

g
ra

te

0

time
0 20 806040

fir
in

g
ra

te

34

3412

Figure 8. Directional graphs: examples and non-examples. (A) Example directional graphs and their
FP(G). On the right, solutions for A3 and A6 are shown where the activity was initialized on the nodes in ω.
(B) Example nondirectional graphs with their FP(G), as well as solutions for the networks in B2 and B3.

Definition 2.3 (directional graphs). We say that a graph G on n nodes is directional, with
direction ω → τ , if ω ∪ τ = [n] is a nontrivial partition of the nodes (ω, τ ̸= ∅) such that
the following property holds: for every σ ̸⊆ τ , there exists some j ∈ σ ∩ ω and k ∈ [n] such
that k graphically dominates j with respect to σ. In particular, this property guarantees that
FP(G) ⊆ FP(G|τ) for all ε, δ in the legal range.6

We call these graphs directional because in simulations we have observed that activity
flows from ω to τ , converging to an attractor concentrated on τ . The top panel of Figure 8
shows some example directional graphs. Notice that each graph has a partition of the nodes
ω ∪ τ such that all the fixed point supports are confined to τ ; moreover, each subset of nodes
that intersects ω does not yield a fixed point as a result of graphical domination.

Example 2.4. Consider the graph G in panel A3. To see that G is directional, observe
that any σ ⊆ {1, 2, 3, 4} containing node 1 cannot support a fixed point because node 3 will
dominate 1 with respect to σ since (1) node 3 receives all the inputs that node 1 receives,
(2) 1 → 3, and (3) 3 ̸→ 1. Similarly, any σ containing node 2 cannot support a fixed point

6Note that we could guarantee FP(G) ⊆ FP(G|τ) in a parameter-independent way without requiring that
the dominated node j ∈ σ live in ω. However, for Lemma 2.6 (pairwise chaining) and Theorem 1.2 (directional
cycles), we must further require j ∈ σ ∩ ω.

SEQUENTIAL ATTRACTORS IN CTLNs 1611

since node 3 also dominates node 2. Thus, every σ ∈ FP(G) must be a subset of τ , and so
FP(G) ⊆ FP(G|τ) as a result of graphical domination.

To the right of A3, we see the dynamics of the network when the activity has been
initialized on the nodes in ω. The activity quickly flows from ω and converges to the stable
fixed point supported on τ , as predicted by the directionality of G. This flow of activity occurs
despite the multiple edges back from nodes in τ to nodes in ω. Similarly, graphs A4–A6 have
equal numbers of forward and backward edges between ω and τ , but in each case the dynamics
flow toward τ . In particular, the attractor for A6, obtained by initializing activity on ω, is a
sequential limit cycle supported on τ .

In contrast, panels B1–B3 exhibit graphs that are not directional: in particular, each one
has a full-support fixed point. The graph in B2 is somewhat surprising, because it is similar
to A3 but with a more obviously feedforward architecture. Dynamically, however, this graph
is not directional and in fact supports two stable fixed point attractors that together involve
all four nodes (see the attractors shown to the right). Thus, feedforward architecture alone
is not sufficient to guarantee feedforward dynamics. Moreover, directional graphs can have
feedforward dynamics even in the absence of feedforward architecture, as the graph in A3
demonstrates (see also Figures 2 and 3 of [15]).

We can also see directional graphs inside cyclic unions. For example, in Figure 3A, the
induced subgraphs G|τ1∪τ2 , G|τ2∪τ3 , and G|τ3∪τ1 are all directional. In fact, in any cyclic union,
the induced subgraph on a pair of adjacent components is always directional. Such subgraphs
are a special case of the family of graphs in Figure 9, where the τ component contains a target
of ω and there are no back edges from τ to ω.

Lemma 2.5. Suppose G has a nontrivial partition of its nodes ω ∪ τ = [n] such that there
are only forward edges from ω to τ and at least one node in τ is a target of ω (as in Figure 9).
Then G is directional with direction ω → τ .

Proof. Let k ∈ τ be a target of ω. Consider any σ ̸⊆ τ and let j ∈ σ ∩ ω. We will show
that the target node k graphically dominates j with respect to σ. First we must show that
for all i ∈ σ \ {j, k}, if i → j, then i → k. Since there are no back edges from τ to ω, the
only i ∈ σ with i → j are i ∈ σ ∩ ω. But k is a target of ω, and so i ∈ ω implies that i → k.
Thus condition 1 of graphical domination holds. Moreover, j → k since k is a target, and
k ̸→ j since there are no back edges from τ . Thus, conditions 2 and 3 hold as well, and so k
dominates j with respect to σ. Therefore G is directional with direction ω → τ .

all other forward
edges optionalxno back

edges

target

Figure 9. Family of directional graphs.

1612 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

Pairwise chaining
when

Figure 10. Pairwise chaining of two directional graphs. (Left) Two directional graphs G1 and G2 with
direction ωi → τi, where G1|τ1 = G2|ω2 . (Right) The graph G1 ⊔ G2 formed from chaining together G1 and
G2 by identifying τ1 with ω2. By Lemma 2.6, G1 ⊔G2 is directional for ω = ω1 ∪ ω2 (in gray) and τ = τ2 (in
green).

2.3. Directional chains. One of the valuable features of directional graphs is that we can
chain them together to produce new directional graphs. Namely, if the graphs overlap so that
the τ part of one graph coincides with the ω part of the next one, then the resulting “chain”
graph is also directional (see Figure 10).

Lemma 2.6 (pairwise chain). Suppose G1 and G2 are directional graphs with directions
ω1 → τ1 and ω2 → τ2, respectively, that satisfy G1|τ1 = G2|ω2. Consider the pairwise chain
G1 ⊔G2 formed by identifying τ1 with ω2 (as in Figure 10). Then G1 ⊔G2 is directional with
ω = ω1 ∪ ω2 and τ = τ2.

Proof. Let G
def
= G1⊔G2 be the pairwise chain with vertex set [n] = ω1∪ω2∪ τ2 (where τ1

was identified with ω2), and let ω
def
= ω1 ∪ ω2, and τ

def
= τ2. Consider σ ⊆ [n] with σ ∩ ω ̸= ∅.

We will show that there exists a j ∈ σ ∩ ω and k ∈ [n] such that k graphically dominates j
with respect to σ. Observe that if σ ⊆ ω1 ∪ ω2 = ω1 ∪ τ1 and σ ∩ ω1 ̸= ∅, then such a j and k
pair exist within G1 since G1 is directional; the same holds if σ ⊆ ω2 ∪ τ2. Thus we need only
consider σ that overlaps both G1 and G2, without being fully contained in either. In other
words, we have σ ∩ ω1 ̸= ∅ and σ ∩ τ2 ̸= ∅.

Let σ1
def
= σ ∩ (ω1 ∪ τ1) be σ restricted to G1. By the directionality of G1, there exists

j ∈ σ1 ∩ ω1 and k ∈ ω1 ∪ τ1 such that k graphically dominates j with respect to σ1. We will
show that k also dominates j with respect to the full σ in G. First observe that conditions 2
and 3 of graphical domination are automatically satisfied for σ by way of being satisfied for σ1.
For condition 1, we must show that for all i ∈ σ\{j, k}, if i → j, then i → k. Since j ∈ ω1, the
only possible nodes in G that can send edges to j are nodes in G1, since ω1 is not in the overlap
with G2 so cannot receive edges from any nodes in G2 outside of that overlap. Thus, the only
i ∈ σ with i → j are nodes within σ1, and for all i ∈ σ1\{j, k}, whenever i → j, we have i → k
by the graphical domination relationship with respect to σ1. Therefore, condition 1 holds for
all of σ, and so k dominates j with respect to σ in G. Thus, G is directional with ω → τ .

Lemma 2.6 motivates the following definition of a directional chain, obtained from itera-
tively chaining directional graphs together (see Figure 11).

SEQUENTIAL ATTRACTORS IN CTLNs 1613

Figure 11. Directional chain. A cartoon of a directional chain with components τ0, τ1, . . . , τN . For each

i = 1, . . . , N , the induced subgraph Gi
def
= G|τi−1∪τi is directional. The arrows between components indicate the

directionality τi−1 → τi. Note there may be edges in both directions between adjacent components, as in the
example directional graphs in Figure 8, but there are no edges between nonadjacent components.

Definition 2.7 (directional chain). Let G be a graph with a partition of its nodes {τ0|τ1| · · ·
|τN}. For each i = 1, . . . , N , let Gi

def
= G|τi−1∪τi be the induced subgraph on adjacent compo-

nents. We say that G is a directional chain if each Gi is directional with direction τi−1 → τi,
and every edge of G is an edge in some Gi (i.e., there are no edges between nonadjacent τi
components).

Iteratively applying Lemma 2.6, we immediately obtain the following result showing that
every directional chain is directional.

Proposition 2.8 (directional chain). Let G be a directional chain with components τ0, τ1, . . . ,
τN and directional graphs Gi = G|τi−1∪τi. Then G is directional with direction ω → τ for
ω = τ0 ∪ · · · ∪ τN−1 and τ = τN . In particular, FP(G) ⊆ FP(G|τN).

Proof. For each Gi
def
= G|τi−1∪τi , denote the directional components of Gi as ωi and τi, as

in Lemma 2.6, so that ωi = τi−1. Observe G12
def
= G1⊔G2 is a pairwise chain, so by Lemma 2.6,

G12 is directional with ω12 = ω1∪ω2 and τ12 = τ2. Similarly, G123
def
= (G1⊔G2)⊔G3 = G12⊔G3

is also a pairwise chain, and so by Lemma 2.6, G123 is directional with ω123 = ω12 ∪ ω3 =
ω1∪ω2∪ω3 and τ123 = τ3. We can continue iterating in this fashion to see G is a pairwise chain
of directional graphs G1···N−1 ⊔GN , and thus by Lemma 2.6, G is directional with direction
ω → τ for ω = ω1···N−1 ∪ ωN = τ0 ∪ · · · ∪ τN−1 and τ = τN .

By Proposition 2.8, we see that for any CTLN whose graph is a directional chain G, we
must have FP(G) ⊆ FP(G|τN). In other words, all fixed points are confined to the last τ of the
chain. Figure 12A gives an example of such a chain built from directional graphs G1, . . . , G4

where Gi|τi = Gi+1|τi for each i = 1, . . . , 3. In Figure 12B, we see the resulting dynamics
when the activity of the network is initialized on nodes 1 and 2, at the start of the chain.
We see a clear sequence of activation, from 1 and 2 to 3, 5, 6, and 7, and then stabilizing on
the fixed point attractor for the clique {9, 10}. In other words, the activity flows along the
directional chain, generating a sequence that reflects the directionality of the construction.
Note that the network behaves in the expected feedforward manner dynamically despite the
existence of several feedback edges: 4 → 1, 2, 8 → 5, and 9 → 7.

We see that directional chains produce sequences of neural activity in their transient
dynamics, similar to that of synfire chains [1, 3, 21]. In contrast to synfire chains, though,

1614 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

86

7

1 2

3 4

5

9 10

Directional chain

Directional cycle (nodes 1 & 9 and 2 & 10 identified)

A B

C

time

fir
in

g
ra

te

0 10 403020 50

time

fir
in

g
ra

te

0 10 403020 50

Figure 12. Directional chain and directional cycle. (A) A graph built from chaining together directional
graphs G1, . . . , G4, where Gi = G|τi−1∪τi . (B) A solution of the CTLN for the directional chain in A when
the activity is initialized on nodes 1 and 2. Activity flows through the chain, eventually stabilizing on the fixed
point attractor of τ4. (C) A solution of the CTLN for the directional cycle obtained from the graph in A by
identifying τ4 with τ0 to make the chain wrap cyclically wrap around. The activity is initialized on nodes 1 and
2 and falls into a limit cycle hitting all the components τi in cyclic order.

directional chains can have recurrent connectivity throughout and do not rely on a purely
feedforward architecture.

2.4. Directional cycles. We can also chain directional graphs together in a cyclic manner,
so the directional chain wraps around and τN is identified with τ0. We call any graph G that
can be created in this way a directional cycle.

Definition 2.9 (directional cycle). Let G be a graph with node partition {τ1| · · · |τN}. For

each i = 1, . . . , N , let Gi
def
= G|τi−1∪τi be the induced subgraph on adjacent components (cycli-

cally identifying τN = τ0). We say that G is a directional cycle if each Gi is directional with
direction τi−1 → τi, and every edge of G is an edge in some Gi (i.e., there are no edges between
nonadjacent τi components).

For directional cycles, the chain has no beginning or end and so the fixed points cannot all
lie in some final τN . Instead, they become highly distributed across the network, intersecting
each and every τi. In particular, in Theorem 1.2, we show that every fixed point support of a
directional cycle contains an undirected cycle7 that hits each τi in cyclic order.

Figure 12 provides an illustration of this. In the directional chain of panel A, suppose we
identify τ4 with τ0, so nodes 1 and 9 are identified as are 2 and 10. Then the resulting network
becomes a directional cycle. Figure 12C shows the activity obtained by initializing on nodes

7To any directed graph G, we can associate a simple undirected graph Ĝ by ignoring the direction on the
edges. An undirected cycle is a sequence of nodes connected by edges that form a cycle within the underlying
undirected graph. For example, 2458 is an undirected cycle in the graph in Figure 12A when node 10 is
identified with node 2.

SEQUENTIAL ATTRACTORS IN CTLNs 1615

1 and 2. We see a clear and repeating sequence of activity emerge, corresponding to the cycle
23567 in the graph, whose existence is predicted by Theorem 1.2. Note that for this network
FP(G) = {23567} with the unique fixed point corresponding to the cycle motif giving rise to
the sequence. In other words, directional cycles produce periodic sequences of activity that
cycle around the chain in the expected direction.

The remainder of this section is dedicated to the proof of Theorem 1.2 (reprinted below).

Theorem 1.2 (cyclic fixed points of directional cycles). Let G be a directional cycle with
components τ1, . . . , τN and directional graphs Gi = G|τi−1∪τi (cyclically identifying τN = τ0).
Then for any σ ∈ FP(G), the graph G|σ contains an undirected cycle that intersects every τi
in cyclic order (see the illustration in Figure 13A).

To prove Theorem 1.2, we first need the following lemma that shows that for any fixed
point support σ of a directional cycle, there is always an edge feeding into σi (σ restricted to
the graph Gi) from the previous graph Gi−1.

Lemma 2.10. Let G be a directional cycle with components τ1, . . . , τN and directional graphs
Gi = G|τi−1∪τi (cyclically identifying τN = τ0). For each Gi, let ωi = τi−1, so that Gi has

direction ωi → τi. For σ ∈ FP(G), let σi
def
= σ ∩ (ωi ∪ τi) denote σ restricted to graph Gi. For

any v ∈ σi∩ωi, there exists j ∈ σi∩ωi (j could equal v) and an ℓ ∈ σi−1∩ωi−1 such that ℓ → j
in G and there is an undirected path from v to j in σi (see the illustration in Figure 13B).

A B

Figure 13. Illustrations for Theorem 1.2 and Lemma 2.10. (A) A cartoon of a directional cycle; each pastel
colored blob is a directional graph Gi with direction ωi = τi−1 → τi indicated by arrows along the outside. Note
that all vertices of G lie within an overlap of adjacent Gi, but each Gi has edges between the two overlaps τi−1

and τi. Within the directional cycle, a fixed point support σ ∈ FP(G) is shown in dark gray. Theorem 1.2
guarantees that G|σ contains an undirected cycle that hits all the τi in cyclic order (shown in magenta). The
vertices in the cycle are labeled following the notation for the proof of Theorem 1.2. (B) Cartoon for setup of
Lemma 2.10. The pale pink and blue blobs depict overlapping directional graphs Gi−1 and Gi. The restriction

of fixed point support σ ∈ FP(G) to this subgraph is shown with its component subgraphs σi
def
= σ ∩ (ωi ∪ τi)

denoted with light gray blobs. The subgraph G|σi can be broken into its connected components, and αi (dark
gray) denotes one such component. There exists a j ∈ αi ∩ ωi such that j is dominated by some k in Gi with
respect to αi. Then Lemma 2.10 guarantees that there is some ℓ ∈ σi−1 ∩ ωi−1 such that ℓ → j.

1616 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

Proof. Let σ ∈ FP(G), σi = σ∩(ωi∪τi), and let αi be the connected component8 of σi that
contains v, so that αi ∩ωi ̸= ∅. Since Gi is directional, there exists j ∈ αi ∩ωi and k ∈ ωi ∪ τi
such that k graphically dominates j with respect to αi. Since σ ∈ FP(G), we cannot have any
j graphically dominated by k with respect to all of σ in G, by Rule 2. Thus, there must exist
some ℓ ∈ σ such that ℓ → j but ℓ ̸→ k (in order to violate condition 1 of the definition of
graphical domination). Moreover, we must have ℓ ∈ τi−2, τi−1, or τi, since j ∈ ωi = τi−1 and
ℓ → j, and there are no edges between nonadjacent components in a directional cycle. We
cannot have ℓ in Gi, i.e., ℓ /∈ τi−1 ∪ τi, since there are no nodes in σi \ αi that send edges into
αi, by definition of connected component. Thus, we must have ℓ ∈ τi−2 = ωi−1. Therefore,
we have ℓ ∈ σi−1 ∩ ωi−1 and j ∈ αi ∩ ωi such that ℓ → j.

We can now prove Theorem 1.2, using Lemma 2.10 to trace a path in σ backward through
the directional cycle, demonstrating the existence of an undirected cycle in σ that hits every
τi in cyclic order.

Proof of Theorem 1.2. To set notation, for each Gi = G|τi−1∪τi , denote the directional

components of Gi as ωi and τi, so that ωi = τi−1. For σ ⊆ [n], let σi
def
= σ ∩ (ωi ∪ τi) denote

the restriction of σ to the graph Gi.
Let σ ∈ FP(G) and let v ∈ σ. Observe that v ∈ ωi for some graph Gi (since every node

in G is contained in some ωi = τi−1). Without loss of generality, let v ∈ ωN . By Lemma 2.10,
there exists a jN ∈ σN ∩ ωN and ℓN−1 ∈ σN−1 ∩ ωN−1 such that ℓN−1 → jN and there is an
undirected path from v to jN . Next, consider ℓN−1 playing the role of v in σN−1 ∩ ωN−1. We
can again apply Lemma 2.10 to obtain a jN−1 ∈ σN−1 ∩ ωN−1 and ℓN−2 ∈ σN−2 ∩ ωN−2 such
that ℓN−2 → jN−1 and there is an undirected path from ℓN−1 to jN−1. Thus, we have an
undirected path from v to jN to ℓN−1 to jN−1 and finally ℓN−2 (see Figure 13A starting in
the bottom left ω4).

Continuing in this manner, we see that G|σ has an undirected path containing all these
ji ∈ ωi = τi+1, and hitting each of the intersections τi in cyclic order. To see that this path
can eventually be closed to yield a cycle, notice that we can keep following this path backward
from Gi to Gi−1 as it wraps around G, since every σi on this path must have some edge into
it from σi−1 that can be followed backward. Since each σi has a finite number of connected
components, by the pigeonhole principle, the path through σ must at some point revisit a
connected component αi for some i. Since αi is connected, we can close our cycle by walking
from the current node on the path through the component to the node previously visited in
an earlier portion of the path. Thus we have found an undirected path through σ that starts
and ends at the same point in some σi, yielding an undirected cycle that hits every τj in cyclic
order.

3. Simply-embedded structure and graph rules. In this section, we focus on graphs with
a simply-embedded partition. These graphs generalize cyclic unions in a way that preserves
strong constraints on FP(G). We begin by considering simply-embedded partitions in their
full generality, and then move to some families of graphs that have additional structure. Note

8In a slight abuse of language, we use connected component here to refer to the connected component of
the undirected graph associated to G. Thus, a connected component consists of all nodes that are reachable
by undirected paths, where the direction of edges in G is ignored.

SEQUENTIAL ATTRACTORS IN CTLNs 1617

that most of the results in this section require significant technical machinery to prove (initially
developed in [11]), and thus we save the proofs for the appendix in sections SM1.2–SM1.6.

3.1. Simply-embedded partitions. Recall that a simply-embedded partition of a graph is
a partition of the nodes such that all nodes within a single component are treated identically
by any node outside of that component. More precisely, we give Definition 1.3 again.

Definition 1.3 (simply-embedded partition). Given a graph G, a partition of its nodes
{τ1| · · · |τN} is called a simply-embedded partition if every τi is simply-embedded in G. In
other words, for each τi and each k /∈ τi, either k → j for all j ∈ τi or k ̸→ j for all j ∈ τi.

Notice that the definition is trivially satisfied in the cases where (a) there are no k /∈ τi
or (b) there is only a single j ∈ τi for every i. Thus, every graph has two trivial simply-
embedded partitions: one where all the nodes are in one component and one where every
node is in its own component. Neither of these partitions is useful for giving information
about the structure of G. But when a graph has a nontrivial simply-embedded partition,
this structure is sufficient to dramatically constrain the possible fixed point supports of G to
unions of fixed points chosen from a menu of component fixed point supports, FP(G|τi).

Theorem 1.4 (FP(G) menu for simply-embedded partitions). Let G have a simply-embedded

partition {τ1| · · · |τN}. For any σ ⊆ [n], let σi
def
= σ ∩ τi. Then

σ ∈ FP(G) ⇒ σi ∈ FP(G|τi) ∪ {∅} for all i ∈ [N].

In other words, every fixed point support of G is a union of component fixed point supports
σi, at most one per component.

Theorem 1.4 gives significant restrictions on the possible supports in FP(G) in terms of
the component fixed point supports. However, the converse is not true—not every union of
supports from the menu is guaranteed to yield a fixed point support in FP(G). The following
examples illustrate the range of FP(G) that can emerge from the same menu.

Example 3.1. Consider the component subgraphs shown in Figure 14A together with their
FP(G|τi). By Theorem 1.4, any graphG with a simply-embedded partition of these component
subgraphs has a restricted menu for FP(G) consisting of the component fixed point supports
(the set of all possible supports derived from this menu is shown on the bottom of panel
A). Note that an arbitrary graph on 7 nodes could have up to 27 − 1 = 127 possible fixed
point supports, but the simply-embedded partition structure narrows the options to only
15 candidate fixed points. Figures 14B–E show four possible graphs with simply-embedded
partitions of these component subgraphs, together with FP(G) for each of the graphs.

Observe that the graph in Figure 14B is a disjoint union of its component subgraphs.
For this graph, FP(G) consists of all possible unions of at most one fixed point support per
component subgraph (see [11, Theorem 11]). Thus, every choice from the menu provided by
Theorem 1.4 does in fact yield a fixed point for G.

In contrast, the graph in Figure 14C is a cyclic union of the component subgraphs. For
this graph, FP(G) only has sets that contain a fixed point support from every component,
i.e., σi ̸= ∅ for all i ∈ [N] (by Theorem 1.1). Thus, any subset from the menu of Theorem 1.4
that does not intersect every τi does not produce a fixed point for G.

1618 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

A

1 2

5 4

3

6 7

possible supports in :

B
1 2

5 4

3
76

= all possible supports
 available from menu

C

=

76

1 2

5 4

3

D

=

76

1 2

5 4

3
76

1 2

5 4

3

E

=

menu for :

Figure 14. Graphs with a simply-embedded partition from Example 3.1. (A) (Top) A collection of compo-
nent subgraphs with their FP(G|τi). (Bottom) The set of possible fixed point supports for any graph that has
these subgraphs in the simply-embedded partition. (B)–(E) Example graphs with a simply-embedded partition
with the component subgraphs from A, together with their FP(G). In (C)–(E), thick colored edges from a node
to a component indicate that the node projects edges out to all the nodes in the receiving component.

Meanwhile, the graph in Figure 14D is a simply-embedded partition with heterogeneity in
the outgoing edges from a component (notice different nodes in τ1 treat τ3 differently). FP(G)
has a mixture of types of supports: there are some σ ∈ FP(G) that do not intersect every
component, and others that do.

Finally, the graph in Figure 14E is another simply-embedded partition with heterogeneity
(notice different nodes in τ3 treat τ1 and τ2 differently). However, for this graph, there is a
uniform rule for the fixed point supports: every fixed point consists of exactly one fixed point
support per component subgraph (identical to FP(G) for the graph in panel C).

Interestingly, some graphs have multiple nontrivial simply-embedded partitions, which can
be analyzed in parallel to give further constraints on FP(G), and in some cases even fully nail
down FP(G).

Example 3.2. Consider the graph in Figure 15 with the two simply-embedded partitions
{1 |2, 3, 4| 5} and {2 |1, 3, 5| 4}. Since 234 is the unique fixed point of τ2 in the partition in
panel A, Theorem 1.4 guarantees that any σ ∈ FP(G) that contains one of the nodes 2, 3, or
4 must contain all three nodes because σ ∩ τ2 ∈ FP(G|τ2) ∪ {∅}. Similarly, since 135 is the
unique fixed point of τ ′2 in the partition in panel B, any σ ∈ FP(G) that contains one of the
nodes 1, 3, or 5 must contain all three. Combining these two constraints, we see that we must
have FP(G) = {12345}.

SEQUENTIAL ATTRACTORS IN CTLNs 1619

1

42
3

5

2

51
3

4

A B

Figure 15. Graph with two nontrivial simply-embedded partitions. The panels show two drawings of the
same graph G to highlight two partitions: (A) the simply-embedded partition {1 |2, 3, 4| 5}, (B) the simply-
embedded partition {2 |1, 3, 5| 4}.

In general though, Theorem 1.4 is not sufficient to fully determine FP(G), but it does
significantly limit the menu of fixed point supports. In particular, one direct consequence of
Theorem 1.4 is that if there is some node j ∈ τi in G that does not participate in any fixed
points of G|τi , then j cannot participate in any fixed point of the full graph G. Thus the
supports of all the fixed points of G are confined to [n]\{j}. For example, node 6 in Figure 14
does not appear in FP(G|τ3) and thus does not appear in any fixed point support for any
of the graphs in panels B–E. It turns out that if the removal of node j does not change the
fixed points of the component subgraph, i.e., if FP(G|τi) = FP(G|τi\{j}), then we can actually
remove j from the full graph G without changing FP(G). Thus we have the following theorem.

Theorem 3.3 (removable nodes). Let G have a simply-embedded partition {τ1| · · · |τN}.
Suppose there exists a node j ∈ τi such that FP(G|τi) = FP(G|τi\{j}). Then FP(G) =
FP(G|[n]\{j}).

Theorem 3.3 shows that if a node j is locally removable without altering fixed points of
its component, then node j is also globally removable without altering the fixed points of the
full graph G. This result gives a new tool for determining that two graphs have the same
collection of fixed points.

Corollary 3.4. Let G have a simply-embedded partition {τ1| · · · |τN} and suppose there exists
j ∈ τi such that FP(G|τi) = FP(G|τi\{j}). Let G′ be any graph that can be obtained from G by
deleting or adding outgoing edges from j to any other component without altering the simply-
embedded structure of G. Then FP(G′) = FP(G).

As an illustration of Corollary 3.4, let G be the graph from Figure 14C and G′ be the
graph from Figure 14E. It is easy to check that FP(G|τ3) = FP(G|τ3\{6}), and so node 6 is
removable. Since G and G′ differ only in edges out from node 6 to other components, and the
simply-embedded partition is maintained, Corollary 3.4 guarantees that FP(G) = FP(G′).

While Theorems 1.4 and 3.3 give significant constraints on FP(G), the simply-embedded
partition structure alone is not sufficient to nail down FP(G). In the following subsections,
we consider a variety of families of graphs that have additional structure that enables us to
draw stronger conclusions about FP(G).

3.2. Directional cycles with a simply-embedded partition. We begin by considering
simply-embedded directional cycles, i.e., directional cycles where the directional partition of
the nodes into components {τ1| · · · |τN} is also a simply-embedded partition. We expect these

1620 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

graphs to be similar to the corresponding cyclic union of the same component subgraphs, both
in terms of their dynamics (as a result of the directionality property) and in terms of their
FP(G) (as a result of the simply-embedded partition). Theorem 1.5 guarantees that every
fixed point of a simply-embedded directional cycle has the same component structure as those
of the corresponding cyclic union.

Theorem 1.5 (simply-embedded directional cycles). . Let G be a directional cycle whose

components form a simply-embedded partition {τ1| · · · |τN}. For any σ ⊆ [n], let σi
def
= σ ∩ τi.

Then

σ ∈ FP(G) ⇒ σi ∈ FP(G|τi) for all i ∈ [N].

In other words, every fixed point support of G is a union of (nonempty) component fixed point
supports, exactly one per component.

Proof. By Theorem 1.4, for any σ ∈ FP(G), we have σi ∈ FP(G|τi)∪{∅}. By Theorem 1.2,
every σ ∈ FP(G) contains a cycle that intersects every τi, and so σi ̸= ∅ for all i ∈ [N]. Thus,
σi ∈ FP(G|τi) for all i ∈ [N].

We conjecture that the backward direction of the statement in Theorem 1.5 also holds,
yielding an if and only if characterization of the fixed point supports. If this were true, then
the fixed point supports of a simply-embedded directional cycle would be identical to those of
the corresponding cyclic union. To prove this characterization, it is natural to try to mimic the
proof of Theorem 1.1 (Theorem 13 in [11]), which is the analogous result for cyclic unions. The
key to that proof is to induct on the size of the cyclic union by analyzing relevant subgraphs
G|σ. Since each G|σ is itself a cyclic union, the inductive hypothesis can then be applied.
Unfortunately, when we consider the analogous subgraphs of a simply-embedded directional
cycle, they need not be directional cycles themselves. Thus, induction cannot be used to prove
the conjecture. However, computational analyses of over 10,000 simply-embedded directional
cycles give us reasonable confidence that the conjecture holds. Specifically, we randomly
sampled 1000s of simply-embedded directional cycles with 3, 4, or 5 components where the
component subgraphs had up to 4 nodes each. For every one of these simply-embedded direc-
tional cycles, we found that FP(G) = {

⋃N
i=1 σi | σi ∈ FP(G|τi) for all i ∈ [N]}, as predicted.

Moreover, as we saw in Figures 2 and 5, the dynamics of simply-embedded directional cycles
tend to mimic those of the corresponding cyclic union.

3.3. Simple linear chains. In the previous subsection, we saw that when we have a simply-
embedded partition on top of a directional cycle structure, this adds significant constraints
on FP(G). It is natural to ask what happens when we cut such a cyclic structure between
components and are left with just a directional chain. Does the added structure of a simply-
embedded partition similarly give a stronger handle on FP(G) for a directional chain?

Recall from Proposition 2.8 that a directional chain is provably directional onto the last
component, and so FP(G) ⊆ FP(G|τN). Simply-embedded partitions only add the constraint
that for each σ ∈ FP(G), we have σi ∈ FP(G|τi)∪{∅}. But this gives no new information since
for directional chains, we are already guaranteed that σi = ∅ for all i ̸= N and σN ∈ FP(G|τN).
Figure 16A–C shows examples of directional chains both with and without simply-embedded
structure. Notice that in all three of these graphs, FP(G) is identical, and it is fully predicted

SEQUENTIAL ATTRACTORS IN CTLNs 1621

simple linear chain

directional chain simply-embedded directional chain
(also a simple linear chain)

simply-embedded directional chain

A B

C D

2
4
6
8

10
12ne

ur
on

 n
um

be
r

0 10 20 30 40

1

time

fir
in

g
ra

te

2
4
6
8

10
12ne

ur
on

 n
um

be
r

0 10 20 30 40

1

time

fir
in

g
ra

te

2
4
6
8

10
12ne

ur
on

 n
um

be
r

0 10 20 30 40

1

time

fir
in

g
ra

te

2
4
6
8

10
12ne

ur
on

 n
um

be
r

input
pulses 2

1

3

0 20 60 80 10040
time

fir
in

g
ra

te 2

1

Figure 16. Directional chains versus simple linear chains. (A)–(C) Graphs that are directional chains.
Activity initialized on τ1 flows through the chain, hitting each component in sequence, and converging on the
nodes of τ6. (D) A simple linear chain that is not directional. Each component clique supports a stable fixed
point of the network. Unions of these component fixed point supports also yield fixed points. Activity initialized
on τ1 would stay indefinitely at the corresponding stable fixed point. Small kicks to the θ input (labeled as
input pulses on the plot) can cause the activity to fall out of the current stable fixed point and move forward to
converge onto τi+1. At time 60, the activity has converged to τ6. After this point, all additional input pulses
lead to increases in the activity of the nodes in τ6, but the activity can never escape the final stable fixed point
of the chain.

1622 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

by Proposition 2.8 since FP(G) ⊆ FP(G|τ6) = {τ6}. Moreover, the dynamics progress forward
down the directional chain and converge to the stable fixed point on τ6, irrespective of any
simply-embedded structure.

Combining simply-embedded partitions with directional chain structure does not yield any
new information about FP(G). But what about simply-embedded partitions in graphs that
have a weaker chain-like structure, where all the edges feed forward between components, but
there are not enough forward edges to guarantee directionality? For example, consider the
graph in Figure 16D. All the edges between components feed forward following a chain-like
architecture; moreover, each j ∈ τi treats the nodes in τi+1 identically, and so {τ1| · · · |τ6} is a
simply-embedded partition, but it is not directional. We refer to graphs with this chain-like
architecture on a simply-embedded partition as simple linear chains.

Definition 3.5 (simple linear chain). Let G be a graph with node partition {τ1| · · · |τN}. We
say that G is a simple linear chain if the following two conditions hold:

1. the only edges between components go from nodes in τi to τi+1, and
2. for every j ∈ τi, either j → k for every k ∈ τi+1 or j ̸→ k for every k ∈ τi+1.

With simple linear chains, we are no longer guaranteed that the fixed points all collapse
onto the last component. For example, in Figure 16D, each τi ∈ FP(G) since each clique
survives in G|τi∪τi+1 . Additionally, every union of τis is also a fixed point support. Since each
surviving clique yields a stable fixed point, we see that the network dynamics in panel D do
not naturally progress through the chain, but rather stabilize on an individual component.
Interestingly, though, if we transiently kick all the neurons in the network by temporarily
increasing θ, then the dynamics can escape from the current τi, and the activity flows forward
and stabilizes on τi+1. The following theorem shows that the structure of FP(G) illustrated
in Figure 16D holds for simple linear chains more generally.

Theorem 3.6 (simple linear chains). Let G be a simple linear chain with components
τ1, . . . , τN .

(i) If σ ∈ FP(G), then σi ∈ FP(G|τi) ∪ {∅} for all i ∈ [N], where σi = σ ∩ τi.
(ii) Consider a collection {σi}i∈[N] of σi ∈ FP(G|τi) ∪ {∅}. If additionally σi ∈

FP(G|τi∪τi+1) ∪ {∅} for all i ∈ [N], then⋃
i∈[N]

σi ∈ FP(G).

In other words, FP(G) is closed under unions of component fixed point supports that survive
in G|τi∪τi+1.

Figure 17 illustrates Theorem 3.6 with an example simple linear chain. By Theorem 3.6(i),
every fixed point support in FP(G) restricts to a fixed point in FP(G|τi). Next consider a
collection of σi such that σi ∈ FP(G|τi∪τi+1) ∪ ∅ for all i ∈ [N]. First observe that each
σi ∈ FP(G|τi∪τi+1) actually survives to the full network, and so σi ∈ FP(G). This is guaranteed
because σi has no outgoing edges to nodes outside of τi ∪ τi+1 (Rule 2C). Moreover, by
Theorem 3.6(ii), we see that every union of surviving component fixed points yields a fixed
point of the full network, but additional fixed point supports are also possible.

SEQUENTIAL ATTRACTORS IN CTLNs 1623

4

A

1

2

3
5

6

7

8

9

B 1

2

3
only

4

5

6
and

7

8

9

but

Figure 17. Simple linear chain. (A) An example simple linear chain together with its FP(G). The first row
of FP(G) gives the surviving fixed points from each component subgraph; the second row shows that all unions
of these component fixed points are also in FP(G) (Theorem 3.6(ii)); the third row shows the additional fixed
point supports in FP(G) that arise from the broader menu (Theorem 3.6(i)). (B) FP(G|τi) for each component
subgraph from A, and the list of which of these supports survive the addition of the next component in the chain.

7

1

2

3

4

5

6

Figure 18. Simple feedforward network. A feedforward network generalizing the conditions of the simple
linear chain. Notice that FP(G) is not closed under unions of surviving component fixed points, since 123, 456 ∈
FP(G) but 123456 /∈ FP(G).

A natural generalization of simple linear chains is simple feedforward networks where G
consists of ordered component subgraphs such that the only edges allowed between components
are from a smaller numbered component to a larger one, and again we require that for any
pair τi and τk with k > i, each j ∈ τi either sends edges to every node in τk or to no nodes
in τk. Given that these simple feedforward networks have such similar structure to that of
the simple linear chains, we might hope that an analogous result to Theorem 3.6 holds for
these networks. These simple feedforward networks do have a simply-embedded partition
structure, and so Theorem 3.6(i) holds for these networks as well (as an immediate corollary
of Theorem 1.4). But an analogue of Theorem 3.6(ii) does not hold. Specifically, survival of
component fixed points does not guarantee that the union of these component supports will
yield a fixed point. Figure 18 provides an explicit counterexample: we see that the 3-cycles
123 and 456 both survive to FP(G) (by Rule 1), but their union 123456 /∈ FP(G) since it is
uniform in-degree 1 with two outgoing edges to node 7.

1624 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

3.4. Strongly simply-embedded partitions. Recall that {τ1| · · · |τN} is a simply-embedded
partition of a graph G if each component τi is simply-embedded in G so that every node in τi
is treated identically by the rest of the graph; specifically, if any node outside of τi sends an
edge to one node in τi, then it sends edges to every node in τi. In this context, there is still
freedom allowing nodes to treat different components differently, e.g., node k may send edges
to all nodes in τi, but send no edges to nodes in τj . In this subsection, we consider graphs
with a more rigid partition structure, which we call a strongly simply-embedded partition. In
these graphs, each node must treat all the components identically. More precisely, we have
the following.

Definition 3.7 (strongly simply-embedded partition). Let G be a graph with a partition of its
nodes {τ1| · · · |τN}. The partition is called strongly simply-embedded if for every node j in
G, either j → k for all k /∈ τi or j ̸→ k for all k /∈ τi, where τi is the component containing j.

Notice that in a strongly simply-embedded partition, each node j either projects edges
onto every other node outside its component τi (in which case, we say that j is a projector
onto [n] \ τi) or it does not project any edges to nodes outside its component (in which case,
we say that j is a nonprojector onto [n]\ τi). The simplest examples of graphs with a strongly
simply-embedded partition are disjoint unions and clique unions, which are building block
constructions first studied in [11]. In a disjoint union of component subgraphs G|τ1 , . . . , G|τN ,
there are no edges between components (see Figure 19A). In this case, every node in G is a

C D

10 9

8

5 7

6

4

21

3

13 11

12
76

21

5 4

3

A B

76

21

5 4

3
76

21

5 4

3

disjoint union clique union

Figure 19. Strongly simply-embedded partitions. Four example graphs with a strongly simply-embedded
partition, characterized by the fact that each node treats all the other components identically. Thus, any node
that sends an edge out to one component must in fact send edges out to every component (i.e., it must be a
projector onto the rest of the graph). Projector nodes are colored brown. (A) A disjoint union. (B) A clique
union. (C)–(D) Example graphs with a mix of projector and nonprojector nodes within each component.

SEQUENTIAL ATTRACTORS IN CTLNs 1625

nonprojector onto the rest of the graph. At the other extreme, a clique union has bidirectional
edges between every pair of nodes in different components. In a clique union, every node is
a projector onto the rest of the graph (see Figure 19B). More generally, strongly simply-
embedded partitions can have a mix of projector and nonprojector nodes even within the
same component, as shown in Figures 19C and D (projector nodes are colored brown and
have outgoing edges to every component).

Similar to simple linear chains, it turns out that strongly simply-embedded partitions
also have the property that FP(G) is closed under unions of surviving fixed point supports
of the component subgraphs. With the added structure of the strongly simply-embedded
partition, though, we can actually say something stronger—FP(G) can be fully determined
from knowledge of the component fixed point supports together with knowledge of which of
those component fixed points survive in the full network. This complete characterization of
FP(G) is given in Theorem 3.8 below.

Theorem 3.8. Suppose G has a strongly simply-embedded partition {τ1| . . . |τN}, and let

σi
def
= σ ∩ τi for any σ ⊆ [n]. Then σ ∈ FP(G) if and only if σi ∈ FP(G|τi) ∪ {∅} for each

i ∈ [N], and either
(a) every σi is in FP(G) ∪ {∅}, or
(b) none of the σi are in FP(G) ∪ {∅}.

In other words, σ ∈ FP(G) if and only if σ either is a union of surviving fixed points σi, at
most one per component, or is a union of dying fixed points, exactly one from every component.

A key to the proof of Theorem 3.8 is the significant additional constraints on the simply-
embedded structure imposed by the strongly simply-embedded partition. Specifically, with
a strongly simply-embedded partition, not only is the original partition {τ1| · · · |τN} simply-
embedded, but also every coarsening of the partition (where the components are unions of the
τi) is simply-embedded. Notice this property does not hold in general for simply-embedded
partitions. For example, given a cyclic union on {τ1| · · · |τN}, the coarser partition {τ1 ∪
τ2 | τ3 ∪ · · · ∪ τN} is not a simply-embedded partition since not all nodes in τ1 ∪ τ2 are treated
identically by the rest of the graph: the nodes in τ1 receive edges from τN , while the nodes in
τ2 do not. The guarantee of the simply-embedded property for every coarser partition enables
an inductive proof to fully nail down FP(G) for strongly simply-embedded partitions.

As an application of Theorem 3.8, we can immediately recover characterizations of the
fixed points of disjoint unions and clique unions previously given in [11, Theorems 11 and
12]. In a disjoint union, every component fixed point support survives to the full network
since it has no outgoing edges (by Rule 2: inside-out domination). Thus, for a disjoint union,
FP(G) consists of all the fixed points of type (a) from Theorem 3.8: unions of (surviving)
component fixed points σi, at most one per component. In contrast, in a clique union, every
component fixed point support dies in the full network since it has a target that outside-in
dominates it (in fact, every node outside of τi is a target of any subset of τi). Thus, for a
clique union, FP(G) consists of all the fixed points of type (b): unions of (dying) component
fixed points σi, exactly one from every component. Both the disjoint union and the clique
union characterizations of FP(G) [11, Theorems 11 and 12] are now immediate corollaries of
Theorem 3.8, and the earlier proofs of these results in [11] have a similar flavor to the proof
of Theorem 3.8, which we provide in the appendix, section SM1.6.

1626 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

5 6

4

1

3

2

7
8

A B

Figure 20. Strongly simply-embedded partition with FP(G). (A) A graph with a strongly simply-embedded
partition {τ1|τ2|τ3}. Projector nodes are colored brown. (B) (Top) FP(G|τi) for each component subgraph
together with the supports from each component that survive within the full graph. (Bottom) FP(G) for the
strongly simply-embedded partition graph. The first two lines of FP(G) consist of unions of surviving fixed
points, at most one per component. The third line gives the fixed points that are unions of dying fixed point
supports, exactly one from every component.

Corollary 3.9. Let G be a graph with partition {τ1| · · · |τN}.
(a) If G is a disjoint union of G|τ1 , . . . , G|τN , then σ ∈ FP(G) if and only if σi ∈ FP(G|τi)∪

{∅} for all i ∈ [N].
(b) If G is a clique union of G|τ1 , . . . , G|τN , then σ ∈ FP(G) if and only if σi ∈ FP(G|τi)

for all i ∈ [N].

More generally, though, a strongly simply-embedded partition can have a mix of surviving
and dying component fixed points, so that FP(G) has a mix of both type (a) and type (b)
fixed point supports. Figure 20A gives an example of a strongly simply-embedded partition,
and panel B shows both the set of component fixed point supports, FP(G|τi) and the subset of
those that survive to yield fixed points of the full network. Since there are dying fixed points
in every component, we see that FP(G) has a mix of both type (a) and type (b) fixed point
supports.

4. Applications to sequential attractor prediction. In this section, we consider a num-
ber of networks of size n = 5 to show how directional cycle graph architecture is predic-
tive of the structure of corresponding sequential attractors, particularly when a graph has a
simply-embedded directional cycle representation. From this analysis, we see that these graph
structures are useful not only for predicting the set of fixed points of a network, but also for
explicitly connecting architecture to the pattern of sequential neural activity that emerges in
attractors.

We focus our analysis on a subset of the graphs of size n = 5 with the special property that
FP(G) = {12345}, i.e., the graphs have a unique fixed point, which has full support. In prior
work [32], these types of networks, known as core motifs, were observed to produce attractors
in which all the neurons are highly active, as opposed to the activity being concentrated on
only a subnetwork of neurons. As a result, the global connectivity is relevant to shaping
the activity of all attractors in these networks, and thus they are particularly well suited to
analysis with the directional cycle framework. The networks analyzed here were taken from
[9], which provided a comprehensive analysis of all the attractors of CTLNs of size n = 5 with

SEQUENTIAL ATTRACTORS IN CTLNs 1627

ε = 0.51, δ = 1.76, θ = 1; we follow the numbering of graphs used there and focus on the
sequential attractors that emerge for that choice of parameters.

Figure 21 shows a sampling of graphs drawn in a way that highlights their directional
cycle structure. Observe that for the cyclic unions and the more general simply-embedded
directional cycles, the corresponding attractor has activity that flows through the components
in precisely the cyclic order dictated by the directional cycle. For components that are cliques,
the activity of the nodes in the clique is perfectly synchronized and thus only the activity of
the highest-numbered node is visible in the plots. Also notice that the activity of nodes in
a synchronous component is typically lower than that of the singleton components because
there is competition among the nodes within a component, and the total population activity
is bounded. When a component is not a clique, as in graph 23, we see that the activity may

cyclic unions
1

3

4
5

2

11.

directional cycles
34. 1

2
3

5

4

time

fir
in

g
ra

te

0.7

0 20 6040

31. 1

2 3

4 5

fir
in

g
ra

te

time

0.7

0 20 6040

16.

fir
in

g
ra

te

0.7

time
0 20 6040

time0 20 6040

fir
in

g
ra

te

0.7

simply-embedded directional cycles

18.
1

42
3

5 time

fir
in

g
ra

te

0.7

0 20 6040

1

42
3

5 time

fir
in

g
ra

te

0.7

0 20 6040

23.

29.
1

2 3

4 5 time0 20 6040

fir
in

g
ra

te

0.7

1

42
3

5

13. 1

3

4
5

2

time0 20 6040

fir
in

g
ra

te

0.7

39. 4

1 5

2 3
time

0 20 6040

fir
in

g
ra

te

0.7

Figure 21. Example graphs of size 5. A collection of example n = 5 graphs of different types and their
corresponding dynamic attractors for ε = 0.51, δ = 1.76, θ = 1. The graphs are numbered following the ordering
given in [9], which extensively catalogued FP(G) and the dynamic attractors for all graphs of size 5 for this
parameter choice.

1628 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

cycle through the nodes in the component before the activity flows on to the next component
in the directional cycle.

When a graph only has directional cycle representations that do not coincide with a simply-
embedded partition, this architecture can still give insight into the sequential attractor, but
this is not guaranteed. For example, for graph 34 in Figure 21, we see that the neural activity
cycles through the components in the cyclic order of the directional cycle, despite the absence
of a simply-embedded partition. In this attractor, there is interesting activity among nodes
2, 3, and 4 (the second component): the firing rate curve of node 2 forms an “envelope” over
those of 3 and 4 as a result of the bidirectional edges 2 ↔ 3 and 2 ↔ 4. For graph 31, we
see that the activity also appears to cycle through the components in cyclic order, but the
activity in the second component is not synchronized, despite this component being a clique;
specifically, node 2 fires at a higher rate than 3, although they both peak at roughly the same
time. This is likely because node 2 receives an extra input from node 4 that node 3 does not
receive, which is precisely why this directional cycle representation does not correspond to
a simply-embedded partition. Finally, graph 39 has a single directional cycle representation,
but this structure does not appear to give any insight into the pattern of neural activity in
the corresponding attractor.

It is worth noting that a given graph may have multiple directional cycle representations.
Figure 22 shows the three directional cycle representations of graph 21 together with its se-
quential attractor. We see that the simply-embedded directional cycle is the best predictor
of the attractor since it not only reflects the sequence in which the nodes will fire, but it also
predicts that nodes 1 and 5 will be the highest firing, as they are the singleton components.
In Figure 21, we have the same phenomenon for graph 13: it has seven directional cycle rep-
resentations, but only the one shown is simply-embedded, and this is the only representation
that reflects the activity in the attractor.

From these examples, it appears that directional cycle architecture and simply-embedded
partitions are useful for understanding the structure of the sequential attractors of a network.
The role of simply-embedded partitions is somewhat surprising given that this structure was
primarily proposed for its utility in narrowing the set of possible fixed point supports, rather
than for any explicit expected impact on neural activity. One possible explanation for the

1

42
3

5

Graph 21
2

51
3

4

2

3 5

1 4
0 20 6040

fir
in

g
ra

te

time

0.7

simply-embedded directional cycle
with core components

directional cycle
with core components

directional cycle
with non-core components

A B C D

Figure 22. The three directional cycle representations of graph 21. (A) The simply-embedded directional
cycle representation of graph 21. (B)–(C) Directional cycle representations that are not from a simply-embedded
partition. (D) The global attractor of the CTLN for graph 21 with ε = 0.51, δ = 1.76, θ = 1. The sequence
of neural firing matches that of both of the directional cycle representations from A and B. But the structure
of the attractor (with neurons 1 and 5 high firing) is best represented by the simply-embedded directional cycle
from A, since singleton components yield the high-firing neurons in directional cycles.

SEQUENTIAL ATTRACTORS IN CTLNs 1629

importance of simply-embedded partitions in predicting dynamics is that in such a partition,
every node within a component receives identical inputs from the rest of the graph. This
makes it more likely that nodes within a simply-embedded component will fire together or at
least in close sequence in the corresponding attractor. Thus, whenever a graph has a nontrivial
simply-embedded partition, only directional cycle structures that respect that partition are
likely to predict the sequential structure of the attractor.

5. Conclusion. In this work, we investigated different architectures that give rise to se-
quential attractors. We considered cyclic unions and two generalizations of cyclic union ar-
chitecture: directional cycles and simply-embedded partitions. Computationally, we have
seen that directional cycles yield sequential attractors that traverse the components in cyclic
order. While we cannot yet prove that directional cycles produce these cyclic dynamics, The-
orem 1.2 showed that every fixed point support contains a cycle that hits every component
in cyclic order. Moreover, we have proven even stronger results about the fixed points of
cyclic unions, simply-embedded partitions, and simply-embedded directional cycles (Theo-
rems 1.1, 1.4, and 1.5).

Additionally, in section 4, we analyzed the sequential attractors of various networks of
size n = 5 through the lens of directional cycle and simply-embedded architectures. We found
that whenever a graph has a simply-embedded directional cycle structure, this architecture
nicely predicts the sequential activity of the dynamic attractor. Moreover, directional cy-
cles can provide insight into the expected sequential activity even when the partition is not
simply-embedded. Thus, we conclude that directional cycle and simply-embedded architec-
tures provide a useful framework for predicting (as well as engineering) persistent sequential
activity in threshold-linear networks.

REFERENCES

[1] M. Abeles, Local Cortical Circuits: An Electrophysiological Study, Springer, Berlin, 1982.
[2] M. Arriaga and E. B. Han, Dedicated hippocampal inhibitory networks for locomotion and immobility,

J. Neurosci., 37 (2017), pp. 9222–9238.
[3] Y. Aviel, E. Pavlov, M. Abeles, and D. Horn, Synfire chain in a balanced network, Neurocomput.,

44 (2002), pp. 285–292.
[4] A. Bel, R. Cobiaga, W. Reartes, and H. G. Rotstein, Periodic solutions in threshold-linear networks

and their entrainment, SIAM J. Appl. Dyn. Syst., 20 (2021), pp. 1177–1208.
[5] T. Biswas and J. E. Fitzgerald, A Geometric Framework to Predict Structure from Function in Neural

networks, https://arxiv.org/abs/2010.09660, 2022.
[6] D. A. Burke, H. G. Rotstein, and V. A. Alvarez, Striatal local circuitry: A new framework for

lateral inhibition, Neuron, 96 (2017), pp. 267–284.
[7] L. Carillo-Reid, J. K. Miller, J. P. Hamm, J. Jackson, and R. Yuste, Endogenous sequential

cortical activity evoked by visual stimuli, J. Neurosci., 35 (2015), pp. 8813–8828.
[8] L. L. Colgin, Rhythms of the hippocampal network, Nat. Rev. Neurosci., 17 (2016), pp. 239–249.
[9] C. Curto, K. Morrison, C. Parmelee, S. Garai, and J. Paik, n5-graphs-package, https://github.

com/ccurto/n5-graphs-package.
[10] C. Curto, J. Geneson, and K. Morrison, Stable Fixed Points of Combinatorial Threshold-Linear

Networks, https://arxiv.org/abs/1909.02947, 2019.
[11] C. Curto, J. Geneson, and K. Morrison, Fixed points of competitive threshold-linear networks, Neural

Comput., 31 (2019), pp. 94–155.
[12] C. Curto and K. Morrison, Pattern completion in symmetric threshold-linear networks, Neural Com-

put., 28 (2016), pp. 2825–2852.

https://arxiv.org/abs/2010.09660
https://github.com/ccurto/n5-graphs-package
https://github.com/ccurto/n5-graphs-package
https://arxiv.org/abs/1909.02947

1630 C. PARMELEE, J. LONDONO ALVAREZ, C. CURTO, AND K. MORRISON

[13] C. Curto, A. Degeratu, and V. Itskov, Encoding binary neural codes in networks of threshold-linear
neurons, Neural Comput., 25 (2013), pp. 2858–2903.

[14] C. Curto, A. Degeratu, and V. Itskov, Flexible memory networks, Bull. Math. Biol., 74 (2012), pp.
590–614.

[15] D. Egas Santander, S. Ebli, A. Patania, N. Sanderson, F. Burtscher, K. Morrison, and C.
Curto, Nerve theorems for fixed points of neural networks, in Research in Computational Topology
2, Assoc. Women Math. Ser. 30, E. Gasparovic, V. Robins, and K. Turner, eds., Springer, Cham,
2022.

[16] V. Ego-Stengel and M. A. Wilson, Disruption of ripple-associated hippocampal activity during rest
impairs spatial learning in the rat, Hippocampus, 20 (2010), pp. 1–10.

[17] E. Fino and R. Yuste, Dense inhibitory connectivity in neocortex, Neuron, 69 (2011), pp. 1188–1203.
[18] G. Girardeau, K. Benchenane, S. I. Weiner, G. Buzsáki, and M. B. Zugaro, Selective suppresion

of hippocampal ripples impairs spatial memory, Nature Neurosci., 12 (2009), pp. 1222–1223.
[19] S. Grillner and P. Wallén, Cellular bases of a vertebrate locomotor system—steering, intersegmental

and segmental co-ordination and sensory control, Brain Res. Rev., 40 (2002), pp. 92–106.
[20] B. Haider, M. Hausser, and M. Carandini, Inhibition dominates sensory responses in the awake

cortex, Nature, 493 (2013), pp. 97–100.
[21] G. Hayon, M. Abeles, and D. Lehmann, A model for representing the dynamics of a system of synfire

chains, J. Comput. Neurosci., 18 (2005).
[22] R. H. Hahnloser, H. S. Seung, and J. J. Slotine, Permitted and forbidden sets in symmetric

threshold-linear networks, Neural Comput., 15 (2003), pp. 621–638.
[23] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung, Digital

selection and analogue amplification coexist in a cortex-inspired silicon circuit, Nature, 405 (2000),
pp. 947–951.

[24] V. Itskov, C. Curto, E. Pastalkova, and G. Buzsáki, Cell assembly sequences arising from spike
threshold adaptation keep track of time in the hippocampus, J. Neurosci., 31 (2011), pp. 2828–2834.

[25] M. M. Karnani, M. Agetsuma, and R. Yuste, A blanket of inhibition: functional inferences from
dense inhibitory connectivity, Curr. Opin. Neurobiol., 26 (2014), pp. 96–102.

[26] A. Luczak, P. Barthó, S. L. Marguet, G. Buzsáki, and K. D. Harris, Sequential structure of
neocortical spontaneous activity in vivo, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 347–352.

[27] E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Curr.
Bio., 11 (2001), pp. R986–996.

[28] P. Malerba, G. P. Krishnan, J-M. Fellous, and M. Bazhenov, Hippocampal CA1 ripples as in-
hibitory transients, PLoS Comput. Biol., 12 (2016).

[29] K. Morrison and C. Curto, Predicting neural network dynamics via graphical analysis, in Algebraic
and Combinatorial Computational Biology, R. Robeva and M. Macaulay eds., Elsevier, Amsterdam,
2018.

[30] K. Morrison, A. Degeratu, V. Itskov, and C. Curto, Diversity of Emergent Dynamics in Compet-
itive Threshold-Linear Networks: A Preliminary Report, https://arxiv.org/abs/1605.04463, 2016.

[31] E. Pastalkova, V. Itskov, A. Amarasingham, and G. Buzsáki, Internally generated cell assembly
sequences in the rat hippocampus, Science, 321 (2008), pp. 1322–1327.

[32] C. Parmelee, S. Moore, K. Morrison, and C. Curto, Core motifs predict dynamic attractors in
combinatorial threshold-linear networks, PLOS ONE, 17 (2022), e0264456, https://doi.org/10.1371/
journal.pone.0264456.

[33] E. Stark, L. Roux, R. Eichler, and G. Buzsáki, Local generation of multineuronal spike sequences
in the hippocampal CA1 region, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. 10521–10526.

[34] H. S. Seung and R. Yuste, Appendix E: Neural networks, in Principles of Neural Science, 5th ed.,
McGraw-Hill, New York, 2012, pp. 1581–1600.

[35] M. A. Whittington, R. D. Traub, N. Kopell, B. Ermentrout, and E. H. Buhl, Inhibition-based
rhythms: Experimental and mathematical observations on network dynamics, Int. J. Psychophysiol.,
38 (2000), pp. 315–336.

[36] X. Xie, R. H. Hahnloser, and H. S. Seung, Selectively grouping neurons in recurrent networks of
lateral inhibition, Neural Comput., 14 (2002), pp. 2627–2646.

[37] R. Yuste, J. N. MacLean, J. Smith, and A. Lansner, The cortex as a central pattern generator, Nat.
Rev. Neurosci., 6 (2005), pp. 477–483.

https://arxiv.org/abs/1605.04463
https://doi.org/10.1371/journal.pone.0264456
https://doi.org/10.1371/journal.pone.0264456

	Introduction
	Directional graphs, chains, and cycles
	Preliminaries and prior graph rules
	Directional graphs
	Directional chains
	Directional cycles

	Simply-embedded structure and graph rules
	Simply-embedded partitions
	Directional cycles with a simply-embedded partition
	Simple linear chains
	Strongly simply-embedded partitions

	Applications to sequential attractor prediction
	Conclusion

