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SM1. Appendix: Supplemental Materials.

SM1.1. Background on fixed points and simply-added splits.
Characterizations of fixed point supports. To exploit previous characterizations of fixed

points in terms of their supports [SM2], we will restrict consideration to CTLNs that are
nondegenerate, as defined below.

Definition SM1.1. We say that a CTLN W = W (G, ε, δ) is nondegenerate if
• det(I −Wσ) ̸= 0 for each σ ⊆ [n], and
• for each σ ⊆ [n] and all i ∈ σ, the corresponding Cramer’s determinant is nonzero:
det((I −Wσ)i; θ) ̸= 0.

Note that almost all CTLNs are nondegenerate, since having a zero determinant is a highly
fine-tuned condition. The notation det(Ai; b) denotes the determinant obtained by replacing
the ith column of A with the vector b, as in Cramer’s rule. In the case of a restricted matrix,
((Aσ)i; bσ) denotes the matrix obtained from Aσ by replacing the column corresponding to
the index i ∈ σ with bσ (note that this is not typically the ith column of Aσ).

When a CTLN is nondegenerate, there can be at most one fixed point per support. Specif-
ically, if x∗ is a fixed point with support σ, then for all i ∈ σ, we have x∗i = xσi where

(SM1.1) xσ
def
= θ(I −Wσ)

−11σ,

and for all k /∈ σ, we have x∗k = 0. (Note that 1σ denotes the vector of all ones with length |σ|.)
To check if a given subset σ ⊆ [n] is the support of a fixed point of a CTLN W = W (G, ε, δ),
one method is to compute the putative value of the fixed point via Equation (SM1.1) and see
if it actually satisfies the TLN equations. Specifically, we see that σ is the support of a fixed
point of W if and only if

(i) xσi > 0 for all i ∈ σ (“on”-neuron conditions), and
(ii)

∑
i∈σ Wkix

σ
i + θ ≤ 0 for all k /∈ σ (“off”-neuron conditions).

(This is straightforward, but see [SM1] for more details.) Intuitively, σ is the support of a
fixed point of the CTLN if the fixed point xσ of the linear system restricted to σ has only
positive entries, so that all the neurons in σ are “on” at the fixed point, and if the inputs
to all the external nodes are sufficiently inhibitory (negative) to ensure that those external
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neurons remain “off”. Since condition (i) above only depends on Wσ, a necessary condition for
σ ∈ FP(G) is that σ ∈ FP(G|σ), where G|σ refers to the subgraph of G obtained by restricting
to the vertices of σ and the edges between them. A fixed point σ ∈ FP(G|σ) survives the
addition of other nodes k /∈ σ precisely when condition (ii) is satisfied.

Unfortunately, the “on” and “off”-neuron characterization of fixed point supports relies
on actually solving for a fixed point using (I −Wσ)

−1, and thus is difficult to directly connect
to the graph structure encoded in W = W (G, ε, δ). In [SM2], an alternative characterization
was developed in terms of Cramer’s determinants (which are directly related to the values of
xσi by Cramer’s rule). Specifically, for any σ ⊆ [n], we define sσi to be the relevant Cramer’s
determinant:

(SM1.2) sσi
def
= det((I −Wσ∪{i})i; bσ∪{i}), for each i ∈ [n].

In [SM2, Lemma 2], a formula for sσk was proven that directly connects it to the relevant
quantity in the “off”-neuron condition:

(SM1.3) sσk =
∑
i∈σ

Wkis
σ
i + θ det(I −Wσ) for any k ∈ [n].

Combining this with Cramer’s rule, it was shown that FP(G) can be fully characterized in
terms of the signs of the sσi . It turns out these signs are also connected to the index of a fixed
point. For each fixed point of a CTLN W = W (G, ε, δ), labeled by its support σ ∈ FP(G),
we define the index as

idx(σ)
def
= sgn det(I −Wσ).

Since we assume our CTLNs are nondegenerate, det(I −Wσ) ̸= 0 and thus idx(σ) ∈ {±1}.
Theorem SM1.2 (sign conditions (Theorem 2 in [SM2])). Let G be a graph on n neurons

and W = W (G, ε, δ) be a CTLN with graph G. For any nonempty σ ⊆ [n],

σ is a permitted motif ⇔ sgn sσi = sgn sσj for all i, j ∈ σ.

When σ is permitted, sgn sσi = sgn det(I −Wσ) = idx(σ) for all i ∈ σ.
Furthermore,

σ ∈ FP(G) ⇔ sgn sσi = sgn sσj = − sgn sσk for all i, j ∈ σ, k ̸∈ σ.

From this result, we immediately obtain the following corollary.

Corollary SM1.3 (Corollary 2 in [SM2]). Let σ ⊆ [n]. The following are equivalent:
1. σ ∈ FP(G)
2. σ ∈ FP(G|τ ) for all σ ⊆ τ ⊆ [n]
3. σ ∈ FP(G|σ) and σ ∈ FP(G|σ∪k) for all k /∈ σ
4. σ ∈ FP(G|σ∪k) for all k /∈ σ

This shows that for σ to support a fixed point of the full network, it must support a fixed
point in its own subnetwork, as well as every other subnetwork in between. Moreover, by
(3), it is possible to check survival just one external node k at a time. Note that survival
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of an added node k is fully determined by sgn sσk by Theorem SM1.2. Moreover, since sσk =∑
i∈σ Wkis

σ
i + θ det(I −Wσ), we see that sgn sσk only depends on the outgoing edges from σ

to k (captured in Wki values) as well as the edges within σ (reflected in sσi and det(I −Wσ)).
Thus, only the outgoing edges from σ are relevant to its survival in a larger network.

Background on simply-added splits. It turns out that the sσi are easy to compute when a
graph has simply-added structure. Recall that in a simply-embedded partition, every node
within a component receives identical incoming edges from the rest of the graph. This is a
special case of the more general notion of a simply-added split.

Definition SM1.4 (simply-added split). Let G be a graph on n nodes. For any nonempty
ω, τ ⊆ [n] such that ω ∩ τ = ∅, we say ω is simply-added onto τ if for each j ∈ ω, either j
is a projector onto τ , i.e., j → k for all k ∈ τ , or j is a nonprojector onto τ , so j ̸→ k for
all k ∈ τ . In this case, we say that τ is simply-embedded in G, and we say that (ω, τ) is a
simply-added split of the subgraph G|σ, for σ = ω ∪ τ .

Note that when a graph has a simply-embedded partition {τ1| · · · |τN}, we have a simply-
added split for every τi; specifically, [n] \ τi is simply-added onto τi, since by definition, τi is
simply-embedded in G. In [SM2], it was shown that whenever a simply-added split exists, we
can understand many of the sσi values as scalings of sτi from the smaller component subgraph
G|τ .

Theorem SM1.5 (Theorem 3 in [SM2]). Let G be a graph on n nodes, and let ω, τ ⊆ [n]

be such that ω is simply-added to τ . For σ ⊆ ω ∪ τ , define σω
def
= σ ∩ω and στ

def
= σ ∩ τ . Then

sσi =
1

θ
sσω
i sστ

i = αsστ
i for each i ∈ τ ,

where α = 1
θs

σω
i has the same value for every i ∈ τ .

SM1.2. Proofs of Theorems 1.4 and other results on simply-embedded partitions.
Theorem SM1.5 can immediately be leveraged for simply-embedded partitions to connect the
sσj values to the sσi

j values from the component subgraphs. This will be key to the proof of
Theorem 1.4.

Lemma SM1.6. Let G have a simply-embedded partition {τ1| · · · |τN}, and consider σ ⊆ [n].

Let σi
def
= σ ∩ τi. Then for any σi ̸= ∅,

sgn sσj = sgn sσk ⇔ sgn sσi
j = sgn sσi

k , for all j, k ∈ τi.

Proof. By definition of simply-embedded partition, G has a simply-added split where [n]\τi
is simply-added onto τi (and thus also onto σi). Thus by Theorem SM1.5, sσj = αsσi

j , where

α = 1
θs

σ\σi

j is identical for all j ∈ τi. Hence, for all j, k ∈ τi, we have that sgn sσj = sgn sσk if
and only if sgnαsσi

j = sgnαsσi
k if and only if sgn sσi

j = sgn sσi
k .

Theorem 1.4 (reprinted below) now follows directly from Lemma SM1.6 together with the
sign conditions characterization of fixed point supports (Theorem SM1.2).
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Theorem 1.4 (FP(G) menu for simply-embedded partitions). Let G have a simply-

embedded partition {τ1| · · · |τN}. For any σ ⊆ [n], let σi
def
= σ ∩ τi. Then

σ ∈ FP(G) ⇒ σi ∈ FP(G|τi) ∪ {∅} for all i ∈ [N ].

In other words, every fixed point support of G is a union of component fixed point supports
σi, at most one per component.

Proof. For σ ∈ FP(G), we have

sgn sσj = sgn sσk = − sgn sσl

for any j, k ∈ σi and l ∈ τi \σi, by Theorem SM1.2 (sign conditions). Then by Lemma SM1.6,
we see that whenever σi ̸= ∅,

sgn sσi
j = sgn sσi

k = − sgnσi
l ,

and so σi satisfies the sign conditions in G|τi . Thus σi ∈ FP(G|τi) for every nonempty σi.

Next we prove that whenever a graph G has a simply-embedded partition and there is a
locally removable node (i.e. a node whose removal does not affect its component FP(G|τi)),
then that node is also globally removable with no impact on FP(G) (Theorem 3.3 reprinted
below for convenience).

Theorem 3.3 (removable nodes). Let G have a simply-embedded partition {τ1| · · · |τN}.
Suppose there exists a node j ∈ τi such that FP(G|τi) = FP(G|τi\{j}). Then FP(G) =
FP(G|[n]\{j}).

Proof. To see that FP(G) ⊆ FP(G|[n]\{j}), notice that for all σ ∈ FP(G), we have σ ⊆
[n] \ {j} by Theorem 1.4. Then by Corollary SM1.3(2), we must have σ ∈ FP(G|[n]\{j}), and
so FP(G) ⊆ FP(G|[n]\{j}).

For the reverse containment, we will show that every fixed point in FP(G|[n]\{j}) survives
the addition of node j by appealing to Theorem SM1.2 (sign conditions). There are two cases

to consider: σi = ∅ and σi ̸= ∅, where j ∈ τi and σi
def
= σ ∩ τi.

Case 1: σi = ∅. Since j is not contained in the support of any fixed point of G|τi , there must
be at least one other node k in τi, since FP(G|τi) cannot be empty. Since G is a simply-
embedded partition, we have that [n] \ τi is simply-embedded onto τi meaning that every
node in τi receives identical inputs from the rest of the graph. Recall from Equation (SM1.3),
that sσj =

∑
ℓ∈σ Wjℓsℓ + θ det(I −Wσ). Then since σ ⊆ [n] \ τi, we have that j and k receive

identical inputs from σ, so Wjℓ = Wkℓ for all ℓ ∈ σ, and thus sσj = sσk . Since σ ∈ FP(G|[n]\{j}),
we have sgn sσk = − sgn sσℓ for all ℓ ∈ σ by Theorem SM1.2 (sign conditions). Thus, we also
have sgn sσj = − sgn sσℓ and σ survives the addition of node j, so σ ∈ FP(G).
Case 2: σi ̸= ∅. First observe that G|[n]\{j} has the same simply-embedded partition structure
as G, but with τi \ {j} rather than τi. Thus σ ∈ FP(G|[n]\{j}) implies that σi ∈ FP(G|τi\{j})
by Theorem 1.4 (menu). By hypothesis, FP(G|τi\{j}) = FP(G|τi), and so σi ∈ FP(G|τi). Then
by Theorem SM1.2 (sign conditions), since j ̸∈ σi, we have sgn sσi

j = − sgn sσi
ℓ for all ℓ ∈ σi.

And by Lemma SM1.6, this ensures sgn sσj = − sgn sσℓ for all ℓ ∈ σi. Since σ ∈ FP(G|[n]\{j}),
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we have that sgn sσℓ is identical for all ℓ ∈ σ, not just ℓ ∈ σi, and so sgn sσj = − sgn sσℓ for
all ℓ ∈ σ. Thus by Theorem SM1.2 (sign conditions), σ survives the addition of node j, so
σ ∈ FP(G).

Corollary 3.4. Let G have a simply-embedded partition {τ1| · · · |τN} and suppose there
exists j ∈ τi such that FP(G|τi) = FP(G|τi\{j}). Let G′ be any graph that can be obtained from
G by deleting or adding all the outgoing edges from j to any component τk with k ̸= i. Then
FP(G′) = FP(G).

Proof. Observe that by deleting all the outgoing edges from j to a component τk, node
j has simply changed from a projector onto τk to a nonprojector. Alternatively, by adding
all the outgoing edges to τk, node j switches from being a nonprojector onto τk to being a
projector. In either case, j is still simply-added onto τk, and so G′ has the same simply-
embedded partition {τ1| · · · |τN} as G had. Additionally, since no edges within τi have been
altered, we have that FP(G′|τi) = FP(G|τi) = FP(G|τi\{j}) = FP(G′|τi\{j}). Thus both G
and G′ satisfy the hypotheses of Theorem 3.3. Moreover, G|[n]\{j} = G′|[n]\{j} since the only
differences between G and G′ were in edges involving node j, which has been removed. Thus,
by Theorem 3.3, FP(G) = FP(G|[n]\{j}) = FP(G′).

SM1.3. Background on bidirectional simply-added splits. In order to prove the proper-
ties of FP(G) for simple linear chains and strongly simply-embedded partitions, we first need
to review some background from [SM2] on bidirectional simply-added splits. These are parti-
tions into two components in which each component is simply-added onto the other component
(so the simply-added property is bidirectional).

Definition SM1.7 (bidirectional simply-added split). Let G be a graph on n nodes. For any
nonempty ω, τ ⊆ [n] such that [n] = ω ∪ τ and ω ∩ τ = ∅, we say that G has a bidirectional
simply-added split (ω, τ) if ω is simply-added onto τ and τ is simply-added onto ω. In other
words, for all j ∈ ω, either j → k for all k ∈ τ or j ̸→ k for all k ∈ τ , and for all k ∈ τ ,
either k → j for all j ∈ ω or k ̸→ j for all j ∈ ω.

Note that a simply-embedded partition consisting of just two components {τ1 | τ2} is a
bidirectional simply-added split. But with larger simply-embedded partitions, {τ1| · · · |τN}, it
is not generally true that (τi, [n] \ τi) is a bidirectional simply-added split. However, strongly
simply-embedded partitions will always satisfy that (τi, [n] \ τi) is a bidirectional simply-added

Figure SM1. Bidirectional simply-added split. In this graph ω is simply-added to τ and vice versa.
Thus ω is composed of two classes of nodes: projectors onto τ (top dark gray region) and nonprojectors onto τ
(bottom light gray region). Similarly, τ can be decomposed into projectors and nonprojectors onto ω. The thick
colored arrows indicate that every node of a given region sends an edge to every node in the other region. The
edges within ω and τ can be arbitrary.
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split. This is because in a strongly simply-embedded partition, any j ∈ τi treats all the other
components identically, so it is either a projector or a non-projector onto all of [n] \ τi.

In [SM2], it was shown that FP(G) is fully determined by the fixed points of the com-
ponent subgraphs G|ω and G|τ when (ω, τ) is a bidirectional simply-added split. To make
this characterization precise, we first need some notation. For any ω ⊆ [n], let Sω denote
the fixed point supports of G|ω that survive to be fixed points of G, and let Dω denote the
non-surviving (dying) fixed points:

Sω
def
= FP(G|ω) ∩ FP(G), and Dω

def
= FP(G|ω) \ Sω.

Theorem SM1.8 (Theorem 14 in [SM2]). Let G be a graph with bidirectional simply-added

split [n] = ω∪τ . For any nonempty σ ⊆ [n], let σ = σω∪στ where σω
def
= σ∩ω and στ

def
= σ∩τ .

Then σ ∈ FP(G) if and only if one of the following holds:
(i) στ ∈ Sτ ∪ {∅} and σω ∈ Sω ∪ {∅}, or
(ii) στ ∈ Dτ and σω ∈ Dω.

In other words, σ ∈ FP(G) if and only if σ is either a union of surviving fixed points σi, at
most one from ω and at most one from τ , or it is a union of dying fixed points, exactly one
from ω and one from τ .

We will see that both simple linear chains and strongly simply-embedded partitions have
bidirectional simply-added splits within them, and so Theorem SM1.8 will be key to the proofs
characterizing their FP(G). First, though, we take a brief detour to explore the special case of
bidirectional simply-added splits with singletons in a component, in order to see some special
internal structure of FP(G) in these cases.

SM1.4. Internal structure of FP(G) with singletons. A special case of a bidirectional
simply-added split occurs whenever a graph contains a node that is projector/nonprojector
onto the rest of the graph. Specifically, since any subset is always simply-added onto a
single node j trivially, we see that we have a bidirectional simply-added split ({j}, [n] \ {j})
whenever j is either a projector or a nonprojector onto the rest of the graph. Recall that
if j is a nonprojector onto [n] \ {j}, then j has no outgoing edges in G, and so it is a sink.
Moreover, we have seen that sinks are the only single nodes that can support fixed points since
a singleton {j} is trivially uniform in-degree 0, and thus only survives when it has no outgoing
edges, by Rule 1. Combining this observation with the bidirectional simply-added split for
a sink, we see there is certain internal structure that must be present in FP(G) whenever it
contains any singleton sets.

Proposition SM1.9. Let G be a graph such that there is some singleton {j} ∈ FP(G). Then
for any σ ∈ FP(G) (with σ ̸= {j}),

(1) If j /∈ σ, then σ ∪ {j} ∈ FP(G); i.e., FP(G) is closed under unions with singletons.
(2) If j ∈ σ, then σ \ {j} ∈ FP(G); i.e., FP(G) is closed under set differences with

singletons.

Proof. First notice that since {j} ∈ FP(G), j is a sink in G by Rule 1 (since a singleton is
trivially uniform in-degree 0, and thus survives exactly when it has no outgoing edges), and
therefore ({j}, [n] \ {j}) is a bidirectional simply-added split.
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To prove (1), suppose j /∈ σ. Since ({j}, [n] \ {j}) is a bidirectional simply-added split,
Theorem SM1.8 guarantees that σ ∪ {j} ∈ FP(G) if and only if {j}, σ both survive or both
die. By assumption, both sets are in FP(G), so both survive. Thus, σ ∪ {j} ∈ FP(G).

To prove (2), suppose j ∈ σ. By Theorem SM1.8, σ ∈ FP(G) if and only if {j}, σ \ {j}
both survive or both die. By assumption, {j} ∈ FP(G), and so σ \ {j} ∈ FP(G) as well.

Corollary SM1.10. Let G be a graph such that FP(G) contains singleton sets {j1}, {j2}, . . . ,
{jℓ}, and let S = {j1, . . . , jℓ} be the set of singletons. Then for any σ ∈ FP(G) and any ω ⊆ S

σ ∪ ω ∈ FP(G).

Moreover, let τ = [n] \ S. Then FP(G) has the direct product structure:

FP(G) ∪ {∅} ∼= ({σ ∈ FP(G|τ ) | σ ∈ FP(G)} ∪ {∅})× P(S),

where P(S) denotes the power set of S. In other words, every fixed point support in FP(G)
has the form σ ∪ ω where σ ∈ FP(G|τ ) ∪ {∅} and ω ⊆ S.

Proof. The first statement follows by iterating Proposition SM1.9(1) |ω| times for each of
the added singletons in ω. To prove the second statement, we will show that every ν ∈ FP(G)
is the union of a surviving fixed point σ ⊆ τ (or the empty set) with a subset of S (including
empty set); moreover, every such union yields a fixed point (other than ∅ ∪ ∅). The direct
product structure of FP(G) immediately follows from this decomposition of the fixed point
supports. By the first result, we see that every such union is contained in FP(G). Thus, all
that remains to show is that every element of FP(G) is such a union. Let ν ∈ FP(G) and let
σ = ν ∩ τ and ω = ν ∩S, so that ν = σ ∪ ω. If σ or ω are empty, then we’re done, so suppose
both are nonempty. Then we can iteratively apply Proposition SM1.9(2) |ω| times to see that
σ ∈ FP(G). Thus, every fixed point support arises as a union of some σ ⊆ τ with an arbitrary
subset of S, where σ ∈ FP(G) ∪ {∅} (and for every σ ∈ FP(G), we have σ ∈ FP(G|τ ) as well
by Corollary SM1.3(2)).

SM1.5. Simple linear chain proofs. In this section, we prove Theorem 3.6 showing that
FP(G) for a simple linear chain is closed under unions of component fixed points σi that
survive in G|τi∪τi+1 . The proof relies on the existence of a bidirectional simply-added split
within a simple linear chain between the first N − 1 components of the chain and τN .

Another key to the proof is the fact that if σi ∈ FP(G|τi∪τi+1), then it turns out that
σi ∈ FP(G); in other words, survival of the addition of the next component is sufficient to
guarantee survival in the full network. This occurs because σi has no outgoing edges to any
nodes outside of τi ∪ τi+1. Lemma SM1.11 shows that whenever a permitted motif has no
outgoing edges to a node k, then it is guaranteed to survive the addition of node k.

Lemma SM1.11. Let G be a graph on n nodes, let σ ⊆ [n] be nonempty, and k ∈ [n] \ σ.
If i ̸→ k for all i ∈ σ, then

σ ∈ FP(G|σ∪{k}) ⇔ σ ∈ FP(G|σ).

In other words, if σ has no outgoing edges to node k then σ is guaranteed to survive the
addition of node k whenever σ is a permitted motif.
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Proof. For any j ∈ σ, we have that j inside-out dominates k. Thus by Rule 2c, σ ∈
FP(G|σ∪{k}) if and only if σ ∈ FP(G|σ).

The proof of Lemma SM1.11 illustrated how inside-out graphical domination can be used
to guarantee survival of a permitted motif. The presence of such a graphical domination rela-
tionship is a sufficient condition to guarantee survival, but unfortunately it is not a necessary
condition, so the absence of such a relationship does not guarantee that a permitted motif
does not survive. It turns out though, that graphical domination is a special case of gen-
eral domination, and the presence/absence of a general domination relationship does precisely
characterize survival of a fixed point support. To complete the proof of Theorem 3.6, we must
appeal to general domination, and so we briefly review that concept here and the complete
characterization of fixed point supports that it provides. (For a more detailed discussion of
general domination, see section 6 of [SM2]).

Recall that Theorem SM1.2 (sign conditions) gives a complete characterization of when
a subset σ supports a fixed point in terms of the signs of the Cramer’s determinants sσi . For
general domination, these Cramer’s determinants again play a key role, but in this case it
will be the magnitudes of sσi that are relevant, irrespective of their signs. Specifically, for any
j ∈ [n], we define the relevant domination quantity:

wσ
j =

∑
i∈σ

W̃ji|sσi |,

where W̃ = −I +W , so that W̃ji = Wji if j ̸= i and W̃ji = −1 if j = i.
We say that k dominates j with respect to σ, if wσ

k > wσ
j . It turns out that σ ∈ FP(G)

precisely when these domination quantities are perfectly balanced within σ, so that σ is
domination-free, and when every external node k /∈ σ is inside-out dominated by nodes inside
σ:

Theorem SM1.12 (general domination ([Theorem 15 in [SM2])). Let G be a graph on n

neurons and W = W (G, ε, δ) be a CTLN with graph G, and consider σ ⊆ [n]. Let W̃ = −I+W
and wσ

j be as above. Then

σ ∈ FP(G|σ) ⇔ wσ
i = wσ

j for all i, j ∈ σ.

If σ ∈ FP(G|σ), then σ ∈ FP(G) if and only if for each k /∈ σ, there exists j ∈ σ such that
wσ
j > wσ

k , i.e. such that j inside-out dominates k.

It turns out that the simply-embedded partition structure of the simple linear chain with
the added restriction that τi does not send edges to any τk other than τi+1 gives significant
structure to the values of sσi and thus to the domination quantities wσ

j . This structure is the
key to the proof of Theorem 3.6.

Theorem 3.6 (simple linear chains). Let G be a simple linear chain with components
τ1, . . . , τN .

(i) If σ ∈ FP(G), then σi ∈ FP(G|τi) ∪ {∅} for all i ∈ [N ], where σi = σ ∩ τi.
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(ii) Consider a collection {σi}i∈[N ] of σi ∈ FP(G|τi) ∪ {∅}. If additionally σi ∈
FP(G|τi∪τi+1) ∪ {∅} for all i ∈ [N ], then⋃

i∈[N ]

σi ∈ FP(G).

In other words, FP(G) is closed under unions of component fixed point supports that survive
in G|τi∪τi+1.

Proof. (i) follows directly from Theorem 1.4 by noting that the simple linear chain struc-
ture endows G with a simply-embedded partition: for every τi, the nodes in τi−1 are each
either a projector or nonprojector onto τi, while all nodes outside of τi−1 are all nonprojectors
onto τi.

To prove (ii), consider {σi}i∈[N ] where σi ∈ FP(G|τi∪τi+1) ∪ {∅} for all i ∈ [N ]. Notice
that by Lemma SM1.11, the fact that σi ∈ FP(G|τi∪τi+1) implies that σi ∈ FP(G) since σi
has no outgoing edges to any external node k outside of τi ∪ τi+1. Thus, we may assume
σi ∈ FP(G) ∪ {∅} for all i ∈ [N ]. We will prove that this guarantees that ∪i∈[N ]σi ∈ FP(G)
by induction on the number N of components of the simple linear chain.

For N = 1, the result is trivially true. For N = 2, observe that the simple linear chain
on {τ1 | τ2} actually has the structure of a bidirectional simply-embedded split (τ1, τ2), and
thus Theorem SM1.8 gives the complete structure of FP(G) in terms of the surviving fixed
points of the component subgraphs Sτi and the dying fixed points Dτi . The sets of interest
here, σi ⊆ τi with σi ∈ FP(G), are precisely the elements of Sτi . Theorem SM1.8(1) then
guarantees that σ1 ∪ σ2 ∈ FP(G) whenever σi ∈ FP(G), and so the result holds when N = 2.

Now, suppose the result holds for any simple linear chain with N − 1 components. For

ease of notation, denote σ1···N−1
def
= σ1 ∪ · · · ∪ σN−1 and let σ

def
= ∪i∈[N ]σi. We will show the

result holds for any simple linear chain G with N components.
Observe that if σN = ∅, we have σ = σ1···N−1 ∈ FP(G|τ1···N−1) by the inductive hypothesis,

and we need only show that this implies that σ1···N−1 ∈ FP(G). On the other hand, if σN ̸= ∅,
then σ = σ1···N−1 ∪ σN , where σN ∈ FP(G) by Lemma SM1.11, since σN ∈ FP(G|τN ) and σN
has no outgoing edges to any external nodes outside of τN . Notice that the simple linear chain
structure of G ensures that (τ1···N−1, τN ) is a bidirectional simply-embedded split. Thus by
Theorem SM1.8, since σN is a surviving fixed point support, σ1···N−1∪σN ∈ FP(G) if and only
if σ1···N−1 ∈ FP(G). Therefore for any {σi}i∈[N ], it suffices to show that σ1···N−1 ∈ FP(G),
and the result will follow.

Notice that by the inductive hypothesis, σ1···N−1 ∈ FP(G|τ1···N−1), and thus to show
σ1···N−1 ∈ FP(G), we need only show that σ1···N−1 survives the addition of the nodes in τN .
There are two cases to consider here based on whether σ1···N−1 intersects τN−1 or not. Observe
that if σ1···N−1 ∩ τN−1 = ∅, then σ1···N−1 has no outgoing edges to τN since only nodes in
τN−1 can send edges forward to τN by the linear chain structure. In this case, we have i ̸→ k
for all i ∈ σ1···N−1 and all k ∈ τN , and so Lemma SM1.11 guarantees that σ1···N−1 ∈ FP(G)
since we already had σ1···N−1 ∈ FP(G|τ1···N−1).

For the other case where σ1···N−1∩τN−1 ̸= ∅, we will prove σ1···N−1 ∈ FP(G) by appealing
to Theorem SM1.12 (general domination) and demonstrating that each k ∈ τN is inside-out
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dominated by some node j ∈ σ1···N−1. First notice that σ1···N−1 = σ1···N−2 ∪σN−1 and by the
simple linear chain structure of G, we have that τ1···N−2 is simply-embedded onto τN−1. Thus
by Theorem SM1.5,

(SM1.4) s
σ1···N−1

i =
1

θ
s
σ1···N−2

i s
σN−1

i = αs
σN−1

i for all i ∈ σN−1,

where α = 1
θs

σ1···N−2

i has the same value for every i ∈ σN−1. Using this, we can now compute
the domination quantities w

σ1···N−1

j and w
σ1···N−1

k for j ∈ σN−1 and k ∈ τN . For j ∈ σN−1, we
have:

w
σ1···N−1

j
def
=

∑
i∈σ1···N−1

W̃ji|s
σ1···N−1

i |

=
∑

i∈σ1···N−2

W̃ji|s
σ1···N−1

i |+
∑

i∈σN−1

W̃ji|s
σ1···N−1

i |

=
∑

i∈σ1···N−2

W̃ji|s
σ1···N−1

i |+
∑

i∈σN−1

W̃ji|αs
σN−1

i | by (SM1.4)

=
∑

i∈σ1···N−2

W̃ji|s
σ1···N−1

i |+ |α|
∑

i∈σN−1

W̃ji|s
σN−1

i |

=
∑

i∈σ1···N−2

W̃ji|s
σ1···N−1

i |+ |α|wσN−1

j

On the other hand, for k ∈ τN we have the following formula for w
σ1···N−1

k , where we use the

fact that W̃ki = −1 − δ for all i ∈ σ1···N−2 since there are no edges from nodes in τ1···N−2 to
τN :

w
σ1···N−1

k
def
=

∑
i∈σ1···N−1

W̃ki|s
σ1···N−1

i |

=
∑

i∈σ1···N−2

W̃ki|s
σ1···N−1

i |+
∑

i∈σN−1

W̃ki|s
σ1···N−1

i |

=
∑

i∈σ1···N−2

(−1− δ)|sσ1···N−1

i |+
∑

i∈σN−1

W̃ki|αs
σN−1

i |

=
∑

i∈σ1···N−2

(−1− δ)|sσ1···N−1

i |+ |α|
∑

i∈σN−1

W̃ki|s
σN−1

i |

=
∑

i∈σ1···N−2

(−1− δ)|sσ1···N−1

i |+ |α|wσN−1

k .

Moreover, since σN−1 ∈ FP(G), we have that j ∈ σN−1 must inside-out dominate the external

node k, so w
σN−1

j > w
σN−1

k . Combining this with the fact that W̃ji ≥ −1− δ, we see that

w
σ1···N−1

k ≤
∑

i∈σ1···N−2

W̃ji|s
σ1···N−1

i |+ |α|wσN−1

k

<
∑

i∈σ1···N−2

W̃ji|s
σ1···N−1

i |+ |α|wσN−1

j = w
σ1···N−1

j
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Thus w
σ1···N−1

j > w
σ1···N−1

k and so j inside-out dominates k for all k ∈ τN . Thus by Theo-
rem SM1.12, σ1···N−1 ∈ FP(G), and so ∪i∈[N ]σi = σ1···N−1 ∪ σN ∈ FP(G) as desired.

SM1.6. Proofs for strongly simply-embedded partitions. In this section we prove The-
orem 3.8, characterizing FP(G) for strongly simply-embedded partitions. First, we prove
Lemma SM1.13 which shows that the strongly simply-embedded structure guarantees a com-
plete factorization of the sσj values in terms of the sσi

j of the component fixed point supports.
Moreover, the sσi

j values are fully determined by whether σi is a surviving or a dying fixed
point of G|τi . Recall that we denote the sets of surviving and dying fixed points as:

Sτi
def
= FP(G|τi) ∩ FP(G) and Dτi

def
= FP(G|τi) \ Sτi .

Lemma SM1.13. Let G be a graph on n nodes with a strongly simply-embedded partition

{τ1| . . . |τN}. For any σ ⊆ [n], denote σi
def
= σ ∩ τi, and σi1···k

def
= σi1 ∪ · · · ∪ σik and let

I = {i ∈ [N ] | σi ̸= ∅}. Then for every j ∈ [n],

sσj =
1

θ|I|−1

∏
i∈I

sσi
j ,

where sσi
j has the same value for every j ∈ [n] \ τi.

Moreoever, for any σi ∈ FP(G|τi) and j ∈ τi:

sgn sσi
j =

{
idx(σi) if j ∈ σi

− idx(σi) if j ∈ τi \ σi

while for any k /∈ τi,

sgn sσi
k =

{
− idx(σi) if σi ∈ Sτi

idx(σi) if σi ∈ Dτi

Proof. Since {τ1| . . . |τN} is a strongly simply-embedded partition of G, we have [n] \ τ1
simply-added onto τ1, and so

sσj =
1

θ
sσ2...N
j sσ1

j for all j ∈ τ1

by Theorem SM1.5. On the other hand, since τ1 is also simply-added onto [n] \ τ1, we also
have

sσj =
1

θ
sσ1
j sσ2...N

j for all j ∈ [n] \ τ1.

Therefore, the above factorization holds for all j ∈ [n]. Similarly, since [n]\τ2 is simply-added
to τ2 and vice versa,

sσ2...N
j =

1

θ
sσ2
j s

σ3...N for all j∈[n]
j

by Theorem SM1.5, and so sσj = 1
θ2
sσ1
j sσ2

j sσ3...N
j . Continuing in this fashion, we see that for

any j ∈ [n],

sσj =
1

θN−1
sσ1
j . . . sσN

j .
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Note that if σi = ∅, then sσi
j = s∅j = s

{j}
j = θ, and thus for all j ∈ [n],

sσj =
θN−|I|

θN−1

∏
i∈I

sσi
j =

1

θ|I|−1

∏
i∈I

sσi
j .

The fact that sσi
j has the same value for every j ∈ [n] \ τi is a direct consequence of Theorem

SM1.5 since τi is simply-added onto [n] \ τi.
Finally, to prove the last statements about the signs of sσi

j , observe that for j ∈ τi, the
values of sgn sσi

j are fully determined by Theorem SM1.2 (sign conditions) since σi ∈ FP(G|τi)
by hypothesis. In particular, if σi ∈ Sτi , then σi survives the addition of every k /∈ τi, and so
sgn sσi

k = − idx(σi) by Theorem SM1.2 (sign conditions). On the other hand, if σi ∈ Dτi then
σi dies in G and so there is some k /∈ τi for which sgn sσi

k = idx(σi). But by the first part of
the theorem, all the sσi

k values are identical for k ∈ [n] \ τi, and thus sgn sσi
k = idx(σi) for all

such k.

With Lemma SM1.13, it is now straightforward to prove Theorem 3.8 (reprinted below).
This theorem generalizes Theorem SM1.8, characterizing every element of FP(G) in terms of
the sets of surviving and dying component fixed points supports, Sτi and Dτi . Notice that in
the statement of Theorem 3.8, all the fixed point supports of type (a) have the form

⋃
i∈I σi

for σi ∈ Sτi and I ⊆ [N ], while those of type (b) have the form
⋃N

i=1 σi for σi ∈ Dτi .

Theorem 3.8. Suppose G has a strongly simply-embedded partition {τ1| . . . |τN}, and let

σi
def
= σ ∩ τi for any σ ⊆ [n]. Then σ ∈ FP(G) if and only if σi ∈ FP(G|τi) ∪ {∅} for each

i ∈ [N ], and either
(a) every σi is in FP(G) ∪ {∅}, or
(b) none of the σi are in FP(G) ∪ {∅}.

In other words, σ ∈ FP(G) if and only if σ is either a union of surviving fixed points σi,
at most one per component, or it is a union of dying fixed points, exactly one from every
component.

Proof. First notice that since G has a strongly simply-embedded partition {τ1| . . . |τN},
by Lemma SM1.13, for all j ∈ [n], we have

sσj =
∏
i∈I

sσi
j

where I
def
= {i | σi ̸= ∅}, and we have set θ = 1, without loss of generality. Moreover, sσi

j is
constant across j ∈ [n] \ τi for each i ∈ [N ].
(⇒) Suppose σ ∈ FP(G). Since G has a simply-embedded partition, Theorem 1.4 (menu)
guarantees σi ∈ FP(G|τi) for every i ∈ I. Thus we can use the values of sgn sσi

j given in
Lemma SM1.13 to examine the sign conditions for σ. For any j ∈ σ, there exists i ∈ I such
that j ∈ σi, and then

(SM1.5) sgn sσj = idx(σi)
∏

{a∈I\{i} | σa∈Sa}

− idx(σa)
∏

{b∈I\{i} | σb∈Db}

idx(σb) = (−1)|S\{i}|
∏
ℓ∈I

idx(σℓ),

where S def
= {a ∈ I | σa ∈ Sa}.
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Now, observe that if σ contained a mix of σa ∈ Sa and σb ∈ Db, then there would be i, j ∈ σ
such that i ∈ σa for some a ∈ S, while j ∈ σb for some b /∈ S. In this case,

sgn sσi = (−1)|S|−1
∏
ℓ∈I

idx(σℓ) = −(−1)|S|
∏
ℓ∈I

idx(σℓ) = − sgn sσj .

But by Theorem SM1.2 (sign conditions), σ ∈ FP(G) implies that sgn sσi = sgn sσj for all
i, j ∈ σ, yielding a contradiction. Thus, we must have either σi ∈ Sτi for all i ∈ I, as in (a),
or σi ∈ Dτi for all i ∈ I as in (b).

Next we show that in case (b) when σi ∈ Dτi for all i ∈ I, we must have I = [N ], so that
σ takes a dying fixed point from every component. Assume to the contrary that I ⊊ [N ] so
that there is some m ∈ [N ] such that τm ∩ σ = ∅. Then, for k ∈ τm (so k /∈ σ), we have
sgn sσℓ

k = idx(σℓ) for all ℓ ∈ I, by Lemma SM1.13, since σℓ ∈ Dτℓ . Thus

sgn sσk =
∏
ℓ∈I

sgn sσℓ
k =

∏
ℓ∈I

idx(σℓ).

Meanwhile, for all j ∈ σ we have j ∈ τi for some i ∈ I, and Equation (SM1.5) gives

sgn sσj = (−1)|S\{i}|
∏
ℓ∈I

idx(σℓ) =
∏
ℓ∈I

idx(σℓ)

since S = ∅ because σℓ ∈ Dτℓ for all ℓ ∈ I. Thus,

sgn sσk =
∏
ℓ∈I

idx(σℓ) = sgn sσj

for some j ∈ σ and k /∈ σ, contradicting the sign conditions for σ ∈ FP(G). Therefore, we
must have I = [N ].

(⇐) First consider case (a) where σi ∈ Sτi for all i ∈ I. We will show that σ
def
=

⋃
i∈I σi ∈

FP(G) by checking the sign conditions. For any j ∈ σ, there exists i ∈ I such that j ∈ τi.
Then by Equation (SM1.5), we have

sgn sσj = (−1)|S\{i}|
∏
ℓ∈I

idx(σℓ) = (−1)|I|−1
∏
ℓ∈I

idxσℓ,

since S = I in this case. On the other hand, for k /∈ σ, we have sgn sσℓ
k = − idxσℓ for all

ℓ ∈ I, by Lemma SM1.13, since σℓ ∈ Sτℓ . Thus

sgn sσk =
∏
ℓ∈I

(− idxσℓ) = (−1)|I|
∏
ℓ∈I

idxσℓ = − sgn sσj .

Therefore σ ∈ FP(G) by Theorem SM1.2 (sign conditions).

Next, consider case (b) where σℓ ∈ Dτℓ for all ℓ ∈ [N ] (so I = [N ]). Then for any j ∈ σ,
there is i ∈ [N ] such that j ∈ σi and by Equation (SM1.5), we have

sgn sσj = (−1)|S\{i}|
∏
ℓ∈[N ]

idx(σℓ) =
∏
ℓ∈[N ]

idx(σℓ),
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since S = ∅. Meanwhile, for any k /∈ σ there is some m such that k ∈ τm with τm ∩ σ ̸= ∅
(since I = [N ]). Since σm ∈ FP(G|τm), we have sgn sσm

k = − idx(σm) and thus

sgn sσk = sgn sσm
k

∏
ℓ∈[N ]\{m}

sgn sσℓ
k = − idx(σm)

∏
ℓ∈[N ]\{m}

idx(σℓ) = −
∏
ℓ∈[N ]

idx(σℓ) = − sgn sσj .

Thus sign conditions are satisfied, and so σ ∈ FP(G).
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