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Abstract

We derive properties of N-extended £.% super Virasoro algebras. These include adding central extensions, identification
of al primary fields and the action of the adjoint representation on its dual. The final result suggest identification with the
spectrum of fields in supergravity theories and superstring,/M-theory constructed from NSR N-extended supersymmetric
ZFH Virasoro algebras. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently super-derivations were introduced [1]
that extend previous work [2] on 1D, X,-extended
superspace. This set of super-derivations is closed
under graded commutation and contains a super Vi-
rasoro-like sub-algebra for all values of N-extended
supersymmetry. The smallest set of the derivations
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that forms a closed algebra under the action of the
graded commutator contains the following:
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for any number N of supersymmetries. (Our nota-
tional conventions can be found in [1].) These deriva

tions do not depend on a specific value of N and can
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therefore be used for the entire 1D, X, superspace.
For low values of N, not all of the generators appear.
For example, T, and R'>"'» only appear for super-
spaces with N> 2. Genericaly, Ul 's only ap-
pears for superspaces with N> 3. The indices de-
noted by ., %, etc. denote the level or mode
number of the operators. These types of indices take
their valuesin Z+ @ Z.

One of the tasks of this paper is to centraly
extend the algebra generated by the above genera
tors. We impose the Jacobi identity on all possible
combinations of the generators and find that the
centrally extended algebra is given by °
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® Some of the results here contain minor corrections to those
givenin [1].
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where the function o(m)=0if misevenand —1if
m is odd. Here the central extensions ¢ and € are
unrelated since we have only imposed the Jacobi
identity. New constraints will arise when we restrict
to unitary representations. The algebra exhibits inter-
esting properties such as a generaization of the
SO(N) generators due to the presence of the U and
R type fields. The nature of these fields will be
discussed throughout as we derive transformation
laws.

One way to understand the operators that arise in
this new algebra is through methods used to study
other infinite dimensional algebras. In particular, we
will borrow techniques from coadjoint representation
to help interpret these new generators. The coadjoint
representation for infinite dimensional algebras [3,6]
has appeared in the string theory literature for some
time. Its uses include the study of chiral anomalies
[10-12], geometric quantization of the Virasoro
group [7], the study of orthogonal field theories
[4,5,8] and recently in relation to AdS; quantum
gravity [9].

In this paper we will examine the coadjoint repre-
sentation of the superspace geometrical representa-
tion (““Z%’) of the extended super Virasoro alge-
bras as well as some other properties. Although the
algebrais quite complex, the coadjoint representation
of this particular algebra can generalize many of the
above mentioned aspects as well as shed light on the
meaning of the new generators and the spectrum of

states that may appear in a supergravity or super-
string /M-theory based on this algebra.

2. Primary fields

Before going into the coadjoint representation, we
would like to identify the primary fields associated
with this algebra and their associated conformal
weights. Since . is the generator of diffeomor-
phisms we can use its action on the other generators
to determine the tensor properties of the fields. Let

r__ | JK J
Z _(Lf’GXI ’TtJK ! ®{|q}u E'S)} ! {Jq}REJ:‘)} ,0()
(3

represent the generators with generic functions and
®,,) represents the direct sum over all distinct gen-
erators Then from the algebra we see that

[(Lgia)’('-;’ﬂ)}
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[Lg 1U )>} - U({ f(w‘V'))f—(r )& wiviy s

[L§ ) (Tr)} = Rg ')( Mye— _(, 2)¢'(pThy)

i
-5 iy (4)

determines the transformation laws of the functions.
In the above, we have suppr%sed the Grassman
indices. For example w": Vi the function associated
with the U generators may be written as w®V= or
simply as w. From the coefficient of the &' sum-
mand in the transformation laws we can write down
the conformal weight which is also the rank of the
one dimensional tensors. The quantity ¢ is a rank
one contravariant tensor field, x' is aspin half field
and tRS isascalar field. Thisis to be expected from
these fields. However, notice that w(V? transforms
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with conformal weight 2(r — 2) where r takes val-
ues from 3 to N when there are N supersymmetries
which corresponds to a tower of N — 2 fields. The
quantity p{™ to appears to transform as a rank
1(r —2) tensor modulo the inhomogeneous term.
However, it is this inhomogeneous term that keeps
these fields from transforming like tensors. Since the
transformations of wV" and p{? are entangled, a
natural question to ask is what linear combination of
generators produces tensors or in the language of
conformal field theory which generators are primary.
To answer this let us consider the generators
@}1'“ D AR

T

I AL (5)

These form a closed algebra among themselves and
are used to facilitate the computations below. We
can write the previous generators as

gav‘!; lor1 — 79‘22"'1 .

L, = _@MH_%(M"']-)L@;/M
. 1
G, =2, t+2@),, 1 +2 oS+ P
2 2 2

TV;J=3?’;J—93;',

p
R;Hlp=i[5]@;z}:§|51' (p=2,...,N),

q
U la=i(i)zlelyvla, (qg=3,...,N+1).
2
(6)

Let 7+ '» be aprimary generator. Then by defini-
tion for some particular mode dependent A this
generator satisfies

(L, 5y %] = =N BT (7)

for fixed number of indices p. For each value of p
(assuming that p is greater than 2), .2 " '» can be
generically written as

9_&? Ip:CO(J&/“‘ l)@)Alil |p+ CI(M-F 1)<@§+1|P
o)t ®)

which gives us three possible mode dependent coef-
ficients to compute, viz c,,c;, and c,. From the

commutation relations of @ '» and 2} ' the
conditions for a primary generator are

ACy(& +B+1)=cy(Z +1)
X[(#—A)+5p(&+1)],
A& +B+1)=c (& +1)

X[(# —A) +5p(+1)],
ACy( o+ B) = —Co( B + 1)[2(&“ 1)}. (9)

There are three classes of solutions.

1. Class 1.
Setting ¢, =1, ¢, = 0 and c,(w) = a,.« + a, we
find that

Z+1
2—-p

T3 =y
(10)
isaprimary field with A = (% + 2) —.o(1— ).

This can be rewritten in terms of the original
generators as

(p#2) (12)

is a primary field.

2. Class 2:
Setting ¢, =0, ¢, =1 and c,(&) = a,.% + a, we
find that

FEA (@) A (12)

In this case p = 2 was forced as a condition, thus
the above A simplifiesto A =% + 1.

3. Class 3:
Setting ¢, =0, ¢, = 1 and c,(&) = &, + a, we
find that

F3 =, (13

is a primary field. In this case ¢, = 0 was forced
as a condition.
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From these three solutions we can find all the
primary fields of the original algebra.

(p=0),
G,=293 t+igi t (p=1),
2 2

_ 1
Lﬁ__yﬂ
1J _ 31J 3J1 _
T5=9"%_1—-F"%3_1 (pP=2),

P
Uy =itz g (p23),

Z+1
2-p

: L
R¢|4§+ Plo —i

Iy

p
U$+E—1L

— ()T (p=3). (19)

We note that %', for no value of . admits a
primary field. Stated in a dlightly different way, the
set of generators given by

GM'EiT&f‘*%[a'—izg'aT]

1 1
+2 M+E 777200 0,

L —[7W+387+%(M+1)7”§'6,],

< R

T,;Iy TM[gIaJ_gJaI],

q (q-2)
U;”'lqu(i)[E]T(”M—T)éll . glq,lalq’
q=3,...,N+1,

Iyl — -[E] (y—f) I .. 7l
Ry h=(i)2'T 2L J'r

7 +1
X |7 + {9,
p—2
p=3,...,N,
RY=ir%%4, (15)

possesses only one non-primary generator, namely
RY. We will refer to this basis as the ‘‘almost
primary basis’ for the £% super-Virasoro agebra

3. The coadjoint representation

In this paper we will examine the coadjoint repre-
sentation of the superspace geometrical representa-
tion of the extended super Virasoro algebras as well
as some other properties. Although the algebra is

quite complex the coadjoint representation of this
particular algebra can generalize many of the above
mentioned aspects as well as shed light on the
meaning of the new generators in the algebra.

3.1. An example

To begin we will use the semi-direct product of
the Virasoro algebra and an affine Lie algebra on the
circle to fix the notation and familiarity of the coad-
joint representation. In this case we have an affine
Lie algebra associated with the loop group G to-
gether with the Virasoro algebra given by

[ 39, 38] =i P73y + NKSy 4 n 08 “F
[Lnadi] = —MJi .
[LN!LM] =(N_M)LN+M

A

C
+E(N3_N)8N+M,O’ (16)

where ¢ =2k0im©® ' Dim(G) is the dimension of the
2k +c

group and ¢, is the value of the quadratic Casimir in
the adjoint representation. Let (L,,J¢,p) denote a
centrally extended adjoint vector. Then from the
commutation relations above one may write the ad-
joint action on the adjoint vectors as

(LAngvP)*( LN"‘]I\(;I/H/J*)
= (( A-— N/) Lasn— M’JA(«X;—M’

+BJIE, v +HifPYAIL L,

C ’
E(AB_A)5A+N’,0+BI(5Q BSB+M’,O) : (17)

Now let (I:N,JN;;,,&) denote an element of the
dual space of the algebra and let

(. 35.)

= 8NN+ 55y + it (18)

( LN’IJ[\ZAX,UM,)>

define a suitable pairing. By requiring that this pair-
ing be an invariant under the action of any of the
adjoint elements, say (L,,J&,p), the coadjoint rep-
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resentation can be defined. The adjoint action acts as
a derivation so that by Leibnitz rule one has

(T d )| (Lacp) = (L i)

( LN"‘]I\‘/IX,’ u“)> :
(19)

= - <(LA1‘]£1P)*(EN1 ~,3,‘,ﬁ)

Thus the transformation properties of the coadjoint
vectors are defined through,

(LA*‘]BB’p)*(I:N' Nﬁaﬁ)

—(2A—N)Ly_,—B6%AL,, 4

~ A

e ~
—E(A3—A)L_A,

(M—A)Ja_,—iff=Jr . — iBkI?;,0].
(20)
Instead of using components, let us write F=
(f(6),h(6),a) as an arbitrary adjoint vector and
B =(b(6),h(#),u) as an arbitrary coadjoint vector,

where f,h,b, and h are functions. For the algebrawe
choose the realization,

Ly =iexp(iNg)d,, J5=7exp(iNg), (21)

and normalize the generators so that Tr(r°r#) =
8P, Then Eq. (20) may be written as

8:B=((0).h(6),a)(b(6),h(6) )

.Cu ~
2f'b+b'f+ |Ef”’+Tr[hH],

Wf+ hf' + [ hh — hi] +ik,uﬁ,0), (22)

where ' denotes d,. The above equation provides an
interpretation of the adjoint elements and coadjoint
elements in terms of physical fieldsin one dimension
[4,8]. We dready know that the Virasoro sector
transforms functions as one dimensiona coordinate
transformations (up to central extension). For exam-
ple b transforms as a rank two tensor field in one
dimension where the infinitesimal coordinate trans-

formation is given by f. From the second element of
the triplet in Eqg. (22), on sees that the function h
transforms as a one dimensional gauge field with
gauge parameter h. The h'f + hf’ contribution to the
transformation of h simply shows that the field h
transforms as a rank one covariant tensor. The pecu-
liar transformation is the Tr[hh'] that appears in the
transformation of b. This suggests that this rank two
tensor can be shifted by fields built purely from the
gauge sector. In [4,8] such terms are interpreted as
coming from an interaction lagrangian. In any case
the relationship between different members of the
algebra juxtaposed to the dual space becomes mani-
fest through the coadjoint representation.

Those adjoint vectors, F, that leave B invariant
will generate the isotropy group for B. Setting Eq.
(22) to zero determines the isotropy equation for B.
Eg. (22) then determines the tangent space on the
orbit of B. Thus for coadjoint elements B, and B,,
we may construct the symplectic two form by writ-
ing

QB(Bl’BZ)=<B|[F11F2]>v (23)

where for example & B =B,. In [4,8] the equation
of isotropy is related to constraint equations that
come from a two dimensional field theory.

3.2. N-extended % super Virasoro algebra dual
space

To proceed we will let Z denote a generic
coadjoint vector and let ¥ and ¥’ denote adjoint
vectors. The pairing { .Z|.%) is an invariant so we
require ' { Z|.#) = 0. By Leibnitz rule this means
that (& * Z|Z) +{(Z|1Z = Z)=0. It is from
here that we can extract how % * Z acts. The
quantity . = & will carry the dual space back into
itself. In our notation we will use as a basis for the
N-extended Super Virasoro Algebra

<z =(La’Gb l,TCJK, @{|q}U§égl @{|p}R$‘é‘£,a ),

_ Q RS V, T} -
g_ ( LZ’ GY ’TX ' ®(VI} U({WII)} ®{Tm} R{{hm%’ﬁ) !

;TR @, U,

@,y Re, ™ ?B) ’ (24)
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We will write a generic functions f=f,r® and
z=2,7""1/? and redize the Virasoro generators as

L‘fE §A+1 Ly=— [(§A+1TA+1)37+ %§A+1TA§I 8|]

= —[&,+3607q]. (25)
We will use the subscript of the generators and dual
for a generic function of 7. Each generator and dual
element will have a specific function and how these
functions transform under the action of specific gen-
erators is the aim of this paper.

Since the action will come from % = Z we will
denote a generic function as

7= (LG, T, @ Ul @ RA e ),

(26)

The coadjoint action is quite tedious but we can
organize the computation by examining the outcome
of each of the commutation relations in the adjoint
representation. Table 1 symbolically summarizes our
results. In the notation of Table 1 L= L is just the
commutator of two arbitrary Virasoro generators
while L* L — L is the coadjoint action from an
application of the Virasoro generator on its dual L
that maps back into the duals of the Virasoro genera-
tors. Multiple entries in the second column corre-
spond to the different coadjoint actions that can be
extracted from the commutator in the first column.

From these we can see that %" * .Z will lead to
changes in the coadjoint vectors as:

SL=L*L+G*G+T*T+U*U+R=*R
+RxU,

8G=L+G+G*L+G*T+G+U+T*G
+U*L_J+U*§+R*§+R*L_J,

ST=L*T+G*G+G*U+T*T+Ux*U
+ R I5+R*U,

SU=L*U+G*U+G*R+T*U+UxU
+ R=* §+R*L_J,

SR=L*R+L*U+G*R+G*U+T*R
+T+*U+UxR+Ux*U+R=x ﬁ,

88 =0. (27)

343
Table 1
Commutator Co-adjoint action(s)
L*L L+xL—L
L+G LxG—>G
L=T L+T—>T
L+U L«U-U
L+R L+R-»R, L+U->R
G+L G*G—L
G*G G*L—G, G*T—G, G+*U—-G
G=T G+G-T, G+xU->T
G*U G+xU-»U, G*xR-»U
G*R G*R—>R G:*U-R
T=L Tx*xT—>L
TG T+G—->G
T+T T+*T->T
T=U T+U—->U
T+R T+R->R, T+xU-R
U=L U=U-L
UG U+xU-G, U*R-G
Ux*T UsU->T
UxU uxU-U
UsR UsR->R UxU-R
R L R*xR—>L, R#xU-L
R* G R+R—>G, RxU—-G
R+T R+R—->T, R+U-T
R*U R:+R—-U, R:U-U
R* R R*R— R

3.3. Explicit variations

3.3.1. L * L commutator
Starting with the invariant pairing we have:

(Laa) ((L,.B)I(L,.8)>=0. (28)
Then by Leibnitz rule,

((Lava)*(L,B)I(L,B))
+((L2B)I(Laya) *(L,,B))=0. (29
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Since we know the adjoint action we may write
((Lae)*(L,.B)1(L,.8))
= —(T2B)I((a=2) L,
+5c(a’—a)8,,,0)) (30)
which implies that
(L) *(L,.B)1(L,.8))

= _{(a_ Z) 82,a+z+ %C( a’— a) ESaJrz,O}

%(La,a)*([zrﬁ)
= —((Za—')iz_a
HeB(@-a T 0) @

+5cp(a’—a)L_,,0).
(32)

Rewriting in terms of functions instead of modes we
have for functions ¢ and D,

(Leoa)*(Lp.B)=(Ls.0), (33)
where D= —(2¢'D + £ D' + 2c B £™). This shows
the usual transformation of a quadratic differential,
D, with respect to the vector field &¢. Up to the
inhomogeneous term D transforms as a rank two
tensor. It is the inhomogeneous term that violates
tensorality. From the adjoint action one sees that ¢
transforms as a rank one contravariant tensor in one
dimension making it easy to identify with £¢ from a
Lie derivative. In the same way D can be thought of
as atwo index object D,. This suggests that a spin
two type object is present in the spectrum. Through-
out we will treat the action of ¢ as a one dimen-
sional Lie derivative (up to extensions) in order to
understand the type of fields that are present in the
dual.

3.3.2. G* L commutator
In the same way we examine the action of the G,
on the pairing. Since the pairing is invariant we have

G,'(G,%IL,) =0, (34)

by Leibnitz

(Gy'#G,°IL,)»+(G,%IG,'*L,»=0, (35)
which implies that

(Gy'#G,°IL, Y= —(G,%l-(iz-b)G,")
=(3z-0)8'%,,,,, (36)

where z=Yy — b. Thisyields

G, xG, %= (1y—3b)L,_, 562 (37)

Rewriting in terms of functions we have we have
that

GXI| * Gg(j:_l_f s
where f= (3 (¥9) x'—3(x')¥Q) 82", (38)

3.3.3. All * commutators

~ B
D=_2§,D—§D'_§§m'
- . 3 .
Lg* QB=G%, wo=-— Ewa‘*’f(lﬂQ) |
L+ TR=TR, 7= —r®—¢(r7),
o I n N
L * U, = o+ = ()2 7R

Gy * G =581 +4T /%3,
E=3 (v x' =3 (x")u?,
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(39)

where the symmetry of the indices on the left hand

side should be imposed on the indices on the right

side. In the above, we have sometimes suppressed
the indices associated with the functions used by the
generators. For example "2 Vn, the associate of the

U dua element, may be written as o™ or simply

as o. Also the notation &1\ = ;1 -+ 8, was

utilized.

There is quite a bit of interchange between func-
tions in various sectors suggesting that the inhomo-
geneous contribution in the transformation laws for
D, isthe interaction of the central extension with D.
The coadjoint of the Virasoro algebra, i.e. the action
of L on the coadjoint vectors reveals a spectrum of
states containing:

- D corresponds to a rank 2 covariant tensor when
the central extension is set to zero and is other-
wise a quadratic differential.

' corresponds to N spin-3 fields that partner

with D.

RS corresponds to the spin-1 covariant tensors

that serves as the N(N—1)/2 SO(N) gauge

potentials associated with the supersymmetries.

- Given the N supersymmetries, there are the fields
"+ Ve, For afixed value of N, the total number
of independent components is given by

#(U)=N(2"=N-1).

- Again given N supersymmetries, there are the
fields p™ " Te. For a fixed value of N, the total
number of independent components is given by

#(R)=(2"—N-1).
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The spins of the fields associated with U and R
vary according to (2 — 2). These likely correspond
to other gauge and non-gauge physical fields, auxil-
iary, and Stuckelberg fields that are required to close
the supersymmetry algebra. For a fixed level number
o, there are (N+ D2N — 2(N+ 3)N independent
vector fields for N > 4.

We end our discussion with a conjecture. If M-
theory possesses a 1D NSR formulation, it seems
likely that the N = 32 or 16 case of the present
discussion determines the structure of its representa-
tion. We conjecture that the spectrum of the 1D, N
= 32 or 16 ZR super Virasoro theory provides a set
of fundamental NSR variables to describe M-theory.

‘* Equations were drawn up in paisley form.”” —
Rakim (1997)
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