
11 May 2000

Ž .Physics Letters B 480 2000 337–347

Superspace geometrical realization
of the N-extended super Virasoro algebra and its dual 1

C. Curto a,2, S. James Gates Jr. b,3, V.G.J. Rodgers c,4

a Department of Physics, HarÕard UniÕersity, Cambridge, MA 02138, USA
b Department of Physics, UniÕersity of Maryland, College Park, MD 20742–4111, USA

c Department of Physics and Astronomy, UniÕersity of Iowa, Iowa City, IA 52242–1479, USA

Received 1 February 2000; accepted 23 March 2000
Editor: M. Cvetič

Abstract

We derive properties of N-extended GG RR super Virasoro algebras. These include adding central extensions, identification
of all primary fields and the action of the adjoint representation on its dual. The final result suggest identification with the
spectrum of fields in supergravity theories and superstringrM-theory constructed from NSR N-extended supersymmetric
GG RR Virasoro algebras. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

w xRecently super-derivations were introduced 1
w xthat extend previous work 2 on 1D, / -extended0

superspace. This set of super-derivations is closed
under graded commutation and contains a super Vi-
rasoro-like sub-algebra for all values of N-extended
supersymmetry. The smallest set of the derivations

1 Supported in part by National Science Foundation Grant
PHY-98-02551.

2 E-mail: ccurto@fas.harvard.edu
3 E-mail: gatess@wam.umd.edu
4 E-mail: vincent-rodgers@uiowa.edu

that forms a closed algebra under the action of the
graded commutator contains the following:

I AAq1r2 I IG ' i t E y i 2 z EAA t

1 AAy1r2 I Kq2 AAq t z z E ,Ž . K2

1AAq1 AA IL 'y t E q AAq1 t z E ,Ž .AA t I2

I J AA I J J IT 't z E yz E ,AA

q Ž .qy2
w x .I PPP I Ž AAy I I I1 q 1 qy1 q2U ' i i t z PPP z E ,Ž . 2AA

qs3, . . . , Nq1 ,
p Ž .py2

w x .I PPP I Ž AAy I I1 p 1 p2R ' i t z PPP z E ,Ž . 2AA t

ps2, . . . , N , 1Ž .
Žfor any number N of supersymmetries. Our nota-

w x .tional conventions can be found in 1 . These deriva-
tions do not depend on a specific value of N and can

0370-2693r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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therefore be used for the entire 1D, / superspace.0

For low values of N, not all of the generators appear.
For example, TI J and R I1 PPP Ip only appear for super-AA AA

spaces with NG2. Generically, U I1 PPP Iq only ap-AA

pears for superspaces with NG3. The indices de-
noted by AA, BB, etc. denote the level or mode
number of the operators. These types of indices take

1their values in Zq [Z.2

One of the tasks of this paper is to centrally
extend the algebra generated by the above genera-
tors. We impose the Jacobi identity on all possible
combinations of the generators and find that the
centrally extended algebra is given by 5

4L , LAA BB

1 3s AA yBB L q c AA yAA d ,Ž . Ž .AAqBB AAqBB ,08

1I PPP I I PPP I1 m 1 mw 4L , U sy BBq my2 AA U ,Ž .AA BB AAqBB2

w I J I J4G , G syi 4 d L y i2 AAyBBŽ .AA BB AAqBB

= I J I J KT q2 AAqBB UŽ .AAqBB AAqBB K

12 I Jy ic AA y d d ,Ž . AAqB ,04

1I Iw 4L , G s AAyBB G ,Ž .AA BB AAqBB2

1I PPP I I PPP I1 m 1 mw 4L , R sy BBq my2 AA RŽ .AA BB AAqBB2

1 I PPP I J1 my AA AAq1 U ,Ž . AAqBB J2

w I J I J4L , T syBB T ,AA BB AAqB

w I1 PPP Im J1 PPP Jn4R , RAA BB

Ž .s m n 1sy i AAy BBy mynŽ . Ž .2

=R I1 PPP Im J1 n PPP Jn ,AAqBB

w I J K L4T , TAA BB

sT I K d JL qT J L d IK yT I L d JK
AAqB AAqB AAqB

yT J K d IL qc AAyBBŽ .˜AAqB

= d IKd JL yd ILd JK d ,Ž . AAqBB ,0

5 Some of the results here contain minor corrections to those
w xgiven in 1 .

w I J1 PPP Jm4G , RAA BB

Ž .s m 1 I J PPP J1 ms2 i BBq my1 AAq RŽ . Ž . AAqBB2

m
Ž . ry1s m I J J PPP J J PPP Jr 1 ry1 rq1 my i y1 d RŽ . Ž .Ý AAqBB

rs1

Ž .s m 1 J PPP J I1 my yi AAq UŽ . AAqBB2

Ž .s m 12 I J PPP J K1 mq2 i AA y U ,Ž . AAqBB K4

w I J1 PPP Jm4G , UAA BB

Ž .s m I J PPP J1 ms2 i BBq my2 AA UŽ . Ž . AAqBB

Ž .s m 1 I J J PPP J Km 1 my1y2 yi AAq d UŽ . AAqBB K2

my1
Ž . ry1s m I Jry i y1 dŽ . Ž .Ý

rs1

=U J1 PPP Jry 1 Jrq 1 PPP Jm
AAqBB

Ž .s m I J J PPP Jm 1 my1q2 yi d R ,Ž . AAqBB

w I1 PPP Im J1 PPP Jn4R , UAA BB

m
Ž . ry1s m n I Jr ns yi y1 dŽ . Ž .Ý

rs1

=R J1 PPP Jny 1 I1 PPP Iry 1 Irq 1 PPP Im
AAqBB

Ž .s m n 1q i i BBy ny2Ž . Ž .2

=U I1 PPP Im J1 PPP Jn ,AAqBB

w I1 PPP Im J1 PPP Jn4U , UAA BB

m
Ž . ry1s m n I Jm rsy i y1 dŽ . Ž .Ý½

rs1

=U I1 PPP Imy 1 J1 PPP Jry 1 Jrq 1 PPP Jny 1 Jn
AAqBB

m
m n ry1 I Jr ny y1 y1 dŽ . Ž .Ý

rs1

U J1 PPP Jny 1 I1 PPP Iry 1 Irq 1 PPP Imy 1 Im ,AAqBB 5
w I J K JK I IK J4T , G s2 d G yd GŽ .AA BB AAqB AAqB

q2 AA d JK U I , L yd IK U J LŽ AAqBB L AAqBB L

qU J K I yU I K J ,.AAqBB AAqBB
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w I J I1 PPP Ip4T , RAA BB

p
rq1 J I I I PPP I I PPP Ir 1 ry1 rq1 ps y1 d RŽ . ŽÝ AAqB

rs1

pI I J I PPP I I PPP Ir 1 ry1 rq1 pyd R q i y1Ž ..AAqB

=AA U I I1 PPP Ip J yU J I1 PPP Ip I ,Ž .AAqBy1 AAqBy1

w I J I1 PPP Ip4T , UAA BB

p
rq1 J I I I PPP I I PPP Ir 1 ry1 rq1 ps y1 d UŽ . ŽÝ AAqB

rs1

yd I Ir U J I1 PPP Iry 1 Irq 1 PPP Ip .AAqB

q d Ip I U I1 PPP Ipy 1 J yd Ip J U I1 PPP Ipy 1 I , 2Ž .Ž .AAqBy1 AAqBy1

Ž .where the function s m s0 if m is even and y1 if
m is odd. Here the central extensions c and c are˜
unrelated since we have only imposed the Jacobi
identity. New constraints will arise when we restrict
to unitary representations. The algebra exhibits inter-
esting properties such as a generalization of the

Ž .SO N generators due to the presence of the U and
R type fields. The nature of these fields will be
discussed throughout as we derive transformation
laws.

One way to understand the operators that arise in
this new algebra is through methods used to study
other infinite dimensional algebras. In particular, we
will borrow techniques from coadjoint representation
to help interpret these new generators. The coadjoint

w xrepresentation for infinite dimensional algebras 3,6
has appeared in the string theory literature for some
time. Its uses include the study of chiral anomalies
w x10–12 , geometric quantization of the Virasoro

w xgroup 7 , the study of orthogonal field theories
w x4,5,8 and recently in relation to AdS quantum3

w xgravity 9 .
In this paper we will examine the coadjoint repre-

sentation of the superspace geometrical representa-
Ž .tion ‘‘GG RR’’ of the extended super Virasoro alge-

bras as well as some other properties. Although the
algebra is quite complex, the coadjoint representation
of this particular algebra can generalize many of the
above mentioned aspects as well as shed light on the
meaning of the new generators and the spectrum of

states that may appear in a supergravity or super-
stringrM-theory based on this algebra.

2. Primary fields

Before going into the coadjoint representation, we
would like to identify the primary fields associated
with this algebra and their associated conformal
weights. Since LL is the generator of diffeomor-
phisms we can use its action on the other generators
to determine the tensor properties of the fields. Let

X I J K I J� 4 � 4q qI J KLL s L , G , T , [ U , [ R ;a ,ž /j x t I J� 4 � 4I J� 4 � 4q qq qm r

3Ž .

represent the generators with generic functions and
[ represents the direct sum over all distinct gen-� I 4q

erators. Then from the algebra we see that

w 4L ,a , L ,bŽ . Ž .j z

c
XX X XX X

X Xs L , j z yz j d x ,Ž .Hj zyjzž /i2p

I I 1
X Xw I I I4L , G sG ,.j x Žyj Ž x . q j x

2

w R S R S
XR S R S4L , T sT ,j t Žyj Ž t . .

�Vr4 �V 4 1r X Xw �V 4 �V 4 �V 44L , U sU ,rr r Ž . .j w Žyj Žw . y ry2 j w
2

�Tr4 �T 4 1r X Xw �T 4 �T 4 �T 44L , R sR rr r Ž . Ž ..j r ŽyŽ r . jy ry2 j r
2

i
�T 4r

XX �T 4y U , 4Ž .rŽ j r .2

determines the transformation laws of the functions.
In the above, we have suppressed the Grassman

V PPP V1 nindices. For example w the function associated
with the U generators may be written as w�Vm4 or
simply as w. From the coefficient of the j

X sum-
mand in the transformation laws we can write down
the conformal weight which is also the rank of the
one dimensional tensors. The quantity j is a rank
one contravariant tensor field, x I is a spin half field
and t R S is a scalar field. This is to be expected from
these fields. However, notice that w�Vr4 transforms
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1 Ž .with conformal weight ry2 where r takes val-2

ues from 3 to N when there are N supersymmetries
which corresponds to a tower of Ny2 fields. The
quantity r �Tr4 to appears to transform as a rank
1 Ž .ry2 tensor modulo the inhomogeneous term.2

However, it is this inhomogeneous term that keeps
these fields from transforming like tensors. Since the
transformations of w�Vr4 and r �Tr4 are entangled, a
natural question to ask is what linear combination of
generators produces tensors or in the language of
conformal field theory which generators are primary.

To answer this let us consider the generators

QQ I1 PPP Ip st AAz I1 PPP z IpE ,AA t

PP I1 PPP Ipq 1 st AAz I1 PPP z IpE Ipq 1 . 5Ž .AA

These form a closed algebra among themselves and
are used to facilitate the computations below. We
can write the previous generators as

1 IL syQQ y AAq1 PP ,Ž .AA AAq1 AA I2

1
I I I I K1 1 1G s i PP q2 QQ q2 AAq PP ,AA AAq AAq AAy Kž /22 2 2

T I J sPP I J yPP J I ,AA AA AA

p
xI PPP I w I PPP Ip1 p 1 pR s i QQ , ps2, . . . , N ,Ž .2AA AAy q1

2

q
w xI PPP I I PPP Ip1 q 1 q2U s i i PP , qs3, . . . , Nq1 .Ž . Ž .AA AAy q1

2

6Ž .

Let FF I1 PPP Ip be a primary generator. Then by defini-AA

tion for some particular mode dependent l this
generator satisfies

I PPP I I PPP I1 p 1 pL , FF syl AA, B , p FF , 7Ž . Ž .AA BB AAqB

for fixed number of indices p. For each value of p
Ž . I1 PPP Ipassuming that p is greater than 2 , FF can beAA

generically written as

FF I1 PPP Ip sc AAq1 QQ I1 PPP Ip qc AAq1 PP I1 PPP IpŽ . Ž .AA 0 Aq1 1 AAq1

qc AA PP I1 PPP Ip L , 8Ž . Ž .2 AA L

which gives us three possible mode dependent coef-
ficients to compute, viz c ,c , and c . From the0 1 2

commutation relations of QQ I1 PPP Ip and PP I1 PPP Ip theAA AA

conditions for a primary generator are

lc AAqBq1 sc BBq1Ž . Ž .0 0

= 1BByA q p AAq1 ,Ž . Ž .2

lc AAqBq1 sc BBq1Ž . Ž .1 1

= 1BByA q p AAq1 ,Ž . Ž .2

p
lc AAqB syc BBq1 AAq1 . 9Ž . Ž . Ž . Ž .2 0 2

There are three classes of solutions.
1. Class 1:

Ž .Setting c s1, c s0 and c AA sa AAqa we0 1 2 1 2

find that

BBq1
1 I PPP I I PPP I I PPP I L1 p 1 p 1 pFF sQQ q PP ,BB BBq1 BB Lž /2yp

10Ž .
p pŽ . Ž .is a primary field with ls BBq yAA 1y .2 2

This can be rewritten in terms of the original
generators as

BBq1 LI PPP I I PPP I1 p 1 pp pR y i U ,BBq BBq y1 Lž /2yp2 2

p/2 11Ž . Ž .

is a primary field.
2. Class 2:

Ž .Setting c s0, c s1 and c AA sa AAqa we0 1 2 1 2

find that

FF 2 I J sPP I J q BBq1 PP I J K . 12Ž . Ž .BB BBq1 BB K

In this case ps2 was forced as a condition, thus
the above l simplifies to lsBBq1.

3. Class 3:
Ž .Setting c s0, c s1 and c AA sa AAqa we2 1 0 1 2

find that

FF 3 I1 PPP Ip sPP I1 PPP Ip , 13Ž .BB BBq1

is a primary field. In this case c s0 was forced0

as a condition.
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From these three solutions we can find all the
primary fields of the original algebra.

L syFF 1 ps0 ,Ž .BB BB

I 1 I 1 3 I 1G s2 FF q iFF ps1 ,Ž .BB BBy BBy
2 2

T I J sFF 3 I J yFF 3 J I ps2 ,Ž .BB BBy1 BBy1

p
xI PPP I w 3 I PPP Ip1 p 1 pU s ii FF pG3 ,Ž .2BBq BB

2

BBq1
LI PPP Ip p I PPP I1 p 1 pR y i U LBBq BBq y1ž /2yp2 2

p
w x 1 I PPP I1 p2s i FF pG3 . 14Ž . Ž . Ž .BB

We note that RR I J for no value of AA admits aAA

primary field. Stated in a slightly different way, the
set of generators given by

1
I AAq I IG ' i t E y i 2 z E2AA t

11
AAy I Kq2 AAq t z z E ,2 Kž /2

1AAq1 AA IL 'y t E q AAq1 t z E ,Ž .AA t I2

I J AA I J J IT 't z E yz E ,AA

q Ž .qy2
w x .I PPP I Ž AAy I I I1 q 1 qy1 q2U ' i i t z PPP z E ,Ž . 2AA

qs3, . . . , Nq1 ,
p p

w x .I PPP I Ž AAy I I1 p 1 p2RR ' i t z PPP zŽ . 2AA

=
AAq1

LtE q z E ,t Lž /py2

ps3, . . . , N ,

R I J ' i t AAz Iz J E , 15Ž .AA t

possesses only one non-primary generator, namely
R I J. We will refer to this basis as the ‘‘almostAA

primary basis’’ for the GG RR super-Virasoro algebra.

3. The coadjoint representation

In this paper we will examine the coadjoint repre-
sentation of the superspace geometrical representa-
tion of the extended super Virasoro algebras as well
as some other properties. Although the algebra is

quite complex the coadjoint representation of this
particular algebra can generalize many of the above
mentioned aspects as well as shed light on the
meaning of the new generators in the algebra.

3.1. An example

To begin we will use the semi-direct product of
the Virasoro algebra and an affine Lie algebra on the
circle to fix the notation and familiarity of the coad-
joint representation. In this case we have an affine
Lie algebra associated with the loop group G to-
gether with the Virasoro algebra given by

a b a bg g a bJ , J s if J qNkd d ,N M NqM MqN ,0

a aL , J syMJ ,N M MqN

w xL , L s NyM LŽ .N M NqM

ĉ
3q N yN d , 16Ž . Ž .NqM ,012

Ž .2 k Dim G Ž .where cs , Dim G is the dimension of theˆ
2k q c Õ

group and c is the value of the quadratic Casimir inÕ

the adjoint representation. Let L , J b ,r denote aŽ .A B

centrally extended adjoint vector. Then from the
commutation relations above one may write the ad-
joint action on the adjoint vectors as

L , J b ,r ) L X , J a
X

X ,mŽ .Ž .A B N M

s AyN X L X ,yM XJ a
X

XŽ .Ž AqN AqM

qBJ b
X q if ba

X
lJ l

X ,BqN BqM

ĉ X3 a b
X XA yA d qBkd d . 17Ž . Ž .AqN ,0 BqM ,0 /12

˜ ˜aNow let L , J ,m denote an element of the˜ž /N M

dual space of the algebra and let

X Xa a˜ ˜ :X XL , J ,m L , J ,mŽ .˜¦ž /N M N M

sd N , N X

qd a ,a X

d X qmm , 18Ž .˜M , M

define a suitable pairing. By requiring that this pair-
ing be an invariant under the action of any of the
adjoint elements, say L , J b ,r , the coadjoint rep-Ž .A B
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resentation can be defined. The adjoint action acts as
a derivation so that by Leibnitz rule one has

X
a b a˜ ˜ :X XL , J ,m L , J ,r ) L , J ,mŽ .˜ Ž .¦ž /N M A B N M

X
b a a˜ ˜ :X Xsy L , J ,r ) L , J ,m L , J ,m .Ž .˜Ž .¦ ž /A B N M N M

19Ž .

Thus the transformation properties of the coadjoint
vectors are defined through,

b ˜ ˜aL , J ,r ) L , J ,m̃Ž . ž /A B N M

˜ ab ˜s y 2 AyN L yBd LŽ . NyA MyBž
mc˜ ˆ

3 ˜y A yA L ,Ž . yA12

˜a bna ñ ˜bMyA J y if J ymBkJ ,0 .Ž . ˜My A MyB yB /
20Ž .

Instead of using components, let us write Fs
ˆŽ Ž . Ž . .f u ,h u ,a as an arbitrary adjoint vector and

Ž Ž . Ž . .Bs b u ,h u ,m as an arbitrary coadjoint vector,
ˆwhere f ,h,b, and h are functions. For the algebra we

choose the realization,

L s iexp iNu E , J a st aexp iNu , 21Ž . Ž . Ž .N u N

Ž a b .and normalize the generators so that Tr t t s
ab Ž .d . Then Eq. 20 may be written as

ˆd B' f u ,h u ,a ) b u ,h u ,mŽ . Ž . Ž . Ž .Ž .Ž .F

cmˆX X XXX Xˆw xsy 2 f bqb fq i f qTr hh ,ž 12

X X Xˆ ˆ ˆh fqhf q hhyhh q ikmh ,0 , 22Ž ./
where X denotes E . The above equation provides anu

interpretation of the adjoint elements and coadjoint
elements in terms of physical fields in one dimension
w x4,8 . We already know that the Virasoro sector
transforms functions as one dimensional coordinate

Ž .transformations up to central extension . For exam-
ple b transforms as a rank two tensor field in one
dimension where the infinitesimal coordinate trans-

formation is given by f. From the second element of
Ž .the triplet in Eq. 22 , on sees that the function h

transforms as a one dimensional gauge field with
ˆ X Xgauge parameter h. The h fqhf contribution to the

transformation of h simply shows that the field h
transforms as a rank one covariant tensor. The pecu-

ˆXw xliar transformation is the Tr hh that appears in the
transformation of b. This suggests that this rank two
tensor can be shifted by fields built purely from the

w xgauge sector. In 4,8 such terms are interpreted as
coming from an interaction lagrangian. In any case
the relationship between different members of the
algebra juxtaposed to the dual space becomes mani-
fest through the coadjoint representation.

Those adjoint vectors, F, that leave B invariant
will generate the isotropy group for B. Setting Eq.
Ž .22 to zero determines the isotropy equation for B.

Ž .Eq. 22 then determines the tangent space on the
orbit of B. Thus for coadjoint elements B and B ,1 2

we may construct the symplectic two form by writ-
ing

² :w xV B , B s BN F ,F , 23Ž . Ž .B 1 2 1 2

w xwhere for example d BsB . In 4,8 the equationF 11

of isotropy is related to constraint equations that
come from a two dimensional field theory.

3.2. N-extended GG RR super Virasoro algebra dual
space

To proceed we will let LL denote a generic
coadjoint vector and let LL and LL X denote adjoint

² < :vectors. The pairing LL LL is an invariant so we
X² < :require LL LL LL s0. By Leibnitz rule this means

X X² < : ² < :that LL ) LL LL q LL LL ) LL s0. It is from
Xhere that we can extract how LL ) LL acts. The

Xquantity LL ) LL will carry the dual space back into
itself. In our notation we will use as a basis for the
N-extended Super Virasoro Algebra

X I J K I J� 4 � 4q qLL s L , G , T , [ U [ R ;a ,ž /� 4a b c I d I e� 4 � 4 � 4q p qq

� 4 � 4Q R S V Tl mLLs L , G , T , [ U [ R ;b ,Ž .� 4� 4 � 4 � 4z g X V w T hl l m m

llQ R S V� 4LLs L , G , T , [ U ,z g X V W� 4 � 4ž ll ll

T� 4m[ R ;b , 24Ž .T h� 4 /m m
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We will write a generic functions fs f t a anda

zsz t bq1r2 and realize the Virasoro generators asb

1Aq1 Aq1 Aq1 Aq1 A IL 'j L sy j t E q j t z EŽ .j A t I2

1 A Isy jE q jt z E . 25Ž .t I2

We will use the subscript of the generators and dual
for a generic function of t . Each generator and dual
element will have a specific function and how these
functions transform under the action of specific gen-
erators is the aim of this paper.

XSince the action will come from LL ) LL we will
denote a generic function as

LL X s L , G I
I , T J K

J K , [ U I1 PPP Iq
I1 PPP Iq , [ R J1 PPP Jq

J1 PPP Jq ;a ,ž /j x t m r

pJ1 q 1Q R S V PPP V J PPPPPP J1 pQ R S V PPP JLLs L , G , T , [ U ,[R ;b .1 VD c t v rqž /
26Ž .

The coadjoint action is quite tedious but we can
organize the computation by examining the outcome
of each of the commutation relations in the adjoint
representation. Table 1 symbolically summarizes our
results. In the notation of Table 1 L) L is just the
commutator of two arbitrary Virasoro generators
while L) L™L is the coadjoint action from an
application of the Virasoro generator on its dual L
that maps back into the duals of the Virasoro genera-
tors. Multiple entries in the second column corre-
spond to the different coadjoint actions that can be
extracted from the commutator in the first column.

XFrom these we can see that LL ) LL will lead to
changes in the coadjoint vectors as:

dLsL) LqG)GqT )TqU)UqR) R

qR)U ,

d GsL)GqG) LqG)TqG)UqT )G

qU)UqU) RqR) RqR)U ,

d TsL)TqG)GqG)UqT )TqU)U

qR) RqR )U ,

dUsL)UqG)UqG) RqT )UqU)U

qR) RqR )U ,

dRsL) RqL)UqG) RqG)UqT ) R

qT )UqU) RqU)UqR) R ,

dbs0. 27Ž .

Table 1

Ž .Commutator Co-adjoint action s

L) L L) L™ L

L)G L)G™G

L)T L)T™T

L)U L)U™U

L) R L) R™R, L)U™R

G) L G)G™ L

G)G G) L™G, G)T™G, G)U™G

G)T G)G™T , G)U™T

G)U G)U™U, G) R™U

G) R G) R™R, G)U™R

T ) L T )T™ L

T )G T )G™G

T )T T )T™T

T )U T )U™U

T ) R T ) R™R, T )U™R

U) L U)U™ L

U)G U)U™G, U) R™G

U)T U)U™T

U)U U)U™U

U) R U) R™R, U)U™R

R) L R) R™ L, R)U™ L

R)G R) R™G, R)U™G

R)T R) R™T , R)U™T

R)U R) R™U, R)U™U

R) R R) R™R

3.3. Explicit Õariations

3.3.1. L) L commutator
Starting with the invariant pairing we have:

² < :L ,a L ,b L ,b s0 . 28Ž . Ž . Ž .ž /a z z

Then by Leibnitz rule,

² < :L ,a ) L ,b L ,bŽ . Ž .ž /a z z

² < :q L ,b L ,a ) L ,b s0 . 29Ž . Ž . Ž .ž /z a z
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Since we know the adjoint action we may write

² < :L ,a ) L ,b L ,bŽ . Ž .ž /a z z

² <sy L ,b ayz L ,Ž .Žž /z aqz

1 3 :q c a ya d 30Ž . Ž ..aqz ,08

which implies that

² < :L ,a ) L ,b L ,bŽ . Ž .ž /a z z

1 3sy ayz d q c a ya b dŽ . Ž .� 4z ,aqz aqz ,08

™ L ,a ) L ,bŽ . ž /a z

sy 2 ayz LŽ .Ž zya

1 3q c b a ya L , 0 , 31Ž . Ž ..ya8

where zszya, so that

L ,a ) L ,b sy 2 ayz LŽ . Ž .Žž /a z zya

1 3q c b a ya L , 0 .Ž . .ya8

32Ž .

Rewriting in terms of functions instead of modes we
have for functions j and D,

L ,a ) L ,b s L ,0 , 33Ž .Ž . Ž .˜Ž .j D D

X X XXX1˜ Ž .where Dsy 2j Dqj D q c b j . This shows8

the usual transformation of a quadratic differential,
D, with respect to the vector field j . Up to the
inhomogeneous term D transforms as a rank two
tensor. It is the inhomogeneous term that violates
tensorality. From the adjoint action one sees that j

transforms as a rank one contravariant tensor in one
dimension making it easy to identify with j a from a
Lie derivative. In the same way D can be thought of
as a two index object D . This suggests that a spinab

two type object is present in the spectrum. Through-
out we will treat the action of j as a one dimen-

Ž .sional Lie derivative up to extensions in order to
understand the type of fields that are present in the
dual.

3.3.2. G) L commutator
In the same way we examine the action of the G I

b

on the pairing. Since the pairing is invariant we have

I Q² < :G G L s0 , 34Ž .b y z

by Leibnitz

I Q Q I² < : ² < :G )G L q G G ) L s0 , 35Ž .b y z y b z

which implies that

I Q Q I1² < : ² < :G )G L sy G y zyb GŽ .b y z y b2

Q1 Is zyb d d , 36Ž .Ž . y ,bqz2

where zsyyb. This yields

I Q 1 3 Q IG )G s yy b L d . 37Ž .Ž .b y yyb2 2

Rewriting in terms of functions we have we have
that

I Q
I QG )G sL ,x C f

X X1 3Q I I Q Q Iwhere fs C x y x C d . 38Ž .Ž . Ž .Ž .2 2

3.3.3. All ) commutators

L ) L ,b sL ,˜Ž .j D D

cb
X X XXXD̃sy2 j Dyj D y j ,

8
3 X˜ XQ Q Q Q Q˜Q QL )G sG , C sy j c qj c ,Ž .j C C ž /2

X
XR S R S R S R S R SL )T sT , t syj t yj t ,Ž .˜R S R Sj t t̃

ny2 ni w x w xyV PPP V V PPP V1 1n n 2 2L )U sU q iŽ .PPP V PPP VV V1 n 1 nj v ṽ 2

=
ny 2wV PPP V1XX V PPP VR d ,V xV1 nj v ny 1 n

n X
XV PPP V V PPP V V PPP V1 n 1 n 1 nv s y2 j v yj v ,Ž .˜ ž /2

T PPP T T PPP T1 1m mL ) R sR ,PPP TT T PPP T1 mj r r̃ 1 m

m X
XT PPP T T PPP T T PPP T1 m 1 m 1 mr s y2 j r yj r ,˜ Ž .ž /2

I Q IQ IQ
I Q I QG )G sd L q4T ,˜x c j Ž x c .

X X1 3Q I I Qj̃s c x y x c ,Ž .Ž .2 2

I I
XXI I IG ) L ,b s4 i G ,Ž .x D Žyx Dyb cŽ x . .

i
R SI S R I R IS

I R S S RG )T s G d yG d ,x t x xž /2
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XXR S I R S I R Sx sx s2 x t qx t ,Ž .Ž .
I T PPP T1 mIG ) R T PPP Tx r 1 m

mq 2 m
w x w xmq1 y wT PPP T x1 m2 2s2 i i i UŽ . Ž . I T PPP T1 mŽ x r .

my 1 my2
x w xw yy2 i 2 2

= I wT T PPP T x1 2 mX XI I T PPP Td R 1 mT PPP TŽŽ x . r yŽ x .Ž r . .1 m

mq 1 m
w x w xy

2 2y i iŽ . Ž .

=
mq1

ry1 T PPP T I T PPP T11 ry rq1 my1 R ,Ž .Ý I T PPP T1 mŽ x r .
rs1

J K Q K Q J J Q K
J K Q J K Q J K QT )G sy2 G d yG d ,t c Ž t c . Ž t c .ž /

1I V PPP VnIG )U V PPP V1 nx v

ny1 n
x w xw ysy2 i 2 2

= I wV V PPP V x1 2 n X XI V PPP V I V PPP Vd U 1 n 1 nŽŽny4.Ž x . v yŽ x .Žv . .

ny1 n
w x w xny1 y

2 2q2 y1 iŽ . Ž .

= nI wV V PPP V x Kn 1 XId U V PPP VŽŽ x . v . K1 n

nny1 n
w x w xy wV PPP V V PPP V V x I1 ry1 rq1 n r2 2q i i U dŽ . Ž . I V PPP VÝ 1 nŽ x v .

rs1

wV2 X X XXI V PPP V I V PPP VqG 1 n 1 nŽy4 i Ž x . Žv . y2 i Ž x .Žv . .

= V V V x I n43 4 1d d d

n ny1
ny 1n w x w xy I wV V PPP V xn 12 2y2 i y1 i d R ,Ž . Ž . I V PPP1Ž x v .Vn

J K V PPP V1 nJ KT )Ut v V PPP V1 n

ny1
< K <V PPP xVry 1nq1 rq 1 nJ wV V PPP V1 2sy y1 d UŽ .Ý J K V PPP V1 nž Ž t v .

rs1

K wV V PPP V < J <V PPP xV1 2 ry1 rq1 nyd U J K V PPP1 /Ž t v .Vn

1ywV PPP V x J V Kn1 nJ K V PPP VqU d1 nŽ t v .

1ywV PPP V x K V Jn1 nJ K V PPP VyU d1 nŽ t v .

Vny2 1K V J w V J V K wn 1 ny i y1 d d yd dŽ . Ž .
=

x1yV PPP Vn2 XJ K V PPP VR ,1 nŽŽ t . v .

J PPP J V PPP1 1p Vm�R )U� J 4 V 4p mvr

p pq2
�w x w x4y1

2 2sy i iŽ .2

= wV PPP V V x ,V m , pq21 my2 my1 m XXd d d Lw J PPP J x Ž rv .1 p

p pq1
x w x4�w y pq1,m V wV PPP V xm 1 my1Xq i d G d2 2 Ž rv . w J PPP J x1 p

p pq2
w x w xpq1 ypq3,m

2 2q2 i y1 d iŽ . Ž .

= wV V PPP V V ,xV1 2 my2 my1 mXXG d dŽ rv . w J PPP J x1 p

p V wV V PPP V x pq2,m1 m 2 my1Xq i y1 T d dŽ . Ž rv . w J PPP J x1 p

m p mqpy2
pm �w x w x w x4q y

2 2 2q y1 iŽ . Ž .

= V q1 PPP V V PPP Vp myp 1 pXU d ,Ž rv . w J PPP J x1 p

I PPP I V PPP1 q 1 V� I 4 �U )U mq V 4m v m

m q w I PPP I x 4yq qy21 q
Xsyd d L . Ž . .wV PPP ŽŽ mvy mv1 V xq 2 2

V J w I PPP I x q1 qm qy2 T d dŽvm . w mV PPP V x1 q

V V q11 1x w x.Žw y m ,Žqq1.y2 i d2 2

= wV V PPP V x1 2 mX XG dŽyŽqy2.v mqŽ3yq .vm . w I PPP I x1 q

q qq1
q w x w xy I m ,qq1q X2 2q2 y1 i G dŽ . Ž . Žyvm .

= wV PPP V V x ,V1 my2 my1 md dw I PPP I x1 qy1

qy1q qy1
w x w x ry1y m

2 2y i i y1 dŽ . Ž .Ý qy1
rs1

=
1qr qw I I I I I xry 1r 1G d PPP d d PPP dŽvm . wV V V V x1 ry1 r m

qy1
rq1q 2 y1Ž .Ý

rs1

= J wV V V V xV q ,mr 1 2 r rq1 mT d PPP d d PPP d dŽvm . w I I I x Iž /1 ry1 rq1 q

q myq mq2
�w x w x w x4q q2 y

2 2 2q i iŽ .

=

q
ry1 wV PPP V1 qy1y1 dŽ .Ý w I PPP I x1 qy1½

rs1



( )C. Curto et al.rPhysics Letters B 480 2000 337–347346

= V PPP V I V PPP xVq qqry1 q qqr mUvm

q
Ž . ry1q myqq2y y1 y1Ž . Ž .Ý

rs1

V PPP V w I I PPP I I PPP I x1 myqq1 r 1 ry1 rq1 qU dvm 5V PPP V PPP Vmy qq2 myqq2qr m

q myq qqmy4
�w x w x w x4q y

2 2 2y iŽ .

= wV PPP V V PPP xV1 myq myqq1 mXR d ,Žvm . w I PPP x I1 q

J PPP J T PPP T1 1p mR ) R� J 4 �p r T 4r m

pwT PPP T x p m p p1 m X Xsd d L q y1Ž .. Ž . .w J PPP J x ŽyŽ y2 r ry y1 rr1 p 2 2

= wT T PPP T x m1 2 mX X2 i G d dŽ . ŽŽ2yp.r ryŽ py1.rr . w J PPP J x pq11 p½
p py1

w x w xy
2 2q i iŽ . Ž .

p
r J m w J PPP J J PPP J xr 1 ry1 rq1 p= y1 G d dŽ .Ý Ž rr . py1 wT PPP T T . . . T x1 ry1 r m 5

rs1

p
rq1 wT < J < T PPP T x p1 r 2 mq y1 2T d dŽ .Ý Ž rr . w J PPP J J PPP J x m1 ry1 rq1 p

rs1

p
ry1y y1Ž .Ý

rs1

= wT PPP T < J < T PPP T x1 mypq1 r mypq2 mU dŽ rr . J PPP J J PPP J1 ry1 rq1 p

p myp m
x w x w x4�w q y wT PPP T T PPP T xq1 pp m 1X Xq i R d ,2 2 2 Ž2 r rqrr . w J PPP J x1 p

J K T PPP T1 mJ KT ) R T PPP Tt r 1 m

m
rq1 wT < J < T PPP T < K < T PPP T xry 11 2 rq1 mJ Ks y1 d RŽ .Ý V PPP VŽ t r .ž 1 n

rs1

wT < K < T PPP T < J < T PPP T x1 2 rq1 mry1J Kyd R ,V PPP VŽ t r . /1 n

I PPP I T PPP T1 1q mU ) R� I 4 �T 4q mm r

my q q m
Ž . �w x w x w x4q myqq2 q2 q y

2 2 2syi y1 iŽ . Ž .

=

myqq2
ry1 w I PPP I xqy 11y1 dŽ .Ý wT PPP T x1 qy1

rs1

= T PPP T I T PPP T1 qqry1 q qqrq1 mR ,rm

J K R S
J KT ) T ,bR Sž /t t

1 R J SK R K S J
XJK R Ss d d yd d LŽ . ŽŽ t . t .2

1 A B JK R S JK
XJ K R Sq T d q4b T ,R SŽ t t . A B Žt .2

where
JK R SdA B

A K BS R J A K BR S J AS B J R K' d d d yd d d qd d dŽ
A R JS SK AS BK R J A R K B S Jyd d d qd d d yd d d

A J BS R K J A R B SK AS BK R Jqd d d yd d d qd d d ,.
39Ž .

where the symmetry of the indices on the left hand
side should be imposed on the indices on the right
side. In the above, we have sometimes suppressed
the indices associated with the functions used by the

V PPP V1 ngenerators. For example v , the associate of the
�V 4mU dual element, may be written as v or simply

as v. Also the notation d I1 PPP Im 'd I1 PPP d Im wasJ PPP J J J1 m 1 m

utilized.
There is quite a bit of interchange between func-

tions in various sectors suggesting that the inhomo-
geneous contribution in the transformation laws for
D, is the interaction of the central extension with D.
The coadjoint of the Virasoro algebra, i.e. the action
of L on the coadjoint vectors reveals a spectrum of
states containing:
Ø D corresponds to a rank 2 covariant tensor when

the central extension is set to zero and is other-
wise a quadratic differential.

3IØ c corresponds to N spin- fields that partner2

with D.
R SØ t corresponds to the spin-1 covariant tensors

Ž . Ž .that serves as the N Ny1 r2 SO N gauge
potentials associated with the supersymmetries.

Ø Given the N supersymmetries, there are the fields
V PPP V1 pv . For a fixed value of N, the total number

of independent components is given by

a U sN 2 N yNy1 .Ž . Ž .
Ø Again given N supersymmetries, there are the

T PPP T1 pfields r . For a fixed value of N, the total
number of independent components is given by

a R s 2 N yNy1 .Ž . Ž .
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The spins of the fields associated with U and R
pŽ .vary according to 2y . These likely correspond2

to other gauge and non-gauge physical fields, auxil-
iary, and Stuckelberg fields that are required to close
the supersymmetry algebra. For a fixed level number

1NŽ . Ž .AA, there are Nq1 2 y Nq3 N independent2

vector fields for N)4.
We end our discussion with a conjecture. If M-

theory possesses a 1D NSR formulation, it seems
likely that the N s 32 or 16 case of the present
discussion determines the structure of its representa-
tion. We conjecture that the spectrum of the 1D, N
s 32 or 16 GGR super Virasoro theory provides a set
of fundamental NSR variables to describe M-theory.

‘‘Equations were drawn up in paisley form.’’ –
Ž .Rakim 1997
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