Simple models for neural computations:

competitive dynamics, domination, gluing dynamical motifs (dominoes),
and inhibitory control
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Motivating ideas

1. The brain is a dynamical system. ("The brain is a computer)

2. By studying ANNs that are dynamical systems, we can generate hypotheses about the
dynamic meaning/role of various network motifs.

3. Network motifs can be composed as dynamic building blocks with predictable properties.

4. One network (by architecture/connectivity) is really many networks in the presence of
neuromodulation or external control.



TLNs — nonlinear recurrent network models

Threshold-linear network dynamics:

dx i
dt

Z Wij.fl?j + bz

j=1

+
W 1s an n X n matrix
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The TLN is defined by (W, b)
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TLNs — nonlinear recurrent network models

Threshold-linear network dynamics:

dilj?;
dt

T
= —T; + E Wz’jﬂij + bz
7=1
W is an n X n matrix

bec R"

+

v

The TLN is defined by (W, b)

Linear network dynamics:

dx

— =A b
ak

A 1s an n X n matrix

bec R"

Long-tferm behavior is easy to
infer from eigenvalues, eigenvectors
— linear algebra tells us everything.

Basic Question: Given (W,b), what are the network dynamics?



The most special case: Combinatorial Threshold-Linear Networks (CTLNs)

graph G and inhibitory cells
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Graph G determines the matrix W
0 if i =
Wij: —1 +¢ ifz’%jinG

—1-6 ifiéjinG

parameter constraints:

0>0 6O6>0 0<e< 0

0+ 1

|ldea: network of excitatory

TLN dynamics:

= —mi 4 | ) Wiz +0

j=1

4+

The graph encodes the pattern
of weak and strong inhibition

Think: generalized WTA networks

For fixed parameters,
only the graph changes -
isolates the role of connectivity



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNSs)

|ldea: network of excitatory

graph G and inhibitory cells TLN dynamics:
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The gCTLN is defined by a. gra5ph G and The graph encodes the pattern
two vectors of parameters: €, of weak and strong inhibition
—1+4¢€; 1if 7 — 12, weak inhibition b; = 60 > 0 for all neurons
Wij=<{ —1—09; 1if 7/ i, strong inhibition
0 if 1 = 7. (default is uniform across neurons,

constant in time)



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNSs)

graph G |dea: network of excitatory

and inhibitory cells TLN dynamics:
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The gCTLN is defined by a graph G and

The graph encodes the pattern
two vectors of parameters: ¢, 0

of weak and strong inhibition

—1+4¢€; 1if 7 — 12, weak inhibition b; =60 > 0 for all neurons
Wij=<{ —1—09; 1if 7/ i, strong inhibition
0 if 1 = 7. (default is uniform across neurons,

constant in time)

Special case: if the parameters €;,0; are the same for all neurons, we have a CTLN.
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TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...

static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)
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Curto & Morrison, 2023 (review paper)
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1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...

2. Mathematically tractable: we can prove theorems directly connecting graph structure to dynamics.

graph structure static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)
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TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...
2. Mathematically tractable: we can prove theorems directly connecting graph structure to dynamics.

3. Both stable and unstable fixed points play a critical role in shaping the dynamics (the vector field).

graph structure static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)

B

dynamic | |
attractor dynamic
attractor

>

dynamic
attractor

FP(G) = FP(G,e,0) = { fixed points (stable and unstable) }

Curto & Morrison, 2023 (review paper)



Domination

Definition 1.1. Let j,k € [n] be vertices of G. We say that k graphically 9
dominates 7 in G if the following two conditions hold: : l

(i) For each vertex ¢ € [n]\ {j,k}, if ¢ = 7 then i — k. \. I
(ii) j = k and k£ A j. \

If there exists a k that graphically dominates 7, we say that ;7 is a dominated k > ]
node (or dominated verter) of G. If G has no dominated nodes, we say that it “ , »
is domination free. K dominates )

“j is a dominated node”

Curto, Geneson, Morrison, 2019 dOmirIG'l'iOn iS a PFOPGny OF G
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Domination

Old Theorem (2019) . /O /
If k dominates j in G, then j, k cannot both be ‘e
active at any fixed point of a CTLN built from G. \' I

{1, k} & o for any 0 € FP(G) i@ k>

Curto, Geneson, Morrison, 2019



Domination

Old Theorem (2019) /O /
If K dominates j in G, then j, kK cannot both be
\‘

(
. Jin o | ‘e
active at any fixed point of a CTLN built from G. L
| for any o € FP NS |
W ky & o for any o € FP(G) ir® k> j
Example
70 4_,‘2 6> 7 Old Theorem says: for any CTLN built from G,

G FP(G) cannot have any fixed points with both
1 / \ 4> 3 {6,7} or both {3,4}.

But its not like we can remove 3 and 7; they may still
affect or participate in other fixed points (for all we know).

Curto, Geneson, Morrison, 2019
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Plastic loses to everyone, so hobody would ever pick it as a strategy.

It drops out.
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Rock-Paper-Scissors: a true story

Rock Bomb
O—=0

Scissors @<«—— @ Paper

Bomb beats Scissors and loses to Paper, just like Rock.
But Bomb also beats Rock.

So now nobody would ever pick Rock as a strategy.
Rock drops out!

March 2024



Domination - New Theorems G/Qj

Theorem 1 (2024) 210\
If j is a dominated node in G, then it drops out! \ @ L
I.e., in any gCTLN, we have: /
FP(G) = FP(G|n\ ) . ®
2 .
k>

Curto 2024 (unpublished)
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Domination - New Theorems

Theorem 1 (2024)

If j is a dominated node in G, then it drops out!

I.e., in any gCTLN, we have:

Theorem 2 (2024)

FP(G)

— FP(G|;,

\j)

By iteratively removing dominated nodes, the final reduced graph

G-tilde is unique. Moreover, FP(G)

— FP(G)

Gl G
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Curto 2024 (unpublished)
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Computational Experiments
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Computational Experiments

Example (; é same graph, different gCTLN parameters
G j’/'z\ \ A \ |
o DALl RV

FP(G) = {45}

stable fixed point on {4,5} |

Conjecture: network activity flows from any initial condition on the graph to the reduced network G




E-R random graphs with p=0.5

Ex 3a

neuron number

firing rate

10

0.8

G

Reduced graph le, w=578

xi(t) rate curves

I I

30 40
time

50

60

10

Ex 3b

~

G

Reduced graph le, w=5738

neuron number

10

0.8

xi(t) rate curves

firing rate

I I I

20 30 40
time

50

60

10




E-R random graphs with p=0.5
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Dominoes! We can chain them together...

Theorem 3 (2024)

If we glue reducible graphs together along their dominoes, in a linear chain,
so that (5. of one is identified with a subgra(ph of (5, of the next,

[

S

then the glued graph reduces to the final ( )

Curto 2024 (unpublished)



Dominoes! We can chain them together...

glued graph (4
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Theorem 3 (2024)

If we glue reducible graphs together along their dominoes, in a linear chain,
so that (5. of one is identified with a subgra (ph of (5, of the next,
then the glued graph reduces to the final G’

Curto 2024 (unpublished)



Domination - New Theorems - a word about the proofs

3. Proof of Theorem 1.5 | heorem 1 we obtain:
In order to prove Theorem 1.5, it will be useful to use the notation Yt — Wikl = Z Wit +b;,
n ico\{s.k}
yi(z) = > Wijz; + bi. (3.1) vi— Wizi = Y Wi + b
j=1 ico\{j;k}
With this notation, the equations for a TLN (W, b) become: The conditions in the theorem now immediately imply that y¥ — Wy <
. Y, — Wi;x;, and thus

= —zi + [yi(2)]+
dt y; + Wiz < yp, + Wiy
If x* is a fixed point of (W,b), then x} = [y;],, where yf = y;(z*).

The first stat t follows f lling that «} = [y} d z; = [y;
We can now prove the following technical lemma: e first statement now follows from recalling that zj = [yj], and z} =[]+,

since we are at a fixed point.

Let (W, b) be a TLN on n nodes and consider distinct j, k € [n]. To see the second statement, we consider two cases. First, suppose k € o
Y%

=W Jor all i # j, k, and b; < by, then for any fized point z* of (W,b) S° that y; > 0. In this case, from equation (3.3) we have

we have « « «
v+ Wiily]le < vi + Wiklyils- (3.3) yj + Wislyjle < ye(1+Wik) <0,
Furthermore, if Wi; > —1 and Wi, < —1, then since Wy, < —1. If y; > 0, then the left-hand-side would be y; (1 + Wy;) > 0,
since Wj; > —1. This yields a contradiction, so we can conclude that if y; > 0
y; < 0. (3.4) then y <O0.

Second, suppose k ¢ o so that y; < 0. Then we have [y;], = 0 and
Proof. Suppose z* is a fixed point of (W,b) with support o C [n]. Then, equation (3.3) becomes
recalling that W,; = Wy, = 0 and that z7 = 0 for all i ¢ o, from equation (3.1)
Yi + Wiilyjle <y <0.

Once again, if y; > 0 we obtain a contradiction, so we can conclude that
y; < 0. ]
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Suppose j is a dominated node in G. Then, for any associated
gCTLN, y; <0 at every fized point * (no matter the support).

Proof. Suppose j is a dominated node in G. Then, there exists k € [n] such need some more Iemmas“‘

that 4 — k, k A j, and satisfying ¢+ — k whenever ¢+ — 5. Translating

these conditions to an associated gCTLN, with weight matrix given as in Let G be a graph with vertex set [n]. For any gCTLN on G,
equation (1.3), we can see that Wy; > —1, W, < —1, and Wj; < Wy, for all

i # j,k. Moreover, since b; = by = 6, we also satisfy b; < b;. We are thus o € FP(G) & o € FP(G|,) for all w such that o C w C [n]
precisely in the setting of the second part of Lemma 3.2, and we can conclude & o0 € FP(G|,) and 0 € FP(G|oue) for all f ¢ o.
that y; <0 at any fixed z* of the gCTLN. N
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3. Proof of Theorem 1.5 | heorem 1 we obtain:
o | Proof of Theorem 1
In order to prove Theorem 1.5, it will be useful to use the notation Yt — Wiz}, = Z Wizt +b;,
i ico\lg:k) Proof of Theorem 1.5. Suppose j is a dominated node in G, and let (W, b) be
yi(T) = Z Wiz + bi. (3.1) Y, — Wiy = Z Wiix + bg. an associated gCTLN. By Lemma 3.5, we know that y; < 0 at every fixed
j=1 ico\{j,k} point (W, b). It follows that j & o for all ¢ € FP(G). Hence,

With this notation, the equations for a TLN (W, b) become: The conditions in the theorem now immediately imply that y> — Wyzp < FP(G) C FP(G|n\j)-

dz; Ve — Wh;T;, and thus It remains to show that FP(G|},\;) € FP(G). By Lemma 3.6, this is equivalent

a + [yi(2)]+- to showing that for each o € FP(G|,)\;), o € FP(G|ou;).
Suppose o0 € FP(G|n)\;), with corresponding fixed point z*. In this setting,

The fi foll £ 11 h * [k X [* we are not guaranteed that y; = y,(z*) <0, as z* is not necessarily a fixed
© first statement now fofows from recaling that z; [yj Jy and 2 = [yl point of the full network. To see whether o € FP(G|,u;), if suffices to check

since we are at a fixed point. the “off”-neuron condition for j: that is, we need to check if y; < 0 when

Let (W, b) be a TLN on n nodes and consider distinct j, k € [n]. To see the second statement, we consider two cases. First, suppose k € o evaluating (3.1) at z*.
/V/

i S Wi for alli # 3, k, and b; < by, then for any fized point x* of (W,b) so that yi > 0. In this case, from equation (3.3) we have Recall now that there exists a k € [n]\ j such that k graphically dominates

y; + Wiz < yp + Wiy,
If x* is a fixed point of (W,b), then x} = [y;],, where yf = y;(z*).
We can now prove the following technical lemma:

we have T T < (L W) < j. It is also useful to evaluate y; at z*. Following the beginning of the proof
y; + Wi, [y;]+ < yi + Wiklyils (3.3) Yj T Wi [yj]+ < y(1+Wji) <0, of Lemma 3.2, we see that simply from the fact that supp(z*) = o, we obtain
Furthermore, if Wi; > —1 and Wy, < —1, then since W, < —1. If y; >0, then the left-hand-side would be y;-‘(l + Wi;) > 0, yi + Wiz < vy + Wiz}
since Wj; > —1. This yields a contradiction, so we can conclude that if y; > 0
yt <0 (3.4) then y* <0 However, we cannot assume x; = [y;], since we are not necessarily at a fixed
j —_ . . .7 — .

Second, suppose k ¢ o so that y} < 0. Then we have [yi], = 0 and point of the full network (W, b). We know only that z; = 0 and z} = [y;]+, as

Proof. Suppose z* is a fixed point of (W,b) with support o C [n]. Then, equation (3.3) becomes
recalling that W,; = Wy, = 0 and that z7 = 0 for all i ¢ o, from equation (3.1)

the fixed point conditions are satisfied in the subnetwork (Wp,\;,bp\;) that
includes k. This yields,

y; + Wijly;l+ <yp <0. y; < yp(l+ W) <0,

Once again, if y; > 0 we obtain a contradiction, so we can conclude that Jwhere the second inequality stems from the fact that W < —1. So, as it
y; <0. [J Jturns out, we see that y; < 0 not only for fixed points of (W,b), but also for
fixed points from the subnetwork (W, ;,bpm)\;)- We can thus conclude that

Suppose j is a dominated node in G. Then, for any associated FP(G|im)\;) € FP(G), completing the proof. u

gCTLN, y; <0 at every fized point * (no matter the support).
need some more lemmas...

Proof. Suppose j is a dominated node in G. Then, there exists k € [n] such
that 4 — k, k A j, and satisfying ¢+ — k whenever ¢+ — 5. Translating
these conditions to an associated gCTLN, with weight matrix given as in Let G be a graph with vertex set [n]. For any gCTLN on G,
equation (1.3), we can see that Wy; > —1, W, < —1, and Wj; < Wy, for all

i # j,k. Moreover, since b; = by = 6, we also satisfy b; < b;. We are thus o € FP(G) & o € FP(G|,) for all w such that o C w C [n]
precisely in the setting of the second part of Lemma 3.2, and we can conclude & o0 € FP(G|,) and 0 € FP(G|oue) for all f ¢ o.
that y; <0 at any fixed z* of the gCTLN. N



What about a cyclic chain?

first and last domino identified

Theorem 3 (2024)

If we glue reducible graphs fogether-along their dominoes, in a linear chain,
so that (5. of one is identified-With subgra(ph of (5, of the next,
[

then the glued graph redutes to the fina )

\



Cyclic chain example

Domination reduction cannot be done, and the network activity will loop around.



: : Domination reductions:
CYC“C Chal n example 1) Without identifying 1" and 1, G reduces to 1’
2) After identifying 1" and 1, nodes 7, 11, 15 are

6 dominated so they drop out and G-tilde has
only 13 nodes.

Domination reduction cannot be done, and the network activity will loop around.



Inhibitory control

inhibit node 5 O

selectively inhibit node 16
Ldonkiby 1= L o} He <end

What if you selectively inhibit one of the neurons?
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Thank you!
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