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Motivating questions and ideas:

1. How does connectivity shape dynamics?

2. The relationship between connectivity and neural activity depends on the
dynamical system you associate to the connectome.

3. By studying neuroscience-inspired (nonlinear!) dynamical systems on graphs, we can
generate hypotheses about the dynamic meaning/role of various network motifs.



TLNs — nonlinear recurrent network models

Threshold-linear network dynamics:

dx i
dt

Z Wij.fl?j + bz

j=1

+
W 1s an n X n matrix

bec R" /

The TLN is defined by (W, b)
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TLNs — nonlinear recurrent network models

Threshold-linear network dynamics:

dilj?;
dt

T
= —T; + E Wz’jﬂij + bz
7=1
W is an n X n matrix

bec R"

+

v

The TLN is defined by (W, b)

Linear network dynamics:

dx

— =A b
ak

A 1s an n X n matrix

bec R"

Long-tferm behavior is easy to
infer from eigenvalues, eigenvectors
— linear algebra tells us everything.

Basic Question: Given (W,b), what are the network dynamics?



The most special case: Combinatorial Threshold-Linear Networks (CTLNs)

graph G and inhibitory cells
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The graph encodes the pattern
of weak and strong inhibition

Think: generalized WTA networks

For fixed parameters,
only the graph changes -
isolates the role of connectivity



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNSs)

|ldea: network of excitatory

graph G and inhibitory cells TLN dynamics:
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The gCTLN is defined by a. gra5ph G and The graph encodes the pattern
two vectors of parameters: €, of weak and strong inhibition
—1+4¢€; 1if 7 — 12, weak inhibition b; = 60 > 0 for all neurons
Wij=<{ —1—09; 1if 7/ i, strong inhibition
0 if 1 = 7. (default is uniform across neurons,

constant in time)



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNSs)

graph G |dea: network of excitatory

and inhibitory cells TLN dynamics:
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The gCTLN is defined by a graph G and

The graph encodes the pattern
two vectors of parameters: ¢, 0

of weak and strong inhibition

—1+4¢€; 1if 7 — 12, weak inhibition b; =60 > 0 for all neurons
Wij=<{ —1—09; 1if 7/ i, strong inhibition
0 if 1 = 7. (default is uniform across neurons,

constant in time)

Special case: if the parameters €;,0; are the same for all neurons, we have a CTLN.
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TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...

static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)
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Curto & Morrison, 2023 (review paper): Graph rules for recurrent neural network dynamics



TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...

2. Mathematically tractable: we can prove theorems directly connecting graph structure to dynamics.

graph structure static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)
ok ®
G+ ® 2\ \ B dynamic | . |
f X?‘ attractor a%/trr\:(:r?gc;
: N
o S ‘Z - o
& / /O static @
attractor

>

dynamic
attractor

Curto & Morrison, 2023 (review paper): Graph rules for recurrent neural network dynamics



TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...
2. Mathematically tractable: we can prove theorems directly connecting graph structure to dynamics.

3. Both stable and unstable fixed points play a critical role in shaping the dynamics (the vector field).

graph structure static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)
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FP(G) = FP(G,e,0) = { fixed points (stable and unstable) }

Curto & Morrison, 2023 (review paper): Graph rules for recurrent neural network dynamics



TLNs, CTLNs, and gCTLNs ... and E-I TLNs from graphs

all recurrent network models

linear
models
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E-I TLNs from graphs

C
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Curto 2025 (preprint soon!)



E-I TLNs from graphs
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There is a mapping from E-I TLNs to gCTLNs that preserves fixed points
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There is a mapping from E-I TLNs to gCTLNs that preserves fixed points
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?

excitatory neurons
in a sea of inhibition
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points:

excitatory neurons
in a sea of inhibition

do E-I TLNs produce similar dynamics to gCTLNs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Even “exotic” attractors like Gaudi and
baby chaos look the same
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Even “exotic” attractors like Gaudi and
baby chaos look the same
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Even “exotic” attractors like Gaudi and
baby chaos look the same
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We had many mathematical results, called “graph rules” on CTLNSs.

Now many of those results also apply to E-I TLNs built from graphs!
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Curto & Morrison, 2023 (review paper): Graph rules for recurrent neural network dynamics



Domination

Definition 1.1. Let j,k € [n] be vertices of G. We say that k graphically 9
dominates 7 in G if the following two conditions hold: : l

(i) For each vertex ¢ € [n]\ {j,k}, if ¢ = 7 then i — k. \. I
(ii) j = k and k£ A j. \

If there exists a k that graphically dominates 7, we say that ;7 is a dominated k > ]
node (or dominated verter) of G. If G has no dominated nodes, we say that it “ , »
is domination free. K dominates )

“j is a dominated node”

Curto, Geneson, Morrison, 2019 dOmirIG'l'iOn iS a PFOPGny OF G
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node (or dominated verter) of G. If G has no dominated nodes, we say that it
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k>
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Domination Theorems G

/O /
Theorem 1 (2024) 210 l

If j is a dominated node in G, then it drops out! \\>. I
I.e., in any gCTLN, we have: /
FP(G) = FP(G|[n]\j) . ®
2 .
k>

Curto 2024 (unpublished)
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Theorem 1 (2024)

If j is a dominated node in G, then it drops out! \\‘Q I /

I.e, in any gCTLN, we have: | . @
FP(G) = FP(Gli,) 0 i

Theorem 2 (2024) k> 10 >k

By iteratively removing dominated nodes, the final reduced graph

G-tilde is unique. Moreover, FP(G) — FP(é)

Curto 2024 (unpublished)
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If j is a dominated node in G, then it drops out!

I.e., in any gCTLN, we have:
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By iteratively removing dominated nodes, the final reduced graph
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Domination Theorems

Theorem 1 (2024)
If j is a dominated node in G, then it drops out!

I.e., in any gCTLN, we have:
FP(G) = FP(G|n\ )

Theorem 2 (2024)
By iteratively removing dominated nodes, the final reduced graph

G-tilde is unique. Moreover, FP(G) — FP(é)

Example
7 2 2
G A’/O/‘\ /O
1 / 1/
5 ! 59 A
6> 7 4> 3 1> 2.6



Domination Theorems Since E-I TLNs map to
gCTLNs with the same

Theorem 1 (2024) fixed points, the
If j is a dominated node in G, then it drops out! domination theorems hold

I.e., in any gCTLN, we have: FP(G) _ FP(G“TL] \j) for E-I TLNs, too!

Theorem 2 (2024)
By iteratively removing dominated nodes, the final reduced graph

G-tilde is unique. Moreover, FP(G) — FP(é)

Example
A oo, o FP(G) = {45}
6“_/,1‘4'/_‘\0 o 60‘_/90/ X FP(G) i {45}
NN NN\ N ;
D 4_"4 50<—>04 - <—>Q4 5Q<—>‘4
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time
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0 10 20 30
time

Since E-I TLNs map to
gCTLNs with the same
fixed points, the
domination theorems hold
for E-I TLNs, too!
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Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: (5 s (7

Two graphs with the same reduction are in the same domination equivalence class.

® G=H
l @Q—0
® L




Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: (5 s (7

Two graphs with the same reduction are in the same domination equivalence class.

@ G=H
l @Q—0
® L

1. Are overrepresented graphical motifs more likely to be reducible or irreducible?
2. Which motifs are domination-equivalent?

3. What about larger portions of the connectome: do they reduce via domination?



Very preliminary analysis

Graph motifs team at JHU

Jordan Matelsky (also at Penn)

Patricia Rivlin % G has143 nodes
Michael Robinette o

C. elegans E-E network:

Erik Johnson .
Brock Wester o reduced G: 104 nodes

Johns Hopkins University Applied Physics Laboratory,
Research & Exploratory Development Department

We first strip out everything but chemical synapses, then tag neurons by their small-molecule neurotransmitters—acetylcholine/
glutamate as excitatory, GABA as inhibitory—next we grab the induced subgraph of neurons that fire ACh/Glu but no GABA.
That’s our ‘excitatory’ network. And yes—it’s just a conservative, transmitter-based proxy for valence; real C. elegans synaptic

s’ ~
polarity is far messier (receptors, modulators, co-transmission, gap junctions, etc.) All blame goes to Jordan Matelsky, Carina JOGCI“' n Cas.l-aneda Cas.l-ro

did nothing wrong.
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common or rare in a random graph with

matching edge probability? ""-;, G has143 nodes

C. elegans E-E network:

reduced G: 104 nodes

Joaquin Castaneda Castro



Very preliminary analysis

Is a reduction from 143 -> 104 nodes
common or rare in a random graph with

matching edge probability? ’-*i?._. ‘ G has143 nodes

C. elegans E-E network:

1 million E-R random graphs
with matching p = 0.054

reduced G: 104 nodes

Distribution of domination
reductions:

143 nodes: 782,590

142 nodes: 189,951

* 141 nodes: 24,951 VERY RARE!
* 140 nodes: 2,307

139 nodes: 185

138 nodes: 15
137 nodes: 1

Joaquin Castaneda Castro



Reduction sizes of E-R random graphs of size n=143

C. elegans E-E network |
with p = 0.05, 0.1, 0.5

reduction:

g 10" Reduction histogram for E-R random graphs n =143 100000 trials
G has143 nodes — | | | |

B p=0.1
[ lp=0.25
o |IHllp =05

reduced G: 104 nodes

1 million E-R random graphs
with matching p = 0.054

Distribution of domination
reductions:

Count

143 nodes: 782,590
* 142 nodes: 189,951 ot
* 141 nodes: 24,951
* 140 nodes: 2,307 T
139 nodes: 185
138 nodes: 15
137 nodes: 1 oL | L - .

~---ction

137 138 139 140 141 142 143

size of reduced graph




Back fo our motivating questions and ideas:

1. How does connectivity shape dynamics?

2. The relationship between connectivity and neural activity depends on the
dynamical system you associate to the connectome.

3. By studying neuroscience-inspired (nonlinear!) dynamical systems on graphs, we can
generate hypotheses about the dynamic meaning/role of various network motifs.

Domination is a graph property that comes out of the nonlinear dynamics,

It Is not something that graph theorists or network scientists were already
paying attention fo.
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Katie Morrison Caitlyn Parmelee Chris Langdon

grad student:

Zelong Li
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Jesse Geneson Caitlin Lienkaemper

Jordan Matelsky (also at Penn) Juliana Londono

Patricia Rivlin Alvarez

Michael Robinette ) _

Erik Johnson Joaquin Castaneda Castro

Brock Wester

Johns Hopkins University Applied Physics Laboratory,
Research & Exploratory Development Department




