Graphical domination and inhibitory control for threshold-linear networks
with recurrent excitation and global inhibition
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Motivating ideas

1. The brain is a dynamical system. ("The brain is a computer.)

2. By studying ANNs that are dynamical systems, we can generate hypotheses about the
dynamic meaning/role of various network motifs.

3. Network motifs can be composed as dynamic building blocks with predictable properties.

4. One network (by architecture/connectivity) is really many networks in the presence of
neuromodulation or external control.
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TLNs — nonlinear recurrent network models

Threshold-linear network dynamics:

d$z' =
i = —T; + ZW@jmj + bz

j=1

_|.
W 1s an n X n matrix

becR"

The TLN is defined by (W, b)

Linear network dynamics:

dx
— =A b
a T

A is an n X n matrix

becR"

Long-term behavior is easy to
infer from eigenvalues, eigenvectors
— linear algebra fells us everything.

Basic Question: Given (W,b), what are the network dynamics?



The most special case: Combinatorial Threshold-Linear Networks (CTLNs)

graph G and inhibitory cells
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Graph G determines the matrix W

0 if1=7
Wi = —14¢ ifi+57inG
—1—-9 if14757inG

parameter constraints:

0>0 6>0 0<s<L
d+1

|dea: network of excitatory

TLN dynamics:

The graph encodes the pattern
of weak and strong inhibition

Think: generalized WTA networks

For fixed parameters,
only the graph changes -
isolates the role of connectivity



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNs)
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The gCTLN is defined by a graph G and
two vectors of parameters: ¢, §

—14¢; if 5 =4, weak inhibition
Wij =4 —1—90; if 7 A 1, strong inhibition
0 if 1 = 7.

TLN dynamics:

The graph encodes the pattern
of weak and strong inhibition

b; = 6 > 0 for all neurons

(default is uniform across neurons,
constant in time)
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|dea: network of excitatory

graph G and inhibitory cells
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The gCTLN is defined by a graph G and
two vectors of parameters: ¢, §

—14¢; if 5 =4, weak inhibition
Wij =4 —1—90; if 7 A 1, strong inhibition

0 if 1 = 7.

CTLNs

i gCTLNs Special case: if the parameters

TLN dynamics:

The graph encodes the pattern
of weak and strong inhibition

b; = 6 > 0 for all neurons

(default is uniform across neurons,
constant in time)

€j,0; are the same for all neurons, we have a CTLN.



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNs)

|dea: network of excitatory

hG o
grap and inhibitory cells The central goal is to

o ﬁ o WA predict features of the

X o % TOHA& dynamics (activity)

rd 6%
/u/ ~_ Ag, \H’%i from the combinatorial
o<—e « A A0 structure of the graph G

(connectivity).

CTLNs

i gCTLNs
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TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...
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1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...

2. Mathematically tractable: we can prove theorems directly connecting graph structure to dynamics.

graph structure static attractors (fixed pts) dynamic attractors
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TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...
2. Mathematically tractable: we can prove theorems directly connecting graph structure to dynamics.

3. Both stable and unstable fixed points play a critical role in shaping the dynamics (the vector field).

graph structure static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)

B

dynamic
attractor

dynamic
attractor

static e
attractor

dynamic
attractor

FP(G) = FP(G, ¢, d) = { fixed points (stable and unstable) }

Curto & Morrison, 2023 (review paper)



Theorem: oriented graphs with no sinks

Theorem. If G is an oriented graph with no sinks, then the network
has no stable fixed points (but bounded activity).
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Existence of such limit cycles was established in Bel, Cobiaga, Reartes, and Rotstein, SIADS 2022.
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Gaudi attractor

n = 7 star (another tournament)

limit cycle quasiperiodic attractor
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figures on Github:
Diversity of emergent dynamics in competitive TLNs, Morrison, et. al., SIADS 202
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TLNs as a patchwork of linear systems

dx i
dt

j=1

Different linear system
of ODEs for each, indexed by:

o C [n]
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dt
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TLNs as a patchwork of linear systems

dx i
dt

Jj=1

= —I; + ZW@jLEj -|-(9
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Different linear system % —x1 + [2?21 Wy, +9]
of ODEs for each, indexed by: *
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o=Ai€n||y >0} v2
dx, n
E —Ty, + {Zj:l anl'j + 9} .
Yn
FP(W,b) e {o C[n]| o =suppz®, for some

fixed pt * of the associated TLN}

1-1 correspondence between fixed points and allowed supports



TLNs as a patchwork of linear systems
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FP(W,b) e {o C[n]| o =suppz®, for some
fixed pt * of the associated TLN}

1-1 correspondence between fixed points and allowed supports



TECHNICAL RESULTS >

n o~ 7
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for fixed points of TLNs = T | D W + R
— R
, s K
parity
Theorem 2.2 (parity [7]). For any nondegenerate threshold-linear network (W, ),
3 idx(o) = +1. idx(c) % sgndet(I — W,,).
acFP(W.,b)
In particular, the total number of fixed points | FP(W,b)| is always odd.
Corollary 2.3. The number of stable fixed points in a threshold-linear network of the form (1.1)
is at most 2" 1.
sign conditions
Theorem 2.6. Let (W, b) be a (non-degenerate) threshold-linear network with W;; < 0 andb; > 0
for alli,j € [n]. For any nonempty o C [n],
o € FP(W,b) & sgns] =sgns] = —sgnsj foralli.jeo, k¢o. s7 def det((1 — Wougiy)is bougiy)

Moreover, if o € FP(W,b) then sgn s7 = sgndet(I — W, ) = idx(o) foralli € o.

domination

Theorem 2.11. Let (W, ) be a threshold-linear network. Then o  FP(W,0) if and only if the
following two conditions hold:

(i) o is domination-free, and

(i) for each k ¢ o there exists j € o such that j =, k.

C. Curto, J. Geneson, K. Morrison. Fixed points of threshold-linear networks. (Neural Computation, 2019)



Graph rules for CTLN fixed point supports FP(G)

rule name | G|, structure graph rule
Rule 1 independent set | o € FP(G|,) and o € FP(G) < o is a union of sinks
Rule 2 clique o € FP(G|,) and ¢ € FP(G) & o is target-free
Rule 3 cycle o € FP(G|,) and 0 € FP(G) < each k ¢ o
receives at most one edge 1 — k for i € o
Rule 4(i) | Jasource j € o | 0 ¢ FP(Q) if j — k for some k € [n]
Rule 4(ii) | 3 a source j € 0 | 0 € FP(G|,) © 0 € FP(G|su;)
Rule 5(1) | Jatarget k€ o | 0 ¢ FP(G|,) and 0 ¢ FP(G) if k /> j for some j € o
Rule 5(ii) | 3 a target k € o | 0 € FP(G|,uk) and o ¢ FP(G)
Rule 6 Jasink s ¢ o ocU{s} € FP(G) & o € FP(G)
Rule 7 DAG FP(G) = {Us; | s; is a sink in G}
Rule 8 arbitrary | FP(G)| is odd

C. Curto, J. Geneson, K. Morrison. Fixed points of threshold-linear networks. (Neural Computation, 2019)

Table 1: Summary of derived graph rules.



Observations about competitive TLNs Wi it [i Wijz; +bz~]
|

1. Directed graphs (non-symmetric W) is necessary to get dynamic
attractors that (as opposed to fixed points).

2. Unstable fixed points matter — b/c of the Perron-Frobenius theorem.

3. Degeneracy: attractors can be preserved with changing weights
(selectively).

4. Architecture provides serious constraints, not everything is possible!

5. The same in/out-degree distribution can correspond to networks with
wildly different dynamics.

6. Sequences emerge very naturally because of the inhibition. There is
no need for a synaptic chain in the architecture.

recent survey if you want to know more:
Curto & Morrison, Notices of the AMS, 2023






Focus on one very important graph property:
domination



Domination

Definition 1.1. Let j,k € [n] be vertices of G. We say that k graphically
dominates 7 in G if the following two conditions hold:

(i) For each vertex i € [n]|\ {j,k}, if ¢ — j then i — k.
(i) j > kand k A j.

If there exists a k that graphically dominates j, we say that j is a dominated
node (or dominated vertez) of G. If G has no dominated nodes, we say that it
is domination free.

/ij

\\‘Qk

k> j

“k dominates j”

%j is a dominated node”

Curto, Geneson, Morrison, 2019 dominaﬁon iS a Properfy OF G
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Domination

Old Theorem (2019) , /O J
11

If k dominates j in G, then j, k cannot both be ®
active at any fixed point of a CTLN built from G. \. L
{j,k} & o for any o € FP(G) ig./ k>

Curto, Geneson, Morrison, 2019



Domination

Old Theorem (2019) . /O J
If k dominates j in G, then j, k cannot both be Zl.
\.

active at any fixed point of a CTLN built from G. L
' f FP N |
{j,k} € o for any o € FP(G) i ® k>
Example
7 2 6> 7 Old Theorem says: for any CTLN built from G,

G FP(G) cannot have any fixed points with both
/ 1 / \ 4> 3 {6,7} or both {3,4}.
3
But it's not like we can remove 3 and 7; they may still
affect or participate in other fixed points (for all we know).

Curto, Geneson, Morrison, 2019
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Plastic loses to everyone, so nobody would ever pick it as a strategy.

It drops out.

March 2024
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Rock-Paper-Scissors: a true story

Rock Bomb
@)

Scissors @<«———@ Paper

Bomb beats Scissors and loses to Paper, just like Rock.
But Bomb also beats Rock.

So now nobody would ever pick Rock as a strategy.
Rock drops out!

March 2024



Domination - New Theorems G o

Theorem 1 (2024) Zl./ l
If j is a dominated node in G, then it drops out! \\>. o
Le., in any gCTLN, we have: /
FP(G) =FP(Glmps)
2 .
k>j

Curto 2024 (unpublished)
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Theorem 1 (2024) Zl.<:l
If j is a dominated node in G, then it drops out! \ ® L
Le., in any gCTLN, we have: /
FP(G) =FP(Glmps)
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Theorem 2 (2024) k>j

By iteratively removing dominated nodes, the final reduced graph
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Computational Experiments
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Computational Experiments

Example

G

G

Reduced graph G|J w=45

4

5

xi(t) rate curves

stable fixed point on {4,5}

same graph, different gCTLN parameters

Reduced graph le’ w=45

neuron number
s W

xi(l) rate curves
T

stable fixed point on {4,5} ~ *

Conjecture: network activity flows from any initial condition on the graph to the reduced network G




E-R random graphs with p=0.5
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E-R random graphs with p=0.5
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D . | Conjecture: network activity flows from any initial condition on the graph
ominoes. to the reduced network
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. Conjecture: network activity flows from any initial condition on the graph
DomanQS! to the reduced network
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. Conjecture: network activity flows from any initial condition on the graph
DomanQS! to the reduced network

G

FP(G) = {45}

the "domino” of graph (&
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Fact (Thms 1 & 2): all the fixed points of (G are supported in(G, = (G @ @ @ ﬁ -
® A
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Conjecture: network activity flows from G, —>.



Dominoes!
G 7 2
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Conjecture: network activity flows from (G, —>.




Dominoes!
G 7 2

6 0/—.>‘/T>/<;\0 3 Gw

FP(G) = {45}

the "domino” of graph (&
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G, G,
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Fact (Thms 1 & 2): all the fixed points of (7 are supported in(G, = G e®e '\ -~ ©

Conjecture: network activity flows from (G, —>.




Dominoes! We can chain them together...
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Dominoes! We can chain them together...

oo
.m. ‘- ) )
G(E)l) Gg_l) G£j2) G5_2) GS’)) GS_?))

Theorem 3 (2024)

If we glue reducible graphs together along their dominoes, in a linear chain,
so that (5.of one is identified with a subgra(ph of (G of the next,
then the glued graph reduces to the final (5 )

T

Curto 2024 (unpublished)



Dominoes! We can chain them together...

glued graph (&
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Theorem 3 (2024)

If we glue reducible graphs together along their dominoes, in a linear chain,
so that (5.of one is identified with a subgra(ph of (G of the next,
then the glued graph reduces to the final GTZ).

Curto 2024 (unpublished)



What about a cyclic chain?

first and last domino identified

\
G G

Theorem 3 (2024)
If we glue reducible graphs
so that (5.of one is identifie
then the glued graph re

ong their dominoes, in a linear chain,

subgra(ph of (G of the next,
es fo the finatG ()



Cyclic chain example

2

S

o
v s se
O—0O—
?\. e CID/'Q

;Low.z} 124 o He end

5
/.O
\O

Domination reduction cannot be done, and the network activity will loop around.



. . Domination reductions:
CYC“C Chaln example 1) Without identifying 1" and 1, G reduces to 1’
2) After identifying 1" and 1, nodes 7, 11, 15 are

dominated so they drop out and G-tilde has
only 13 nodes.
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\I> e I/'

O

L&Q,,\L-.ﬁ} 124 o8 He end

Domination reduction cannot be done, and the network activity will loop around.



Inhibitory control

inhibit node 5 5
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selectively inhibit node 16
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What if you selectively inhibit one of the neurons?
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