So far, everything we have done for CTLNs/gCTLNs has
assumed negative (inhibitory) weights on the W matrix.
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E-I TLNs from graphs
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There is a mapping from E-I TLNs to gCTLNs that preserves fixed points
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There is a mapping from E-I TLNs to gCTLNs that preserves fixed points
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The mapping says nothing about the timescale of inhibition!
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TLNs, CTLNs, and gCTLNs ... and E-I TLNs from graphs
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNs?
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We had many mathematical results, called “graph rules” on CTLNSs.

Now many of those results also apply to E-1 TLNs built from graphs!
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Curto & Morrison, 2023 (review paper): Graph rules for recurrent neural network dynamics



Domination Theorems Since E-I TLNs map to
gCTLNs with the same

Theorem 1 (2024) fixed points, the
If j is a dominated node in G, then it drops out! domination theorems hold

ILe., in any gCTLN, we have: FP(G) _ FP(G’[n]\j) for E-I TLNs, too!

Theorem 2 (2024)
By iteratively removing dominated nodes, the final reduced graph

G-tilde is unique. Moreover, FP(G) _ FP(CN;)

Example
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Cyclic chain example
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Domination reduction cannot be done, and the network activity will loop around.
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Domination - New Theorems - a word about the proofs

3. Proof of Theorem 1.5 | heorem 1 we obtain:
In order to prove Theorem 1.5, it will be useful to use the notation Y — Wi}, = Z Wiz +b;,
n i€o\{j,k}
yi(z) =Y Wiz + bi. 3.1) Yo~ Wigzy = Y Wua] + by
j=1 i€a\{j,k}
With this notation, the equations for a TLN (W, b) become: The conditions in the theorem now immediately imply that y; — Wi <
dz, [ ( )] i — ijz;, and thus
=% + %2+ . P «
dt Y; + Wiyzi <y + Wiy

If z* is a fixed point of (W, b), then z} = [y;], where y} = y;(z*).

The first stat: t foll fi alling that =} = [y} d z; = [y;
We can now prove the following technical lemma: e first statement now follows from recalling that zj = [y], and o} = [y

since we are at a fixed point.

I Lemma 3.2.|Let (W, ) be a TLN on n nodes and consider distinct j, k € [n). To see the seconx.i statement, we cor.lsider two cases. First, suppose k € o
W Z War Jor all i # j, k, and b; < by, then for any fized point z* of (W, b) so that y; > 0. In this case, from equation (3.3) we have
we have " " «
y; + ij[y;h <y + ij[yZ]Jr- (3~3) vt Wi [yjh <ul+ W]k) =0
Furthermore, if Wi; > —1 and Wiy, < —1, then since Wjr < —1. If y; > 0, then the left-hand-side would be y;(1 + Wy;) > 0,
since Wy; > —1. This yields a contradiction, so we can conclude that if y; > 0
y; <0. (3.4) then y7 <0.

Second, suppose k ¢ o so that y; < 0. Then we have [y}]; = 0 and
Proof. Suppose z* is a fixed point of (W,b) with support ¢ C [n]. Then, equation (3.3) becomes
recalling that W;; = Wy, = 0 and that 2} = 0 for all ¢ ¢ o, from equation (3.1)
y; + Wilyil+ <yr <0.

Once again, if y; > 0 we obtain a contradiction, so we can conclude that
y; <0. O



Domination - New Theorems - a word about the proofs

3. Proof of Theorem 1.5 Theor‘em 1

In order to prove Theorem 1.5, it will be useful to use the notation

yl(x) = ZVVz’jQ:j + bl (31)
j=1

With this notation, the equations for a TLN (W, b) become:

dxi
dt

= —z; + [3i(2)]+-

If z* is a fixed point of (W, b), then z} = [y;], where y} = y;(z*).
We can now prove the following technical lemma:

I Lemma 3.2.|Let (W,b) be a TLN on n nodes and consider distinct j, k € [n].

TTW;i < Wy Jor all i # 4, k, and b; < by, then for any fized point z* of (W,b)
we have

Y5+ Wiyl < vk + Wiklyil+
Furthermore, if Wi; > —1 and Wy, < —1, then

(3.3)

y; <0. (3.4)

Proof. Suppose z* is a fixed point of (W,b) with support o C [n]. Then,
recalling that W;; = Wy, = 0 and that 2} = 0 for all ¢ ¢ o, from equation (3.1)

we obtain:

v = Wi = 3 Wil +b;,
i€o\{j,k}
y,’; — ijl‘; = Z szl‘: + by
i€a\{5,k}
The conditions in the theorem now immediately imply that y; — Wyzy <
Y — Wi;z}, and thus

y; + Wiz; < yi + Wy,

The first statement now follows from recalling that «} = [y}]+ and zj = [y;]+,
since we are at a fixed point.

To see the second statement, we consider two cases. First, suppose k € o
so that y; > 0. In this case, from equation (3.3) we have

Y; + Wislyile < gl +Wi) <0,

since Wjr < —1. If y; > 0, then the left-hand-side would be y;(1 + Wy;) > 0,
since Wy; > —1. This yields a contradiction, so we can conclude that if y; > 0
then y; < 0.

Second, suppose k ¢ o so that y; < 0. Then we have [y}]; = 0 and
equation (3.3) becomes

Y + Wiilyjls <yp <0.

Once again, if y; > 0 we obtain a contradiction, so we can conclude that
y; <0. O

Suppose j is a dominated node in G. Then, for any associated

g V, y; < 0 at every fized point z* (no matter the support).

Proof. Suppose j is a dominated node in G. Then, there exists k € [n] such
Translating
these conditions to an associated gCTLN, with weight matrix given as in

that j — k, k 4 j, and satisfying i — k whenever ¢ — j.

need some more lemmas...

equation (1.3), we can see that Wy; > —1, Wy, < —1, and Wj; < Wy, for all

i # j,k. Moreover, since b; = b, = 6, we also satisfy b; < b,. We are thus
precisely in the setting of the second part of Lemma 3.2, and we can conclude

that 7 <0 at any fixed z* of the gCTLN.

O

Let G be a graph with vertez set [n]. For any gCTLN on G,

0 € FP(G) & o € FP(G|,) for allw such that o0 Cw C [n]
& o0 € FP(G|,) and 0 € FP(G|,ue) for all £ ¢ o.
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3. Proof of Theorem 1.5 | heorem 1 we obtain:
. , Proof of Theorem 1
In order to prove Theorem 1.5, it will be useful to use the notation Y — Wil = Z Wi} +b;,
n i€o\k} Proof of Theorem 1.5. Suppose j is a dominated node in G, and let (W,b) be
yi(z) = ZVVijxj + bi. (3.1) Yp — Wizl = Z Wiix; + bg. an associated gCTLN. By Lemma 3.5, we know that y; < 0 at every fixed
j=1 ica\{j,k} point (W,b). It follows that j & o for all o € FP(G). Hence,
With this notation, the equations for a TLN (W, b) become: The conditions in the theorem now immediately imply that y; — Wi < FP(G) C FP(G|pm)\j)-
dz; Yk — Wi;zj, and thus It remains to show that FP(G|(\;) € FP(G). By Lemma 3.6, this is equivalent

T =i + [yi(2)]+- U+ Wit < g+ Wi to showing that for each o € FP(G|jnp\;), 0 € FP(Gloy;)-

J 775 = Ik IkZk Suppose o € FP(G|)\;), with corresponding fixed point z*. In this setting,
we are not guaranteed that y; = y;(z*) < 0, as z* is not necessarily a fixed
point of the full network. To see whether o € FP(G|,;), if suffices to check

If z* is a fixed point of (W, b), then z} = [y;], where y} = y;(z*).

The first stat t foll fi lling that z* = [y d z; = [y;
We can now prove the following technical lemma: e first statement now follows from recalling that zj = [y], and o} = [y

since we are at a fixed point.

T h d id Fi k the “oft”-neuron condition for j: that is, we need to check if y5 < 0 when
I Lemma 3.2.[Let (W,b) be a TLN on n nodes and consider distinct j, k € [n]. 0 see the second statement, we consider two cases. First, suppose k € 0§ o .10ating (3.1) at 2.
TTW;; X W Jor all i # j, k, and b; < by, then for any fized point z* of (W,b) S° that y§ > 0. In this case, from equation (3.3) we have Recall now that there exists a k € [n]\ j such that k graphically dominates
we have j. It is also useful to evaluate y; at z*. Following the beginning of the proof

Y; + Wislyile < gl +Wi) <0,

i + Wislyjl+ < vk + Wiklyel+- (3.3) of Lemma 3.2, we see that simply from the fact that supp(z*) = o, we obtain
Furthermore, if Wy; > —1 and Wi, < —1, then since Wjr < —1. If y; > 0, then the left-hand-side would be y;(1 + Wy;) > 0, Y + Wigah < yi + Wyl
since Wy; > —1. This yields a contradiction, so we can conclude that if y; > 0
yr <0 (3.4) then y2 < 0 However, we cannot assume z = [y;?]+, since we are not necessarily at a fixed
j="" N J=

point of the full network (W, ). We know only that z} = 0 and z} = [y}]+, as
the fixed point conditions are satisfied in the subnetwork (Wi ;,bpm\;) that
includes k. This yields,

Second, suppose k ¢ o so that y; < 0. Then we have [y}]; = 0 and
Proof. Suppose z* is a fixed point of (W,b) with support ¢ C [n]. Then, equation (3.3) becomes
recalling that W;; = Wy, = 0 and that 2} = 0 for all ¢ ¢ o, from equation (3.1)

Yj + Wislyjle <yi <0 Yy < w1+ W) <0,
Once again, if y; > 0 we obtain a contradiction, so we can conclude that |where the second inequality stems from the fact that Wj, < —1. So, as it
y; <0. O | turns out, we see that y; < 0 not only for fixed points of (W,b), but also for
fixed points from the subnetwork (Wiu\;,bpm)\;). We can thus conclude that
Suppose j is a dominated node in G. Then, for any associated FP(Glfm\s) € FP(G), completing the proof. o

g V, y; < 0 at every fized point z* (no matter the support).

Proof. Suppose j is a dominated node in G. Then, there exists k € [n] such need some more lemmas...

that j — k, k 4 j, and satisfying i — k whenever ¢ — j. Translating

these conditions to an associated gCTLN, with weight matrix given as in Let G be a graph with vertez set [n]. For any gCTLN on G,
equation (1.3), we can see that Wy; > —1, Wy, < —1, and W;; < Wy, for all

i # j,k. Moreover, since b; = b, = 6, we also satisfy b; < b,. We are thus 0 € FP(G) & o0 € FP(G|,) for allw such that 0 Cw C [n]
precisely in the setting of the second part of Lemma 3.2, and we can conclude & o0 € FP(G|,) and 0 € FP(G|,ue) for all £ ¢ o.
that 7 <0 at any fixed z* of the gCTLN. O



Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: (G — (G

Two graphs with the same reduction are in the same domination equivalence class.

O éz H—H ®; G~H
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Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: (G — (G

Two graphs with the same reduction are in the same domination equivalence class.

O éz H—H ®; G~H
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M \ e

C0@O—— @ «—0 3 \ /

1. Are overrepresented graphical motifs more likely to be reducible or irreducible?
2. Which motifs are domination-equivalent?

3. What about larger portions of the connectome: do they reduce via domination?



Very preliminary analysis

Graph motifs team at JHU

Jordan Matelsky (also at Penn)
Patricia Rivlin

Michael Robinette

Erik Johnson

Brock Wester

Johns Hopkins University Applied Physics Laboratory,
Research & Exploratory Development Department

We first strip out everything but chemical synapses, then tag neurons by their small-molecule neurotransmitters—acetylcholine/
glutamate as excitatory, GABA as inhibitory—next we grab the induced subgraph of neurons that fire ACh/Glu but no GABA.
That’s our ‘excitatory’ network. And yes—it’s just a conservative, transmitter-based proxy for valence; real C. elegans synaptic
polarity is far messier (receptors, modulators, co-transmission, gap junctions, etc.) All blame goes to Jordan Matelsky, Carina
did nothing wrong.

C. elegans E-E network:
G has143 nodes

reduced G: 104 nodes

Joaquin Castafeda Castro




Very preliminary analysis

Is a reduction from 143 -> 104 nodes
common or rare in a random graph with
matching edge probability?

C. elegans E-E network:
G has143 nodes

reduced G: 104 nodes

Joaquin Castafeda Castro




Very preliminary analysis

Is a reduction from 143 -> 104 nodes

common or rare in a random graph with C. elegans E-E network:

matching edge probability? G has143 nodes

1 million E-R random graphs

reduced G: 104 nodes

with matching p = 0.054

Distribution of domination
reductions:

* 143 nodes: 782,590
* 142 nodes: 189,951
* 141 nodes: 24,951 VERY RARE!!
* 140 nodes: 2,307
* 139 nodes: 185

* 138 nodes: 15

* 137 nodes: 1

Joaquin Castafeda Castro



C. elegans E-E network
reduction:

G has143 nodes

reduced G: 104 nodes

1 million E-R random graphs
with matching p = 0.054

Distribution of domination
reductions:

* 143 nodes: 782,590
* 142 nodes: 189,951
* 141 nodes: 24,951
* 140 nodes: 2,307

* 139 nodes: 185

* 138 nodes: 15

* 137 nodes: 1

Count

Reduction sizes of E-R random graphs of size n=143
with p = 0.05, 0.1, . 0.5

Reduction histogram for E-R random graphs n = 143 100000 trials
l

137

| J— .
139 140 141

e

138 139 140 141 142 143

size of reduced graph



Back to our motivating questions and ideas:

1. How does connectivity shape dynamics?

2. The relationship between connectivity and neural activity depends on the
dynamical system you associate to the connectome.

3. By studying neuroscience-inspired (nonlinear!) dynamical systems on graphs, we can
generate hypotheses about the dynamic meaning/role of various network motifs.

Domination is a graph property that comes out of the nonlinear dynamics,
it is not something that graph theorists or network scientists were already
paying attention fo.



