So far, everything we have done for CTLNs/gCTLNs has assumed negative (inhibitory) weights on the W matrix.

The gCTLN is defined by a graph G and two vectors of parameters:

$$W_{ij} = \begin{cases} -1 + \varepsilon_j & \text{if } j \to i, \text{ weak inhibition} \\ -1 - \delta_j & \text{if } j \not\to i, \text{ strong inhibition} \\ 0 & \text{if } i = j. \end{cases}$$

E-I TLNs from graphs

Curto 2025 (preprint soon!)

E-I TLNs from graphs

graph G

С

E-I network

В

n,

$$\frac{dx_i}{dt} = -x_i + \left[\sum_{j=1}^n W_{ij}x_j + W_{iI}(x_I - W_{Ii}x_i) + b_i\right]_+, \ i = 1, \dots,$$

$$\frac{dx_I}{dt} = \frac{1}{\tau_I} \left(-x_I + \left[\sum_{j=1}^n W_{Ij}x_j + b_I\right]_+ \right).$$

$$W_{ij} = \begin{cases} a_j & \text{if } j \to i \text{ in } G, \\ 0 & \text{if } j \not\to i \text{ in } G, \\ 0 & \text{if } i = j, \end{cases} \quad \text{and} \quad \begin{aligned} W_{Ij} &= c_j, \\ W_{II} &= -1, \\ W_{II} &= 0. \end{aligned}$$

Example G:

W for E-I TLN $W = \begin{pmatrix} 0 & a_2 & a_3 & -1 \\ a_1 & 0 & 0 & -1 \\ 0 & a_2 & 0 & -1 \\ c_1 & c_2 & c_3 & 0 \end{pmatrix}$

W for gCTLN $W = \begin{pmatrix} 0 & -1 + \varepsilon_2 & -1 + \varepsilon_3 \\ -1 + \varepsilon_1 & 0 & -1 - \delta_3 \\ -1 - \delta_1 & -1 + \varepsilon_2 & 0 \end{pmatrix}$

Curto 2025 (preprint soon!)

There is a mapping from E-I TLNs to gCTLNs that preserves fixed points

C. Lienkaemper, G. Ocker. Dynamics of clustered spiking networks via the CTLN model (2025)

Curto 2025 (preprint soon!)

There is a mapping from E-I TLNs to gCTLNs that preserves fixed points

The mapping says nothing about the timescale of inhibition!

TLNs, CTLNs, and gCTLNs ... and E-I TLNs from graphs

Even "exotic" attractors like Gaudi and baby chaos look the same

We had many mathematical results, called "graph rules" on CTLNs. Now many of those results also apply to E-I TLNs built from graphs!

Curto & Morrison, 2023 (review paper): Graph rules for recurrent neural network dynamics

Domination Theorems

Theorem 1 (2024) If j is a dominated node in G, then it drops out! I.e., in any gCTLN, we have: $FP(G) = FP(G|_{[n]\setminus j})$

Theorem 2 (2024)

By iteratively removing dominated nodes, the final reduced graph G-tilde is unique. Moreover, $FP(G) = FP(\widetilde{G})$

Since E-I TLNs map to gCTLNs with the same fixed points, the domination theorems hold for E-I TLNs, too!

Example

Since E-I TLNs map to gCTLNs with the same fixed points, the domination theorems hold for E-I TLNs, too!

1.

E-I network

W for gCTLN

Cyclic chain example

Domination reduction cannot be done, and the network activity will loop around.

inhibitory pulses
= stop signs

excitatory pulses = teleportation

inhibitory pulses
 = stop signs

excitatory pulses = teleportation

inhibitory pulses
 = stop signs

excitatory pulses = teleportation

Thank you!

Katie Morrison Caitlyn Parmelee Chris Langdon

Jesse Geneson Caitlin Lienkaemper

Jordan Matelsky (also at Penn) Patricia Rivlin Michael Robinette Erik Johnson **Brock Wester**

Johns Hopkins University Applied Physics Laboratory, **Research & Exploratory Development Department**

Juliana Londoño Alvarez

grad student:

Zelong Li

Nicole Sanderson Safaan Sadiq

Vladimir Itskov Anda Degeratu

Joaquín Castañeda Castro

Jency (Yuchen) Jiang

Other Collaborators:

Domination – New Theorems – a word about the proofs

3. Proof of Theorem 1.5 Theorem 1

In order to prove Theorem 1.5, it will be useful to use the notation

$$y_i(x) = \sum_{j=1}^n W_{ij} x_j + b_i.$$

With this notation, the equations for a TLN (W, b) become:

 $\frac{dx_i}{dt} = -x_i + [y_i(x)]_+.$

If x^* is a fixed point of (W, b), then $x_i^* = [y_i^*]_+$, where $y_i^* = y_i(x^*)$. We can now prove the following technical lemma:

Lemma 3.2. Let (W, b) be a TLN on n nodes and consider distinct $j, k \in [n]$. If $W_{ji} \leq W_{ki}$ for all $i \neq j, k$, and $b_j \leq b_k$, then for any fixed point x^* of (W, b) we have

$$y_j^* + W_{kj}[y_j^*]_+ \le y_k^* + W_{jk}[y_k^*]_+.$$

Furthermore, if $W_{kj} > -1$ and $W_{jk} \leq -1$, then

$$y_i^* \leq 0.$$

Proof. Suppose x^* is a fixed point of (W, b) with support $\sigma \subseteq [n]$. Then, equation (3.3) becomes recalling that $W_{jj} = W_{kk} = 0$ and that $x_i^* = 0$ for all $i \notin \sigma$, from equation (3.1)

we obtain:

(3.1)

(3.3)

$$y_j^*-W_{jk}x_k^*=\sum_{i\in\sigmaackslash\{j,k\}}W_{ji}x_i^*+b_j,
onumber \ y_k^*-W_{kj}x_j^*=\sum_{i\in\sigmaackslash\{j,k\}}W_{ki}x_i^*+b_k$$

The conditions in the theorem now immediately imply that $y_j^*-W_{jk}x_k^*\leq y_k^*-W_{kj}x_j^*,$ and thus

$$y_j^* + W_{kj}x_j^* \le y_k^* + W_{jk}x_k^*.$$

The first statement now follows from recalling that $x_j^* = [y_j^*]_+$ and $x_k^* = [y_k^*]_+$, since we are at a fixed point.

To see the second statement, we consider two cases. First, suppose $k \in \sigma$ so that $y_k^* > 0$. In this case, from equation (3.3) we have

$$y_j^* + W_{kj}[y_j^*]_+ \le y_k^*(1 + W_{jk}) \le 0$$

since $W_{jk} \leq -1$. If $y_j^* > 0$, then the left-hand-side would be $y_j^*(1 + W_{kj}) > 0$, since $W_{kj} > -1$. This yields a contradiction, so we can conclude that if $y_k^* > 0$ (3.4) then $y_i^* \leq 0$.

Second, suppose $k \notin \sigma$ so that $y_k^* \leq 0$. Then we have $[y_k^*]_+ = 0$ and equation (3.3) becomes

$$y_i^* + W_{kj}[y_i^*]_+ \le y_k^* \le 0.$$

Once again, if $y_j^* > 0$ we obtain a contradiction, so we can conclude that $y_j^* \le 0$.

Domination – New Theorems – a word about the proofs

we obtain:

(3.1)

(3.3)

3. Proof of Theorem 1.5 Theorem 1

In order to prove Theorem 1.5, it will be useful to use the notation

$$y_i(x) = \sum_{j=1}^n W_{ij} x_j + b_i.$$

With this notation, the equations for a TLN (W, b) become:

 $\frac{dx_i}{dt} = -x_i + [y_i(x)]_+.$

If x^* is a fixed point of (W, b), then $x_i^* = [y_i^*]_+$, where $y_i^* = y_i(x^*)$. We can now prove the following technical lemma:

Lemma 3.2. Let (W, b) be a TLN on n nodes and consider distinct $j, k \in [n]$. If $W_{ji} \leq W_{ki}$ for all $i \neq j, k$, and $b_j \leq b_k$, then for any fixed point x^* of (W, b) we have

$$y_j^* + W_{kj}[y_j^*]_+ \le y_k^* + W_{jk}[y_k^*]_+.$$

Furthermore, if $W_{kj} > -1$ and $W_{jk} \leq -1$, then

$$y_i^* \leq 0.$$

Proof. Suppose x^* is a fixed point of (W, b) with support $\sigma \subseteq [n]$. Then, equation (3.3) becomes recalling that $W_{jj} = W_{kk} = 0$ and that $x_i^* = 0$ for all $i \notin \sigma$, from equation (3.1)

$y_j^* - W_{jk}x_k^* = \sum_{i \in \sigma \setminus \{j,k\}} W_{ji}x_i^* + b_j,$ $y_k^* - W_{kj}x_j^* = \sum_{i \in \sigma \setminus \{j,k\}} W_{ki}x_i^* + b_k.$

The conditions in the theorem now immediately imply that $y_j^*-W_{jk}x_k^*\leq y_k^*-W_{kj}x_j^*,$ and thus

$$y_j^* + W_{kj}x_j^* \le y_k^* + W_{jk}x_k^*.$$

The first statement now follows from recalling that $x_j^* = [y_j^*]_+$ and $x_k^* = [y_k^*]_+$, since we are at a fixed point.

To see the second statement, we consider two cases. First, suppose $k \in \sigma$ so that $y_k^* > 0$. In this case, from equation (3.3) we have

$$y_j^* + W_{kj}[y_j^*]_+ \le y_k^*(1 + W_{jk}) \le 0$$

since $W_{jk} \leq -1$. If $y_j^* > 0$, then the left-hand-side would be $y_j^*(1 + W_{kj}) > 0$, since $W_{kj} > -1$. This yields a contradiction, so we can conclude that if $y_k^* > 0$ (3.4) then $y_i^* \leq 0$.

Second, suppose $k \notin \sigma$ so that $y_k^* \leq 0$. Then we have $[y_k^*]_+ = 0$ and equation (3.3) becomes

 $y_j^* + W_{kj}[y_j^*]_+ \le y_k^* \le 0.$

Once again, if $y_j^* > 0$ we obtain a contradiction, so we can conclude that $y_j^* \leq 0$.

Lemma 3.5. Suppose j is a dominated node in G. Then, for any associated $gCTLN, y_i^* \leq 0$ at every fixed point x^* (no matter the support).

Proof. Suppose j is a dominated node in G. Then, there exists $k \in [n]$ such that $j \to k, k \not\to j$, and satisfying $i \to k$ whenever $i \to j$. Translating these conditions to an associated gCTLN, with weight matrix given as in equation (1.3), we can see that $W_{kj} > -1$, $W_{jk} < -1$, and $W_{ji} \leq W_{ki}$ for all $i \neq j, k$. Moreover, since $b_j = b_k = \theta$, we also satisfy $b_j \leq b_k$. We are thus precisely in the setting of the second part of Lemma 3.2, and we can conclude that $y_j^* \leq 0$ at any fixed x^* of the gCTLN.

Lemma 3.6. Let G be a graph with vertex set [n]. For any gCTLN on G, $\sigma \in \operatorname{FP}(G) \iff \sigma \in \operatorname{FP}(G|_{\omega}) \text{ for all } \omega \text{ such that } \sigma \subseteq \omega \subseteq [n]$ $\Leftrightarrow \sigma \in \operatorname{FP}(G|_{\sigma}) \text{ and } \sigma \in \operatorname{FP}(G|_{\sigma,\ell}) \text{ for all } \ell \notin \sigma.$

Domination – New Theorems – a word about the proofs

3. Proof of Theorem 1.5 Theorem 1

In order to prove Theorem 1.5, it will be useful to use the notation

$$y_i(x) = \sum_{j=1}^n W_{ij} x_j + b_i.$$

With this notation, the equations for a TLN (W, b) become:

 $\frac{dx_i}{dt} = -x_i + [y_i(x)]_+.$

If x^* is a fixed point of (W, b), then $x_i^* = [y_i^*]_+$, where $y_i^* = y_i(x^*)$. We can now prove the following technical lemma:

Lemma 3.2. Let (W, b) be a TLN on n nodes and consider distinct $j, k \in [n]$. If $W_{ji} \leq W_{ki}$ for all $i \neq j, k$, and $b_j \leq b_k$, then for any fixed point x^* of (W, b)we have

$$y_j^* + W_{kj}[y_j^*]_+ \le y_k^* + W_{jk}[y_k^*]_+.$$

Furthermore, if $W_{kj} > -1$ and $W_{jk} \leq -1$, then

$$y_i^* \leq 0.$$

Proof. Suppose x^* is a fixed point of (W, b) with support $\sigma \subseteq [n]$. Then, equation (3.3) becomes recalling that $W_{jj} = W_{kk} = 0$ and that $x_i^* = 0$ for all $i \notin \sigma$, from equation (3.1)

Proof. Suppose j is a dominated node in G. Then, there exists $k \in [n]$ such that $j \to k, k \not\to j$, and satisfying $i \to k$ whenever $i \to j$. Translating these conditions to an associated gCTLN, with weight matrix given as in equation (1.3), we can see that $W_{ki} > -1$, $W_{jk} < -1$, and $W_{ji} \leq W_{ki}$ for all $i \neq j, k$. Moreover, since $b_i = b_k = \theta$, we also satisfy $b_i \leq b_k$. We are thus precisely in the setting of the second part of Lemma 3.2, and we can conclude that $y_i^* \leq 0$ at any fixed x^* of the gCTLN.

(3.1)

(3.3)

$$egin{aligned} &y_j^*-W_{jk}x_k^*=\sum_{i\in\sigma\setminus\{j,k\}}W_{ji}x_i^*+b_j,\ &y_k^*-W_{kj}x_j^*=\sum_{i\in\sigma\setminus\{j,k\}}W_{ki}x_i^*+b_k. \end{aligned}$$

The conditions in the theorem now immediately imply that $y_i^* - W_{ik} x_k^* \leq$ $y_k^* - W_{kj} x_j^*$, and thus

$$y_j^* + W_{kj}x_j^* \le y_k^* + W_{jk}x_k^*.$$

The first statement now follows from recalling that $x_i^* = [y_i^*]_+$ and $x_k^* = [y_k^*]_+$ since we are at a fixed point.

To see the second statement, we consider two cases. First, suppose $k \in \sigma$ so that $y_{k}^{*} > 0$. In this case, from equation (3.3) we have

$$y_j^* + W_{kj}[y_j^*]_+ \le y_k^*(1 + W_{jk}) \le 0$$

since $W_{ik} \leq -1$. If $y_i^* > 0$, then the left-hand-side would be $y_i^*(1 + W_{ki}) > 0$, since $W_{kj} > -1$. This yields a contradiction, so we can conclude that if $y_k^* > 0$ (3.4) then $y_i^* \leq 0$.

Second, suppose $k \notin \sigma$ so that $y_{k}^{*} \leq 0$. Then we have $[y_{k}^{*}]_{+} = 0$ and

 $y_i^* + W_{ki}[y_i^*]_+ \le y_k^* \le 0.$

Once again, if $y_i^* > 0$ we obtain a contradiction, so we can conclude that where the second inequality stems from the fact that $W_{ik} < -1$. So, as it $y_i^* \leq 0.$

need some more lemmas...

Lemma 3.6. Let G be a graph with vertex set [n]. For any gCTLN on G,

 $\sigma \in \operatorname{FP}(G) \iff \sigma \in \operatorname{FP}(G|_{\omega}) \text{ for all } \omega \text{ such that } \sigma \subseteq \omega \subseteq [n]$ $\Leftrightarrow \ \sigma \in \operatorname{FP}(G|_{\sigma}) \text{ and } \sigma \in \operatorname{FP}(G|_{\sigma \sqcup \ell}) \text{ for all } \ell \notin \sigma.$

Proof of Theorem 1

Proof of Theorem 1.5. Suppose j is a dominated node in G, and let (W, b) be an associated gCTLN. By Lemma 3.5, we know that $y_i^* \leq 0$ at every fixed point (W, b). It follows that $j \notin \sigma$ for all $\sigma \in FP(G)$. Hence,

$\operatorname{FP}(G) \subseteq \operatorname{FP}(G|_{[n]\setminus j}).$

It remains to show that $FP(G|_{[n]\setminus j}) \subseteq FP(G)$. By Lemma 3.6, this is equivalent to showing that for each $\sigma \in \operatorname{FP}(G|_{[n]\setminus j}), \ \sigma \in \operatorname{FP}(G|_{\sigma \cup j}).$

Suppose $\sigma \in FP(G|_{[n]\setminus j})$, with corresponding fixed point x^* . In this setting, we are not guaranteed that $y_i^* = y_i(x^*) \leq 0$, as x^* is not necessarily a fixed point of the full network. To see whether $\sigma \in FP(G|_{\sigma \cup j})$, if suffices to check the "off"-neuron condition for j: that is, we need to check if $y_i^* \leq 0$ when evaluating (3.1) at x^* .

Recall now that there exists a $k \in [n] \setminus j$ such that k graphically dominates *i*. It is also useful to evaluate y_{i}^{*} at x^{*} . Following the beginning of the proof of Lemma 3.2, we see that simply from the fact that $\operatorname{supp}(x^*) = \sigma$, we obtain

$$y_{j}^{*} + W_{kj}x_{j}^{*} \le y_{k}^{*} + W_{jk}x_{k}^{*}.$$

However, we cannot assume $x_i^* = [y_i^*]_+$, since we are not necessarily at a fixed point of the full network (W, b). We know only that $x_i^* = 0$ and $x_k^* = [y_k^*]_+$, as the fixed point conditions are satisfied in the subnetwork $(W_{[n]\setminus j}, b_{[n]\setminus j})$ that includes k. This yields,

$$y_j^* \le y_k^* (1 + W_{jk}) \le 0,$$

 \Box turns out, we see that $y_i^* \leq 0$ not only for fixed points of (W, b), but also for fixed points from the subnetwork $(W_{[n]\setminus j}, b_{[n]\setminus j})$. We can thus conclude that $\operatorname{FP}(G|_{[n]\setminus i}) \subseteq \operatorname{FP}(G)$, completing the proof.

Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: $G \longrightarrow \widetilde{G}$

Two graphs with the same reduction are in the same domination equivalence class.

Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: $G \longrightarrow \widetilde{G}$

Two graphs with the same reduction are in the same domination equivalence class.

- 1. Are overrepresented graphical motifs more likely to be reducible or irreducible?
- 2. Which motifs are domination-equivalent?
- 3. What about larger portions of the connectome: do they reduce via domination?

Very preliminary analysis

Graph motifs team at JHU

Jordan Matelsky (also at Penn)

Patricia Rivlin Michael Robinette Erik Johnson Brock Wester

Johns Hopkins University Applied Physics Laboratory, Research & Exploratory Development Department

C. elegans E-E network: G has143 nodes reduced G: 104 nodes

Joaquín Castañeda Castro

We first strip out everything but chemical synapses, then tag neurons by their small-molecule neurotransmitters—acetylcholine/ glutamate as excitatory, GABA as inhibitory—next we grab the induced subgraph of neurons that fire ACh/Glu but no GABA. That's our 'excitatory' network. And yes—it's just a conservative, transmitter-based proxy for valence; real C. elegans synaptic polarity is far messier (receptors, modulators, co-transmission, gap junctions, etc.) All blame goes to Jordan Matelsky, Carina did nothing wrong.

Very preliminary analysis

Is a reduction from 143 -> 104 nodes common or rare in a random graph with matching edge probability?

C. elegans E-E network: G has143 nodes reduced G: 104 nodes

Joaquín Castañeda Castro

Very preliminary analysis

Is a reduction from 143 -> 104 nodes common or rare in a random graph with matching edge probability?

1 million E-R random graphs with matching p = 0.054

Distribution of domination reductions:

- 143 nodes: 782,590
- 142 nodes: 189,951
- 141 nodes: 24,951
- 140 nodes: 2,307
- 139 nodes: 185
- 138 nodes: 15
- 137 nodes: 1

VERY RARE!!

C. elegans E-E network: G has143 nodes reduced G: 104 nodes

Joaquín Castañeda Castro

Reduction sizes of E-R random graphs of size n=143 with p = 0.05, 0.1, 0.25, 0.5

Back to our motivating questions and ideas:

- 1. How does connectivity shape dynamics?
- 2. The relationship between connectivity and neural activity depends on the dynamical system you associate to the connectome.
- 3. By studying neuroscience-inspired (nonlinear!) dynamical systems on graphs, we can generate hypotheses about the dynamic meaning/role of various network motifs.

Domination is a graph property that comes out of the nonlinear dynamics, it is not something that graph theorists or network scientists were already paying attention to.

